
Aspect-oriented Application-level Scheduling for J2EE Servers

Kenichi Kourai Hideaki Hibino ∗ Shigeru Chiba
Tokyo Institute of Technology

{kourai,hibino,chiba}@csg.is.titech.ac.jp

Abstract
Achieving sufficient execution performance is a challenging goal
of software development. Unfortunately, violating performance re-
quirements is often revealed at a late stage of the development. Fix-
ing a performance problem at such a late stage is difficult in terms
of cost and time. To solve this problem, this paper presents QoS-
Weaver, which provides aspect-oriented application-level schedul-
ing. QoSWeaver weaves scheduling code written in an aspect into
application code. The scheduling code gets an application thread
to voluntarily yield its execution to implement a scheduling pol-
icy. The idea of scheduling at the application level is not new, but
aspect-oriented programming makes it more realistic by separa-
tion of scheduling code. QoSWeaver also provides a profile-based
pointcut generator, which automatically generates pointcuts for
fine-grained scheduling. To investigate the ability of QoSWeaver
for implementing practical scheduling policies, we used QoS-
Weaver for tuning the performance of a river monitoring system
named Kasendas. For reliable examination, Kasendas was origi-
nally developed by an outside corporation and then it was tuned
by the authors with QoSWeaver. The authors could successfully
improve the performance of Kasendas under heavy workload and
the work of the performance tuning was not large.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement

General Terms Performance, Experimentation

Keywords QoS, performance tuning, pointcut generator, case
study

1. Introduction
Achieving sufficient execution performance is one of primary goals
of software development. However, it is always a challenging goal.
For example, a web application may not satisfy its performance
requirement but this fact is often uncovered when a stress test is
performed at the final stage of software development, or in a worse
case, after the application starts servicing to the users. Of course,
the performance characteristics of the software should be carefully
considered at the stage of architecture design but estimating the
actual performance is difficult at that stage.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD 07 March 12–16, 2007, Vancouver, Canada
Copyright c© 2007 ACM 1-59593-615-7/07/03. . . $5.00.

∗ Currently, Hitachi Software Engineering Co.,Ltd.

Fixing a performance problem at such a late stage is difficult in
terms of cost and time. Some readers might think that the problem
can be fixed by upgrading hardware, but this approach is the last
resort because it needs extra cost. The second-best solution would
be to improve the quality of service (QoS) for web applications,
but it is still a challenge. To exploit scheduling mechanisms pro-
vided by operating systems or middleware for controlling QoS, de-
velopers must modify web applications, sometimes largely. Such
modification may be difficult to finish within a limited time. If the
scheduling mechanism provided by operating systems or middle-
ware is not suitable for the web applications, developers can use a
different operating system or middleware. However, changing such
underlying software requires them to test their software again be-
cause they must guarantee that the software system correctly works
under the new circumstances. Executing all the test again would
take long time.

To solve this problem, this paper presents QoSWeaver, which
provides aspect-oriented application-level scheduling. QoSWeaver
enables changing a scheduling policy for web applications on de-
mand. QoSWeaver weaves scheduling code written in an aspect
into application code. The scheduling code gets an application
thread to voluntarily yield its execution to implement a scheduling
policy. The idea of scheduling at the application level is not new,
but aspect-oriented programming (AOP) makes it more realistic by
separating scheduling code from applications. AOP prevents appli-
cation logic from being corrupted when scheduling code is added
or changed. This has been a major obstacle to adopt application-
level scheduling. In addition, QoSWeaver provides a profile-based
pointcut generator, which helps developers write aspects for fine-
grained scheduling. The pointcut generator automatically generates
pointcuts so that the scheduling code is executed at as regular inter-
vals as possible, according to profile information of the execution
of web applications.

To examine that QoSWeaver enables implementing a practi-
cal non-toy scheduling policy, we used a river monitoring system
named Kasendas. Kasendas is a web application that periodically
collects the water levels of major Japanese rivers and reports the
collected data to the public through the web. We then executed the
performance tuning of Kasendas so that Kasendas can periodically
collect water levels at correct intervals even if a large number of
clients simultaneously send requests to visualize the data of wa-
ter levels. From the viewpoint of thread scheduling, we tried to
give sufficient CPU time to the thread for periodically collecting
water levels than the other threads for processing requests from
clients. For reliable examination, we ordered the initial develop-
ment of Kasendas to an outside corporation and we only executed
performance tuning. We used QoSWeaver and we could success-
fully implement a scheduling policy that gives sufficient CPU time
to the thread for collecting water levels. The work of the perfor-
mance tuning was not large, compared with the modification of the
software design of Kasendas.

The rest of this paper is organized as follows. Section 2 explains
why fixing a performance problem at a late stage of software devel-
opment is difficult. Section 3 presents QoSWeaver, which enables
application-level scheduling by using AOP. Section 4 illustrates a
river monitoring system named Kasendas, which is our case study,
and shows an applied scheduling policy. Section 5 reports the re-
sults of our experiments to examine the usefulness of QoSWeaver.
Section 6 describes related work and Section 7 concludes this pa-
per.

2. Motivating Background
Fixing a performance problem at a late stage of software develop-
ment is difficult because developers must consider several practical
constraints – cost and time. First, the easiest way to fix the prob-
lem would be to upgrade hardware so that the software will run fast
enough to satisfy the performance requirement. However, upgrad-
ing hardware is usually the last resort, which requires clients to pay
extra costs. This solution is not realistic at the last stage of the de-
velopment when the hardware for product run is already installed.

The second-best solution would be to improve QoS by adjusting
a scheduling policy. A web application normally processes various
kinds of tasks requested from web browsers (i.e. users) in paral-
lel. Some kinds of tasks have higher importance while others have
lower importance. The QoS of such a web application is often kept
acceptable if higher-importance tasks obtain more computing re-
sources such as CPU time than lower-importance tasks. However,
this solution is still a challenge. Since modern operating systems
provide a scheduling mechanism for controlling QoS, some read-
ers might think that what developers should do is only to slightly
modify their web applications to exploit that scheduling mecha-
nism. Unfortunately, the reality is not such a simple thing.

First of all, developers cannot exploit that scheduling mecha-
nism for web applications if the application thread and the kernel
thread are not one-to-one mapping. If the mapping between them
is changed after an application thread sets its priority to the ker-
nel thread corresponding at that time, the priority of the application
thread becomes ineffective. The mapping depends on the thread
library used in operating systems. In addition, the software some-
times has to be largely modified to exploit the scheduling mecha-
nism and such modification is not easy to finish within a limited
time before the expected shipping date. For example, to use real-
time scheduling provided by operating systems, developers may
have to rewrite a part of application code to be kernel modules.

Furthermore, scheduling mechanisms provided by operating
systems may not be suitable for web applications. For example,
the priority scheduling provided by some general-purpose operat-
ing systems may not allocate sufficient CPU time to an application
thread executing a periodic task with a high priority. If there are
too many low-priority threads, a high-priority thread tends to miss
its deadline. This problem will be avoided if developers use a dif-
ferent operating system, in particular, a real-time operating system,
but changing an operating system at the final stage of software
development is not acceptable. According to our previous work,
the performance behavior of web applications largely changes if
the underlying operating system is changed, even from a general-
purpose one to another [11]. Developers must spend long time for
testing a whole software system again if they change the operating
system. They must guarantee that the software system correctly
works under the new circumstances.

Exploiting the QoS mechanism provided by middleware has a
similar problem. The standard Java virtual machine (JVM) sup-
ports priority scheduling of Java threads, but it does not guarantee
the effectiveness. Priorities passed from applications to the JVM
are only hints and the effectiveness strongly depends on the imple-
mentation of the JVM and the underlying operating system. If the

1. call
2. set the yield flag
 of thread B

3. call
4. suspend thread B

5. call

6. wake up
 thread B

scheduler
object

thread A

thread B

7. return

application server

Figure 1. Scheduling mechanism based on thread yielding.

scheduling mechanism provided by the JVM is not effective or not
suitable, developers can use another implementation of the JVM,
for example, a real-time JVM implementing Real-Time Specifica-
tion for Java [5]. However, changing the JVM at the final stage
is not acceptable as well as changing the operating system. Some
web application servers provide mechanisms for controlling QoS,
but those mechanisms are often insufficient. For example, when the
maximum number of threads is limited to reduce the system load,
high-priority threads may not be able to start execution if many
low-priority threads are already running.

3. Aspect-oriented Application-level Scheduling
To solve the problem described in the previous section, this paper
presents QoSWeaver, which provides aspect-oriented application-
level scheduling. It enables developers to customize a policy of
thread scheduling at the application level. In this section, we de-
scribe how AOP makes application-level scheduling feasible in
practice.

3.1 Application-level Scheduling
The application-level scheduling is implemented by the coopera-
tion among application threads, which voluntarily yield their exe-
cution in favor of other threads. Thus a thread must periodically in-
voke a method on a scheduler object provided by QoSWeaver. The
scheduler’s method causes the caller thread to yield its execution
according to a specified scheduling policy. The suspended thread
can be woken up and rescheduled when another thread calls the
scheduler’s method. The scheduler’s method causes a caller thread
to yield only if the yield flag of the thread is set. Thus, we can
control the scheduling by setting and resetting this flag. Suppose
that our scheduling policy is that all other threads are suspended
while a particular thread A is running. This policy is implemented
as illustrated in Figure 1. If the thread A first calls the scheduler’s
method, the method does not cause the thread to yield but sets the
yield flag of another thread B. This will suspend the thread B when
the thread calls the scheduler’s method next time. The thread B will
not be woken up again until the thread A finishes its execution and
the scheduler resets the yield flag of the thread B.

Our application-level scheduling has several advantages, com-
pared with scheduling at a lower level such as the operating sys-
tem level or middleware level. One advantage is to enable devel-
opers to implement various scheduling policies without modifying
the underlying systems. The application-level scheduling is inde-
pendent of the underlying operating system and middleware and
hence it does not need to change them. It changes only the schedul-

ing policy of the target applications. Since QoSWeaver schedules
only the threads of the target applications, the rest of the threads
in the software can obtain at least the same amount of CPU time
as they can when QoSWeaver is not applied. Another advantage
is to enable developers to develop application-specific schedulers.
Such schedulers can use high-level information passed from appli-
cation threads. For example, if application threads give their roles
to a scheduler, the scheduler can give CPU time to these threads
according to their role. If a low-level scheduler is used, applica-
tion threads must translate such high-level information to low-level
information such as thread priorities.

The further details of application-level scheduling are described
in Section 3.3.

3.2 Separating Scheduling Code into an Aspect
The idea of scheduling at the application level is not new, but it has
not been realistic because the developers have to insert schedul-
ing code into their application programs by hand. It is difficult to
insert scheduling code at right places, in particular, for average de-
velopers. Hence the code they inserted must be later checked by
an experienced developer. This work is annoying and time con-
suming. Moreover, if a scheduling policy requires a thread to fre-
quently yield its execution, developers must insert scheduling code
at a large number of places. This causes the application logic to
be tangled with scheduling code. Maintaining the tangled schedul-
ing code is difficult. For example, if developers want to change a
scheduling policy, they have to remove old scheduling code and
insert new scheduling code. This modification is error-prone and
hence developing an appropriate scheduling policy by a trial-and-
error approach is difficult.

QoSWeaver lets developers to write scheduling code as an as-
pect and weaves it into application code. Using AOP makes the
idea of the application-level scheduling realistic. Since scheduling
code is separated from application logic code, it can be written by
only a few experienced developers. Other average developers do
not have to write scheduling code any more and can concentrate
on writing application logic code without being aware of schedul-
ing. Writing scheduling code as an aspect also makes it easy to
develop an appropriate scheduling policy by a trial-and-error ap-
proach. Since an aspect weaver automatically inserts and removes
scheduling code, developers never accidentally corrupt their pro-
grams when they change scheduling code.

3.2.1 Profile-based Pointcut Generator
QoSWeaver provides a pointcut generator, which automatically
generates a set of pointcuts for inserting scheduling code. This tool
helps developers define a right set of pointcuts for getting an appli-
cation to call a scheduler at as regular intervals as possible. Call-
ing a scheduler at regular intervals is desirable to control appli-
cation threads stably. In particular, fine-grained scheduling needs
support by such a tool because an application needs to frequently
call a scheduler to yield its execution. It is difficult to manually
define pointcuts for such scheduling because the pointcuts must se-
lect a large number of join points and a thread must reach those
join points in regular intervals. Furthermore, the number of the se-
lected join points should be minimum; otherwise, a scheduler will
be called redundantly. Calling a scheduler twice within a single in-
terval is useless. The second call is just a performance penalty.

The pointcut generator generates appropriate pointcuts on a ba-
sis of the profile information of the execution of a target applica-
tion. To do this, the pointcut generator first obtains profile data,
which is about when a thread reaches each join point. In our cur-
rent implementation, the pointcut generator deals with only method
calls as join points. To do this profiling, developers must first weave
a target application with an aspect that records a caller’s method

t := ideal interval
m := maximum occurrence
exec time := total execution time

PCall := a set of possible pairs of pointcuts
PCgen := {}
SLOT := {0, ..., �exec time/t�}

for each i = 1..m
PCi = {pc ∈ PCall | |select(pc)| = i}
for each j ∈ SLOT

PCij = {pc ∈ PCi | j ∈ cover(pc)}
PCbest = {pc ∈ PCij | |cover(pc) ∩ SLOT | is biggest}
best pc = eval(PCbest)
PCdel = {pc ∈ PCgen | cover(pc) ⊂ cover(best pc)}
PCgen = PCgen − PCdel + best pc
SLOT = SLOT − cover(best pc)

endfor
endfor

Figure 2. The algorithm of pointcut generation. Function select
receives a pair of call and withincode pointcuts. It returns a set
of join points selected by the pair. Function cover receives a pair
of pointcuts and returns a set of time slots covered by the pair.
Function eval receives a set of pairs of pointcuts and returns one
of them. |S| is the size of a set S.

name, a callee’s method signature (the method name, the parame-
ter types, and the return type), and the time stamp for each method
call. Then they run the target application. Since their application is
a web application, they also run a client to send requests to the ap-
plication. The client sequentially sends requests because we want
to know when each single thread calls a method.

To generate appropriate pointcuts from that profile information,
the pointcut generator takes two parameters from the developers:

• an ideal interval between adjacent join points selected by point-
cuts, and

• the allowed maximum occurrence of join points selected by a
single pointcut.

One criterion for the pointcut generator is that the average interval
between adjacent join points selected by pointcuts is close to the
ideal interval t given from the developers. The pointcut generator
generates pointcuts that satisfy this criterion as much as possible.
The maximum occurrence m is used to avoid that too many join
points are selected.

Developers give different sets of parameters to the pointcut
generator and obtain multiple sets of pointcuts, each of which
corresponds to each set of given parameters. Then the developers
manually choose the best set of pointcuts among the multiple sets
they obtained.

3.2.2 Algorithm of Pointcut Generation
Figure 2 shows our algorithm of pointcut generation. The aim of
this algorithm is that the generated pointcuts select only one (or
as a small number as possible) join point for each time slot. The
length of a time slot is the given interval t. The generated pointcuts
are chosen among possible pairs of call and withincode pointcuts.
Each pointcut does not include wildcards. Thus each pair selects
join points representing calls to the same method within the same
method body.

(a)

(b)

(c)

(d)

0 1 2 3 4time slot

Figure 3. An Example of pointcut generation. Each icon denotes
a join point during the profiled execution. Icons filled by black are
selected join points.

The algorithm first chooses pairs of pointcuts that selected only
one join point during the profiled execution. Let PC1 be the set of
chosen pairs of pointcuts. Then, the algorithm computes a subset
of PC1 that covers as many time slots as possible. Here, covering
a time slot means that a join point selected by a pointcut occurs in
that time slot. If there are multiple pairs of pointcuts that cover the
same time slot, the algorithm chooses one of them. Let PCgen be
the computed subset of PC1.

Then, for the time slots that have not been covered, which are
denoted by SLOT , the algorithm chooses pairs of pointcuts that
selected two join points during the profiled execution. Let PC2

be the set of chosen pairs of pointcuts. The algorithm computes
a subset of PC2 that covers as many not-covered time slots as
possible. If there are multiple pairs that cover the same time slot,
the algorithm chooses the pair that covers the most time slots. The
elements of the computed subset are added to PCgen. If PCgen

contains an element that covers the same time slots as an element
newly added to PCgen, then the former element is removed from
PCgen. If the former element covers a time slot that the latter
element does not cover, it is not removed. The algorithm iterates
this choosing process from PC1 to PCm, where m is a parameter
given by the developers. After the iteration, the pointcut generator
generates PCgen as its result.

For example, suppose that the profiled execution is modeled as
a sequence of join points in Figure 3 (a) The profiled execution
consists of five time slots. Each icon like a circle and a star is a join
point. The algorithm first chooses pairs of pointcuts that selected
the circle in time slot 0 and the hexagon in time slot 4. Now, these
two join points are in PCgen and the time slot 0 and 4 are covered
(Figure 3 (b)). Then the algorithm chooses PC2, which contains
two pairs: one that selected two triangles and the other that selected
two diamonds. Since the pair selecting the two triangles covers two
new time slots (the time slot 0 of the diamond has been already
covered), the algorithm adds that pair to PCgen (Figure 3 (c)).
At the final iteration, the pair selecting the rectangles is added to
PCgen. At the same time, the pairs of pointcuts that selected the
circle and the hexagon are removed from PCgen (Figure 3 (d)). The
time slot 0 and 4 are covered by the pair selecting the rectangles.
The algorithm results in pairs of pointcuts that selected the triangles
and rectangles. In this example, all the time slots are covered by
those pointcuts and each time slot includes only one join point.

3.3 Details of Application-level Scheduling
Scheduling code woven into applications by QoSWeaver includes
synchronization code to yield threads’ execution and wake up the

threads suspended by thread yielding. In our implementation, the
synchronization is achieved by the wait and notify methods in
the java.lang.Object class. Adding such synchronization code can
cause deadlocks if the original applications also include synchro-
nization code. Suppose that applications use synchronized blocks.
A deadlock occurs when a thread in a synchronized block yields
its execution and another thread to wake up that thread attempts
to enter the block. However, web applications do not often include
synchronization code. In particular, the Enterprise JavaBeans (EJB)
specification prohibits using thread synchronization. In our case
study in Section 4, web applications that QoSWeaver was applied
to did not use thread synchronization although they were not EJB
applications.

For web applications including synchronization code to prevent
deadlocks, QoSWeaver enables each thread that has yielded its ex-
ecution to execute scheduling code periodically. This is achieved
by using the Object.wait method with the timeout argument. If
deadlocks occur, the scheduling code can continue that suspended
thread and break deadlocks. If not, the scheduling code yields
the thread’s execution again. Some readers may think that us-
ing an independent scheduler thread is straightforward to prevent
deadlocks because the thread can always run. However, it is dif-
ficult in Java that such a scheduler thread preemptively suspends
other threads. Although Java provides the Thread.suspend and
Thread.resume methods for thread preemption, these methods are
not recommended to use because they are inherently deadlock-
prone. Unlike wait method, the suspend method cannot be timed
out.

To make it easy to implement scheduling policies, application-
level schedulers can rely on the schedulers of the underlying oper-
ating system and middleware. For example, when a thread blocks
for I/O, the underlying schedulers automatically allocate CPU to
another thread if multiple threads are running on the application-
level scheduler. The developers do not need to write scheduling
code to reschedule threads whenever a thread issues blocking I/O.
This mechanism assumes that the underlying schedulers schedule
threads in a fair manner. This assumption is satisfied in most operat-
ing systems and middleware. If developers want to control threads
strictly, they can write scheduling code such that a thread calls a
scheduler to temporarily run another thread just before it issues
blocking I/O and it suspends the temporarily running thread just
after it completes I/O.

4. Case Study
To examine that QoSWeaver enable implementing practical schedul-
ing policies, we executed performance tuning of a web application
system with QoSWeaver. The web application that we used is a
river monitoring system named Kasendas. This section describes
the overview of the web application and what scheduling policy we
developed for the web application.

4.1 Kasendas: A River Monitoring System
Kasendas is a river monitoring system that collects and reports
the water levels of major rivers in Japan to the public through
the web. Figure 4 shows a screenshot of its client’s view. The
web applications that supply such information related to natural
disaster should be carefully implemented to be able to work under
a large number of simultaneous accesses, known as flash crowds.
Usually people will not access such a web application but, once a
large typhoon approaches, they will rush to the web application for
making sure that their local rivers are not flooded. We executed
performance tuning so that the software will work under such
heavy workload. We chose this application because this work was
done for demonstrating our AOP technology within the framework
of a research project funded by Japan Science and Technology

Figure 4. The current water levels in Tokyo shown by Kasendas.

server file type number lines
Kasendas .java files 82 9238

JSP files 12 1736
dicon files 15 558

Data generator .java files 8 646

Table 1. The code size of Kasendas.

Agency, which is studying dependable IT infrastructure for secure
life. Since Kasendas is for technology demonstration, the water
levels shown by Kasendas were pseudo data produced by the data
generator, which emulates sensor nodes that measure the water
levels of rivers and provides the data to Kasendas.

To make the results of our experiment reliable, Kasendas was
initially developed by an outside corporation with CMMI level
3 [21]. We only received its source files and executed performance
tuning. Although we told them the aim of Kasendas, they developed
it independently of QoSWeaver. The requirement from us was to
build Kasendas with typical open source middleware: such as JBoss
application server [12], the Tomcat web container [2], the Struts
framework [3], and the Seasar2 container [19]. Table 1 shows the
code size of Kasendas. JSP files specify the design of web pages
and the dicon files specify the configuration of components. This
table does not include third-party libraries and frameworks. The
development cost of Kasendas was 8.8 man-month, including tests
and the design of web pages.

Figure 5 shows the architectural overview of Kasendas. Kasendas
collects the water levels of rivers through web services provided by
the data generator periodically, for example, every 15 seconds. To
collect the water levels of all rivers, Kasendas sends the same num-
ber of requests as rivers to the data generator. The collected data
are stored in the PostgreSQL database [17] and the latest data is
also kept on memory. Kasendas runs two other applications. One
generates a web page showing recent changes of water levels, for
example, for the last 12 hours. It reads data from the database
and generates a chart of water levels by using the JFreeChart li-
brary [16]. This is a heavy-weight application because it accesses
the database and produces a PNG image of the chart like Figure 6.
The other generates a web page showing the current water levels.
It reads data on memory and generates an image like Figure 4.

Kasendas executes these three applications as follows. A timer
in Kasendas triggers the execution of the application collecting wa-
ter levels. A single thread allocated by the timer executes the ap-

DB
Kasendas

application
(chart generation)

application
(water-level update)

application
(data collection)

memory

web
service

store

store

read

read

data
generator

Figure 5. The architecture of Kasendas.

Figure 6. The generated chart of recent changes of water levels in
a river.

plication at regular intervals. On the other hand, the other two ap-
plications are executed when Kasendas receives requests from the
clients. Since these applications must be able to process a number
of simultaneous requests in parallel, they are multi-threaded. When
Kasendas receives a request, it obtains a thread from the thread pool
provided in the web application server and the thread executes the
requested application.

The initial version of Kasendas that we obtained from the out-
side corporation was unstable under heavy workload. It frequently
failed to collect water levels on time from the data generator. Ac-
cording to our investigation, it became unstable when a number of
clients simultaneously access the web page showing a chart of re-
cent changes of water levels. Since generating that page is a heavy-
weight task, it consumes a large amount of CPU time and thus
it disturbs another application that is periodically collecting water
levels from the data generator. This collector application will miss
its deadline and lose a part of the water levels at that time. Fur-
thermore, this application continues to collect the rest of the water
levels in the next time period because it is not aware of the deadline
miss. Thus it fails again to collect the current water levels in the
next time period.

4.2 The Applied Scheduling Policy
To fix this performance problem, we used QoSWeaver. The schedul-
ing policy applied to Kasendas was proportional-share scheduling
for two groups of low-importance threads of generating a chart
and a high-importance thread of periodic data collection. While

the high-importance thread does not run, the scheduling policy
runs all the low-importance threads. When the high-importance
thread starts to run, the scheduler quickly limits the number of low-
importance threads to keep the ratio of the number of threads for
each group. The scheduling policy did not consider threads that
execute the application providing the current water levels because
we could ignore them. They did not have high importance and did
not make the system load high because they were light-weight.

The scheduling policy makes a low-importance thread call a
scheduler periodically. If the yield flag of the thread is set by the
scheduler, the thread is suspended. On the other hand, the schedul-
ing policy makes a high-importance thread call the scheduler when
the thread starts the periodic collection of water levels. At this time,
the scheduler limits the number of running low-importance threads.
We experimentally configured the number to one, which made the
behavior of the high-importance thread the stablest. This means
that our scheduling policy gives a share of 50% to each group of
threads. We did not limit the number to zero because we wanted
low-importance threads to run while a high-importance thread was
running. To suspend low-importance threads, the scheduler sets
the yield flags of all but one low-importance thread. When low-
importance threads call the scheduler after that, they are suspended
if their yield flags are set. The scheduling policy makes a high-
importance thread call the scheduler again when it finishes the ex-
ecution. The scheduler removes the limitation on the number of
running low-importance threads, resets the yield flags of the low-
importance threads, and wakes up all the waiting low-importance
threads.

To write an aspect that implements this scheduling policy for
QoSWeaver, we used our own AOP system named GluonJ [7]. In
GluonJ, an aspect is written in XML as glue code 1. An aspect
is woven into web applications when they are loaded into a web
application server. The aspect we wrote is shown in Figure 7 and
Figure 8.

Figure 7 shows the part of pointcut declaration in our aspect.
For simplicity, we omit package names from class names. A point-
cut is declared within the pointcut-decl tag. It is named with the
name tag and specified with the pointcut tag. In our case, we de-
clared three pointcuts: lowImportance, highImportance, and con-
trolPoint. The lowImportance pointcut selects the execution of the
method starting the chart generation. The highImportance point-
cut selects the execution of the method starting the periodic collec-
tion of water levels. These two pointcuts were written by hand with
the knowledge of the source code of Kasendas. On the other hand,
the controlPoint pointcut was generated by our pointcut generator.
The definition of controlPoint consists of 17 pairs of withincode
and call pointcuts, which are concatenated with OROR. ANDAND
and OROR correspond to && and || in AspectJ [13], respectively.
The controlPoint pointcut selects various method calls during chart
generation. We advised these join points so that the scheduler will
be called at those join points.

Figure 8 shows the part of advice declaration in our aspect. Ad-
vice is declared within the behavior tag. It consists of the point-
cut tag and the around or before tag. The pointcut tag specifies
a named pointcut declared with the pointcut-decl tag. The around
and before tags specify around advice and before advice, respec-
tively. In the around tag, a special variable $$ represents arguments
passed to a target method and $ represents a return value in this
context. The advice bodies invoke the methods declared in the PS-
Scheduler class, which is a support class of our aspect, shown in
Figure 9. The first around advice is executed when a chart is gener-
ated. It calls the scheduler to register the thread to be controlled.

1 In the latest version of GluonJ, an aspect is written in Java. See http:
//www.csg.is.titech.ac.jp/projects/gluonj/.

<pointcut-decl>
<name> lowImportance </name>
<pointcut>

execution(void
PlaceChartCreatePseudActionImpl.execute(..))

</pointcut>
</pointcut-decl>

<pointcut-decl>
<name> highImportance </name>
<pointcut>

execution(void CollectorImpl.doObtain())
</pointcut>

</pointcut-decl>

<pointcut-decl>
<name> controlPoint </name>
<pointcut>

(withincode(Range
CategoryPlot.getDataRange(ValueAxis))
ANDAND
call(Range Range.combine(Range,Range)))
OROR
:

</pointcut>
</pointcut-decl>

Figure 7. The pointcut declaration in our aspect.

<behavior>
<pointcut> lowImportance </pointcut>
<around>

PSScheduler.startLowImportance();
$_ = proceed($$);
PSScheduler.endLowImportance();

</around>
</behavior>

<behavior>
<pointcut> highImportance </pointcut>
<around>

PSScheduler.startHighImportance();
$_ = proceed($$);
PSScheduler.endHighImportance();

</around>
</behavior>

<behavior>
<pointcut> controlPoint </pointcut>
<before> PSScheduler.yield(); </before>

</behavior>

Figure 8. The advice declaration in our aspect.

The second around advice is executed when a high-importance
thread starts the periodic collection of water levels. It calls the
scheduler to control the number of running low-importance threads.
The last before advice is executed periodically during the chart gen-
eration. It calls the scheduler to yield the current thread.

The ThreadController class used in PSScheduler implements
our scheduling algorithm. This class is reusable and the code size
is 151 lines. The implementation is as follows:

public class PSScheduler {
private static ThreadController controller =

ThreadController.getInstance();

public static void startLowImportance() {
controller.add(Thread.currentThread());

}
public static void endLowImportance() {

controller.remove(Thread.currentThread());
}
public static void startHighImportance() {

controller.schedule(1);
}
public static void endHighImportance() {

controller.schedule(40);
}
public static void yield() {

controller.yield(Thread.currentThread());
}

}

Figure 9. A support class for our aspect.

• The add method puts the current thread into a run queue of a
scheduler if the number of threads in the run queue is under the
configured maximum. Otherwise, the method puts the current
thread into a wait queue and causes the current thread to yield
its execution by invoking the Object.wait method.

• The remove method removes the current thread from the run
queue. If the number of threads is under the maximum, the
method resets the yield flags of threads in the wait queue and
wakes up the threads by invoking the Object.notify method.

• The schedule method moves threads in the run queue to the
wait queue if the number of threads in the run queue is above
the new maximum specified by the argument. Then, the method
sets yield flags of those threads. Otherwise, the method moves
threads in a wait queue to the run queue, resets their yield flags,
and wakes up those threads.

• The yield method causes the current thread to yield its execu-
tion, if its yield flag is set, by invoking the Object.wait method.

We did not specify a timeout for the Object.wait method because
Kasendas did not include synchronization code among threads and
it was guaranteed that suspended threads were always woken up by
other threads.

4.3 Our Experiences
Throughout the development of our scheduling policy, we found
that QoSWeaver made the development easy. First, our scheduling
policy was not affected by the modifications of the source code
of Kasendas, thanks to aspects and our pointcut generator. During
one month before the final release of Kasendas, we had to develop
the scheduling policy for the intermediate version of Kasendas in
parallel while the development team of Kasendas is still testing and
fixing bugs. This is because we had to demonstrate Kasendas at a
symposium held by our grant sponsor soon after the expected final
release date. Since our scheduling policy was implemented by an
aspect and its support classes, we could apply our scheduling policy
to the final version of Kasendas without manual modifications of
the policy. Although pointcut declaration strongly depends on the
code of Kasendas, the pointcut generator automatically generated a
new appropriate controlPoint pointcut for the final version.

Second, an aspect allowed us to change a scheduling policy
without affecting the source code of Kasendas. We developed the

best scheduling policy in the following steps. At the beginning, we
tried to cause low-importance threads to yield their execution by
getting them to sleep during a certain period by the Thread.sleep
method. We implemented the scheduling policy that got threads
to sleep at join points out of the JFreeChart library. This policy
could not control a system load well because the execution of low-
importance threads took long time in that library. Next, we changed
this policy so as to get threads to sleep at join points within the
library. This policy almost worked well, but it sometimes failed to
collect water levels at correct intervals when many threads were
woken up accidentally at the same time. Finally, we changed this
policy so as to use the Object.wait method for thread yielding. This
policy could always control thread execution properly. While we
modified our aspect and its support classes through these steps, we
could not need to modify the source code of Kasendas. In addition,
it was easy to change our scheduling policy so as to perform
admission control for our experiments described in the next section.

Third, our pointcut generator enabled us to select the control-
Point pointcut for periodic thread yielding without examining the
source code of Kasendas in detail. For periodic thread yielding,
we had to choose pointcuts that selected join points that a thread
reached at reasonable intervals. However, there were too many can-
didates for pointcuts in Kasendas even if we limited pointcuts to the
pair of the withincode and call pointcuts without wildcards. For
a web application generating a chart, there were 803 candidates
of pointcuts even in the execution profile we obtained. If we did
not have the execution profile, there were much more candidates
in the source code of Kasendas. It was impossible to select appro-
priate pointcuts among these enormous candidates by hand. Using
our pointcut generator, we only needed to run a target application
for obtaining execution profile, which was used to run the point-
cut generator with several sets of parameters, so that the best set of
generated pointcuts would be experimentally selected.

The development of our scheduling policy was less than one
man-month. Our student, which is one of the authors of this paper,
found the condition where Kasendas became unstable and devel-
oped the best scheduling policy by trial and error. He found the
condition in one week, developed a scheduling policy in less than
two weeks, and tested and modified it in one week. For compari-
son, the developers of Kasendas proposed 0.9 man-month for mod-
ifying Kasendas for potential performance improvement. Note that
the proposed work is not equivalent to our work. It does not in-
clude the analysis of performance bottlenecks. The work is only
modifying Kasendas to use multiple threads for collecting water
levels in parallel from the data generator. Furthermore, the devel-
opers could not guarantee that their modification prevents data loss
under heavy workload because they did not know the real perfor-
mance bottlenecks. Since their modification would make the soft-
ware more complicated, estimating the performance was difficult.

5. Experiments
To evaluate QoSWeaver from the performance viewpoint, we ran
our tuned Kasendas and measured its execution performance.

5.1 Three Versions of Kasendas
We ran not only our Kasendas tuned with QoSWeaver but also
the original Kasendas without any tuning and another version of
Kasendas tuned with admission control. Admission control is a
simple scheduling technique for limiting the number of threads
concurrently running. Because of its simplicity, it is often used for
controlling the concurrency of web application servers. A web ap-
plication server adopting admission control checks the number of
running threads when it receives a new request from a client. If
the number of running threads exceeds the limit, the server does
not start processing the new request. A main difference between

admission control and our scheduling by QoSWeaver is that admis-
sion control can suspend processing a request only when the server
starts processing it. Once it starts processing, a thread processing
the request is not suspended until it finishes processing. It is never
suspended halfway.

The admission control for Kasendas restricted the maximum
number of running low-importance threads for generating a chart.
It limited the maximum number to one while a high-importance
thread was collecting water levels. This policy is the same as the
policy of our scheduling except that it is enforced only when a
thread starts. Thus, the comparison between admission control and
QoSWeaver will reveal a performance benefit of enforcing the
policy by suspending a thread halfway through the execution.

For our experiments, we configured the interval at which
Kasendas collects water levels to 15 seconds. To generate work-
loads, we used Apache JMeter [1]. JMeter concurrently sent re-
quests to the web page showing a chart of recent changes of water
levels for the last 12 hours, except the experiment in Section 5.2.3.
The number of concurrent requests was 40, except the experiment
in Section 5.4.2. We did not send requests to the web page showing
the current water levels.

To run Kasendas and the data generator, we used two Sun Fire
V60x with dual Intel Xeon 3.06 GHz processors, 2 GB of memory,
a gigabit Ethernet NIC. These machines ran Linux 2.6.8 as the
operating systems, Sun JVM 1.4.2 06, and JBoss 4.0.2 as the J2EE
servers. To run JMeter, we used Sun Fire B100x with a single AMD
AthlonXP-M 1.53 GHz processor, 1 GB of memory, and a gigabit
Ethernet NIC. This machine ran the Solaris 9 operating system and
Sun JVM 1.4.2 05. These machines were connected with a gigabit
Ethernet switch.

5.2 Effectiveness of Our Scheduling
We examined whether our scheduling could give sufficient CPU
time to the thread executing the application periodically collecting
water levels.

5.2.1 Time for Collecting Water Levels
We measured the elapsed time from when a high-importance thread
starts collecting water levels until it completes the collection. Since
this data collection is performed periodically, data loss occurs if the
collection does not finish within its interval, which is 15 seconds in
our configuration. Our aim is to prevent such deadline misses for
the periodic data collection.

Figure 10 shows the time needed for a high-importance thread to
collect water levels every 15 seconds. When we used the original
Kasendas, we could measure the collection time only four times
during 180 seconds. This is because each data collection took long
time. The average collection time was 29.5 seconds and every
collection time was more than 15 seconds, which is a deadline.
On the other hand, our scheduling reduced the average collection
time to 5.3 seconds. The collection time was always within 15
seconds and no data was lost. For the admission control, the average
collection time was 10.1 seconds, but the collection time sometimes
exceeded 15 seconds, for example, at 45 seconds after the start.
This means that the admission control could not always prevent
data loss. Fine-grained scheduling by QoSWeaver could prevent
data loss by giving sufficient CPU time to the thread for collecting
water levels.

5.2.2 Number of Running Low-importance Threads
To examine the scheduling behaviors in detail, we measured
changes of the number of running low-importance threads for gen-
erating a chart. In our configuration, both our scheduling and the
admission control give CPU time to the high-importance thread
for the periodic data collection by suspending all but one low-

0 15 30 45 60 75 90 105 120 135 150 165 180
elapsed time (sec)

0

10

20

30

40

50

tim
e

fo
r c

ol
le

ct
in

g
w

at
er

 le
ve

ls
 (s

ec
)

No control
Admission control
Our scheduling

deadline

Figure 10. The time needed for a high-importance thread to collect
water levels.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

10

20

30

40

50

nu
m

be
r o

f r
un

ni
ng

 th
re

ad
s

0 15 30 45 60 75 90 105 120 135 150 165 180
elapsed time (sec)

0

10

20

30

40

50

nu
m

be
r o

f r
un

ni
ng

 th
re

ad
s

Our scheduling

Admission control

Figure 11. Changes of the number of running low-importance
threads.

importance thread after the data collection is started. The aim of
this experiment is to examine how quickly low-importance threads
are suspended. The quickness of the thread suspension can affect
the collection time of water levels.

Figure 11 shows the changes of the number of running low-
importance threads. Our scheduling always suspended all but one
low-importance thread just after the data collection was started
every 15 seconds. The average suspension time was 1.9 seconds.
The suspension time means the time from when a high-importance
thread calls a scheduler until all but one low-importance thread are
suspended. For the admission control, on the other hand, the num-
ber of low-importance threads was not reduced to one in several
intervals, for example, from time 120 seconds to time 165 seconds.
Even when all but one low-importance thread were suspended, the
average suspension time was 12.0 seconds. This suspension time
is long, compared with the interval of 15 seconds. Since the high-
importance thread runs together with low-importance threads, the
data collection performed by the high-importance thread tends to
be delayed.

5.2.3 Impact of Changing Workloads
We performed the same measurement as Section 5.2.1 when JMeter
sent requests to a web page showing a chart of recent changes of
water levels for the last 6 hours instead of for the last 12 hours.
Under this workload, the application generating a chart obtains the

Our scheduling Admission control No control
0

10

20

30

40

50
tim

e
fo

r c
ol

le
ct

in
g

w
at

er
 le

ve
ls

 (s
ec

)
generation of a 12-hours chart
generation of a 6-hours chart

deadline

Figure 12. The time needed to collect water levels when the work-
load is changed.

smaller number of water levels from the database and produces a
chart in shorter time. Nevertheless, the system load becomes higher
because Kasendas must process more requests per second. The aim
of this experiment is to examine how well our scheduling can give
sufficient CPU time to the thread for the periodic data collection
under heavier workload.

Figure 12 shows the average time needed for a high-importance
thread to collect water levels when we changed the workload from
the generation of a 12-hours chart to that of a 6-hours chart. Our
scheduling kept the average collection time to almost the same un-
der both workloads. On the other hand, when we used the original
Kasendas, the average collection time increased from 29.5 to 50.3
seconds and more data were lost. Under the admission control, the
average collection time increased from 10.1 to 12.3. The impact of
changing workloads was not large for the admission control, but
data loss occurred more frequently. From these results, only our
scheduling can control Kasendas stably even when the workload is
changed.

5.2.4 Influences to Low-importance Threads
To examine how our scheduling affects the performance of low-
importance threads, we first measured the throughput of the chart
generation, which is executed by low-importance threads. Our
scheduling policy temporarily suspends low-importance threads
to give sufficient CPU time to a high-importance thread. Therefore,
the throughput of the chart generation would be degraded. Fig-
ure 13 (a) shows the throughput of the chart generation. Compared
with the original Kasendas, the performance degradation under
our scheduling was 19% and that under the admission control was
6.5%. This is because our scheduling gave more sufficient CPU
time to the high-importance thread than the admission control. In
the case of Kasendas, this level of performance degradation was
acceptable because our first priority was to prevent data loss for
providing reliable information.

Next, we measured the response time of a web page showing
a chart for recent changes of water levels. Figure 13 (b) shows
the average response time and their standard deviations. Compared
with the original Kasendas, the average response time under our
scheduling increased by 3.7 seconds and that under the admission
control increased by 2.0 seconds. Since the average response time
is 17.3 seconds even when we used the original Kasendas, the in-
crease of the response time is not large. Fortunately, their standard
deviations were almost the same. This means that the execution of
low-importance threads under our scheduling was as stable as those
under the other two control methods.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

th
ro

ug
hp

ut
 o

f c
ha

rt
ge

ne
ra

tio
n

(p
ag

es
/s

ec
)

Our scheduling
Admission control
No control

0

5

10

15

20

25

30

re
sp

on
se

 ti
m

e
of

 a
 c

ha
rt

pa
ge

 (s
ec

)

(a) Throughput (b) Response time

Figure 13. The throughput of the chart generation and the response
time of a web page showing a chart.

0

1

2

3

4

5

6

th
ro

ug
hp

ut
 o

f c
ha

rt
ge

ne
ra

tio
n

(p
ag

es
/s

ec
)

Our scheduling
Admission control
No control

Figure 14. The throughput of the chart generation without per-
forming the periodic data collection.

5.3 Scheduling Overhead
In our scheduling policy, QoSWeaver weaves scheduling code into
the application generating a chart in a fine-grained manner. At run
time, low-importance threads executing the application periodically
calls a scheduler’s method to yield their execution if necessary. In
our experiments, a low-importance thread called the scheduler’s
method at 19 join points in total during handling one request. If
a thread calls the scheduler frequently, the performance penalties
can become large.

To examine the scheduling overhead, we measured the through-
put of the chart generation, which is executed by low-importance
threads, without performing the periodic collection of water levels.
Since the periodic data collection causes low-importance threads
to be suspended under our scheduling, we stopped the periodic
data collection to measure pure overhead of calling the scheduler’s
method. Figure 14 shows the throughput of the chart generation
without the periodic data collection. Compared with the original
Kasendas, the scheduling overhead was 6.6% in our scheduling and
4.1% in the admission control. From these results, the overhead due
to our fine-grained scheduling was comparable with coarse-grained
scheduling in the admission control.

5.4 Usefulness of the Pointcut Generator
We examined the impact of parameters given to our pointcut gener-
ator. The pointcut generator takes two parameters: an ideal interval
between adjacent join points selected and the maximum occurrence
of join points selected by a single pointcut. In the previous sections,
we used the controlPoint pointcut generated with the ideal interval
of 10 ms and the maximum occurrence of 1. For the experiments

Ideal Maximum Generated Selected
interval occurrence pointcuts join points
100 ms 1 8 8

50 9 13
100 8 83
200 8 83

10 ms 1 17 17
50 16 32

100 17 231
200 15 309

No pointcut generator – 248661

Table 2. The numbers of generated pairs of pointcuts and join
points selected by them for different sets of parameters.

in this section, we changed the ideal interval to either 10 or 100 ms
and the maximum occurrence to 1, 50, 100, or 200.

5.4.1 Generated Pointcuts
Compared with when we used a pointcut that selects all method
calls without the pointcut generator, the pointcut generator dramat-
ically reduced the number of selected join points. Table 2 shows
the number of generated pairs of call and withincode pointcuts and
join points selected by them. The number of join points selected
without the pointcut generator was 248661, but the number was re-
duced to several hundreds at most by using the pointcut generator.
As the specified ideal interval got longer or the maximum occur-
rence got smaller, the number of selected join points was reduced
more largely. In addition, the pointcut generator generated the rea-
sonable number of pairs of pointcuts. The number of possible pairs
of pointcuts in the execution of the application generating a chart
was 803 whereas the pointcut generator selected only 17 pairs of
pointcuts from them at maximum. The time needed to generate
these pointcuts was 20 seconds at maximum and it was not too
long.

5.4.2 Impact of Changing Parameters
First, we examined the intervals between adjacent join points se-
lected by generated pointcuts during the profiled execution. For
comparison, we also examined the intervals between all adjacent
method calls during the profiled execution. Figure 15 shows the
average profiled intervals for different sets of parameters given to
the pointcut generator. When we did not use the pointcut genera-
tor, the interval was 1.67 ms and it is often too small. When we
selected appropriate parameters, the pointcut generator could gen-
erate pointcuts so that the average interval approached the ideal one
specified. For example, if the ideal interval was 10 ms and the max-
imum occurrence was 100, the average interval was the nearest to
the ideal one. The profiled interval tends to be small as the maxi-
mum occurrence became large.

Unfortunately, the standard deviation of each profiled interval
was very large. The reason is that the pointcut generator cannot
always generate pointcuts so that join points selected by them occur
at regular intervals. It depends on the characteristics of applications.
Figure 16 plots the time when a program flow reached join points
selected by generated pointcuts during the profiled execution. This
figure shows that there were no join points in parts of a program
flow: time 0.0 to 0.2 second, time 0.6 to 0.7 second, and time
1.6 to 1.9 seconds. In the first part, the application waited for
finishing database accesses. In the second part, the application
created a large buffered image for a chart. In the third part, the
application sent a chart to the client through the network. The
pointcut generator could not generate any pointcuts that selected
join points during these periods. By contrast, there was a part

1 50 100 200 1 50 100 200 no generator0

20

40

60

80

100

120

140

160

180

200

220

av
er

ag
e

pr
of

ile
d

in
te

rv
al

 (m
se

c) ideal interval 100ms

ideal interval 10ms

maximum occurrence maximum occurrence

Figure 15. The average profiled intervals between adjacent join
points selected by generated pointcuts.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
elapsed time (sec)

no generator

10ms / 200

10ms / 100

10ms / 50

10ms / 1

100ms / 200

100ms / 100

100ms / 50

100ms / 1

(interval / occurrence)

Figure 16. The time when a program flow reaches join points
selected by generated pointcuts.

that included too many join points: time 1.0 to 1.6 seconds. In
this part, JFreeChart repeated the same processing to generate a
chart too many times. The pointcut generator could not generate
any pointcuts so that the occurrence of join points was within the
specified maximum value. Nevertheless, our scheduling worked
well because it did not need to control threads too strictly.

To examine real intervals between adjacent join points selected
by generated pointcuts, we measured the real execution time at
each join point selected for several sets of parameters. For this
experiment, we changed the number of concurrent requests sent
by JMeter to 20 or 40 to examine how a server load affects the real
intervals. Figure 17 shows that each low-importance thread could
call a scheduler’s method every 1.1 seconds on average at worst.
Under the parameters used in our experiments described in the
previous sections, each low-importance thread called the method
every 0.5 second on average. This enabled stable control as shown
in the previous sections. This figure also shows that the real interval
is proportional to the profiled one and the number of concurrent
requests. These results show that we can predict the real interval
from the profiled one, according to workloads.

100ms / 1 10ms / 1 10ms / 50
ideal interval / maximum occurrence

0.0

0.2

0.4

0.6

0.8

1.0

1.2
av

er
ag

e
re

al
 in

te
rv

al
 (s

ec
)

20 concurrent requests
40 concurrent requests

Figure 17. The average real intervals between adjacent join points
selected by generated pairs of pointcuts.

100/1 10/1 10/50
interval (ms) / occurrence

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

fo
r s

us
pe

nd
in

g
th

re
ad

s
(s

ec
)

100/1 10/1 10/50
interval (ms) / occurrence

0

1

2

3

4

5

6

tim
e

fo
r c

ol
le

ct
in

g
w

at
er

 le
ve

ls
 (s

ec
)

no generator no generator

(a) Thread suspension (b) Data collection

Figure 18. The time for the thread suspension and the data collec-
tion for several sets of parameters.

5.4.3 Influences to Execution Performance
To examine how these parameters affect execution performance,
we first measured the time needed for suspending low-importance
threads and the time needed for periodically collecting water levels.
We made JMeter send 40 requests in parallel. The result is shown
in Figure 18. The time needed for thread suspension was largely
different for each set of parameters. However, the time needed for
the data collection was not affected largely by the suspension time.
The collection time is between 5 and 6 seconds and sufficient for
avoiding deadline misses.

Next, we measured the throughput of the chart generation with-
out the periodic data collection to examine scheduling overhead.
Figure 19 shows the result. When we did not use the pointcut gener-
ator, the throughput was degraded by 8.4% at maximum. This per-
formance degradation is not large but it may be important for com-
mercial web applications. This fact means that the pointcut gener-
ator is useful to reduce scheduling overhead. For our experiments
in the previous sections, we selected the ideal interval of 10 ms and
the maximum occurrence of 1 so that the scheduling overhead was
minimized.

5.5 Summary
The results of our experiments showed that QoSWeaver could im-
plement a practical scheduling policy. Our scheduling policy suc-
cessfully suspended low-importance threads just after Kasendas
started the periodic collection of water levels. Hence, the Kasendas
tuned by QoSWeaver could perform the periodic collection stably.

100/1 10/1 10/50
interval (ms) / occurrence

0

1

2

3

4

th
ro

ug
hp

ut
 o

f c
ha

rt
ge

ne
ra

tio
n

(p
ag

es
/s

ec
)

no generator

Figure 19. The throughput of the chart generation without the
periodic data collection for several sets of parameters.

In addition, its scheduling overhead was acceptable for us. To re-
duce the scheduling overhead, the pointcut generator was useful. It
generated only appropriate pointcuts from enormous candidates of
pointcuts.

6. Related Work
Re-QoS [20] uses a QoS aspect package to adapt applications to
the real-time systems. A QoS aspect package is a set of aspects and
components that provide different QoS policies. In their case study,
they showed that Re-QoS could control the deadline miss ratio by
admission control of requests. Although Re-QoS uses aspects to
add new QoS management like QoSWeaver, it is difficult to use
Re-QoS for fine-grained scheduling because the developers have to
find appropriate pointcuts by hand. On the other hand, QoSWeaver
provides the pointcut generator that automatically generates point-
cuts so that scheduling code is executed periodically.

QuO [9] builds QoS management as an aspect and weaves it
into the boundary between the application and the middleware. Its
aspect language allows the developers to describe adaptive QoS,
which changes the behavior of applications according to available
system resources. QuO supports distributed object middleware like
CORBA and compiles an aspect into a delegate, which is a proxy
for calls to remote objects (remote method invocation in Java).
Therefore, QoS control can be performed only when an application
calls remote objects. This may not be sufficient for applications that
do not call remote objects frequently.

Bossa [4] enables a scheduling expert to implement a schedul-
ing policy for operating system kernels independently. It provides
a domain-specific language (DSL) to describe a scheduling policy
using high-level abstractions. This DSL simplifies scheduler pro-
gramming and allows the verification of safety properties. To make
the kernel raise scheduling events to a scheduler compiled as a ker-
nel module, Bossa inserts the code for raising events into the kernel
using aspects [18]. Using DSL and AOP, Bossa allows the devel-
opers of web applications to change the kernel scheduler without
changing the operating system itself. However, if the developers
change the kernel scheduler, they must still spend long time for
examining the scheduling behavior to the whole software system.

MS-Manners [8] achieves scheduling called progress-based reg-
ulation at the application level. It stops low-importance processes
whose progress rate is bad to give sufficient CPU time to high-
importance processes. Its platform-independent implementation is
to insert calls to the Testpoint function everywhere in a program.
This function examines the progress rate and blocks the process
for a while if necessary. This mechanism is similar to our mech-
anism based on thread yielding. However, MS-Manners needs to
insert the code for function calls by hand. This decreases efficiency

of development because developers have to consider scheduling at
the beginning of the development. In addition, since the schedul-
ing code is inserted into a program, it is difficult to maintain the
program.

For UNIX processes, several application-level scheduling mech-
anisms have been proposed. User-level scheduling [14] and ALPS [15]
control UNIX processes from a scheduler process by using signals
such as SIGSTOP and SIGCONT. User-level sandboxing [6] re-
stricts the CPU usage of processes by changing the priorities of
threads. These mechanisms enable more accurate control than QoS-
Weaver because they can perform preemptive scheduling. However,
it is difficult to apply them to threads instead of processes. User-
level scheduling and ALPS distinguish applications by running
them in different user accounts. User-level sandboxing enforces
a policy by a controller attached to a process. These mechanisms
cannot distinguish and control threads. In addition, these preemp-
tive scheduling is not applicable to Java applications. Java does not
recommend suspending and resuming threads from another thread,
and it does not guarantee the effectiveness of changing the priorities
of Java threads using the Thread.setPriority method.

Gatekeeper [10] can transparently apply admission control and
request scheduling to servers by inserting a proxy server. Admis-
sion control limits the number of concurrent requests to prevent
an overload condition while request scheduling changes the order
of request handling to improve the response time. The proxy an-
alyzes the contents of requests and applies a scheduling policy to
the requests. Inserting the proxy does not need changing any oper-
ating systems, middleware, and applications. However, if there are
heavy-weight applications whose execution time are long, threads
for the applications are not controllable once they start the execu-
tion. QoSWeaver enables finer-grained control by weaving schedul-
ing code, for example, at a method-call granularity.

Admission control based on the SEDA architecture [23] en-
ables fine-grained scheduling by dividing an application into sev-
eral stages [22]. In SEDA, the execution of the application is per-
formed by sending a request to the next stage. Each stage has a
queue to receive the request and allows admission control for each
request. If an application is divided into enough small stages, fine-
grained scheduling is achievable. The advantage of this architec-
ture is that there are no threads stopped by a scheduler unlike our
approach. Until a request is admitted, no thread is allocated to
it. However, the developers must re-implement applications using
stages to fix performance problems when they have already imple-
mented the applications.

7. Concluding Remarks
In this paper, we presented QoSWeaver, which provides aspect-
oriented application-level scheduling. The idea of scheduling at the
application level is not new, but AOP makes it more realistic by sep-
arating scheduling code from applications. In addition, the pointcut
generator provided by QoSWeaver helps developers write aspects
for fine-grained scheduling. As a case study, we used a river moni-
toring system named Kasendas, which is a web application system
initially developed by the outside corporation. We could success-
fully implement a practical scheduling policy using QoSWeaver to
improve the performance of Kasendas under heavy workload. Ac-
cording to our experiences, QoSWeaver made the development of
scheduling policies easy in (1) that the development of scheduling
policies and that of Kasendas did not affect each other and (2) that
appropriate pointcuts were automatically generated without exam-
ining a large amount of source code of Kasendas.

One of our future work is to develop other scheduling policies
using QoSWeaver. In this paper, we have developed proportional-
share scheduling as our scheduling policy and admission control
for comparison. We would like to examine that QoSWeaver is

useful in practice to achieve other classes of scheduling. Another
direction is to apply QoSWeaver to other web applications. As
shown in Section 5.4.2, if an application does not have appropriate
join points, QoSWeaver may not control thread execution precisely.
We need to examine whether sufficient join points exist in other real
applications and whether QoSWeaver is applicable or not to them.

Acknowledgments
This work was supported in part by a Grant-in-Aid for Core Re-
search for Evolutional Science and Technology, from the Japan Sci-
ence and Technology Agency.

References
[1] Apache Jakarta Project. Apache JMeter. http://jakarta.

apache.org/jmeter/.
[2] Apache Jakarta Project. Apache Tomcat. http://tomcat.apache.

org/.
[3] Apache Struts Project. Apache Struts. http://struts.apache.

org/.
[4] L. Barreto and G. Muller. Bossa: A language-based approach to

the design of real-time schedulers. In Proceedings of the 10th
International Conference on Real-Time Systems, pages 19–31, 2002.

[5] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and
M. Turnbull. The real-time specification for Java. Addison-Wesley,
2000.

[6] F. Chang, A. Itzkovitz, and V. Karamcheti. User-level resource-
constrained sandboxing. In Proceedings of the 4th USENIX Windows
System Symposium, pages 25–36, 2000.

[7] S. Chiba and R. Ishikawa. Aspect-oriented programming beyond
dependency injection. In ECOOP 2005 – Object-Oriented Program-
ming, LNCS 3586, pages 121–143, 2005.

[8] J. Douceur and W. Bolosky. Progress-based regulation of low-
importance processes. In Proceedings of the 17th ACM Symposium
on Operating Systems Principles, pages 247–260, 1999.

[9] G. Duzan, J. Loyall, R. Schantz, R. Shapiro, and J. Zinky. Building
adaptive distributed applications with middleware and aspects. In
Proceedings of the 3rd International Conference on Aspect-Oriented
Software Development, pages 66–73, 2004.

[10] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A method for
transparent admission control and request scheduling in e-commerce
web sites. In Proceedings of the 13th International Conference on
World Wide Web, pages 276–286, 2004.

[11] H. Hibino, K. Kourai, and S. Chiba. Difference of degradation
schemes among operating systems. In Proceedings of DSN2005
Workshop on Dependable Software – Tools and Methods, pages 172–
179, 2005.

[12] JBoss Group. JBoss application server. http://www.jboss.com/.
[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and

W. Griswold. An overview of AspectJ. In Proceedings of the
15th European Conference on Object-Oriented Programming, pages
327–353, 2001.

[14] T. Newhouse and J. Pasquale. A user-level framework for scheduling
within service execution environments. In Proceedings of the IEEE
International Conference on Services Computing, pages 311–318,
2004.

[15] T. Newhouse and J. Pasquale. ALPS: An application-level
proportional-share scheduler. In Proceedings of the 15th IEEE
International Symposium on High Performance Distributed Comput-
ing, pages 279–290, 2006.

[16] Object Refinery Ltd. JFreeChart. http://www.jfree.org/.
[17] PostgreSQL Global Development Group. PostgreSQL. http:

//www.postgresql.org/.

[18] R. Åberg, J. Lawall, M. Südholt, G. Muller, and A. L. Meur. On
the automatic evolution of an OS kernel using temporal logic and
AOP. In Proceedings of the 18th IEEE International Conference on
Automated Software Engineering, pages 196–204, 2003.

[19] Seasar Foundation Project. Seasar. http://www.seasar.org/.
[20] A. Tesanovic, M. Amirijoo, M. Björk, and J. Hansson. Empowering

configurable QoS management in real-time systems. In Proceedings
of the 4th International Conference on Aspect-oriented Software
Development, pages 39–50, 2005.

[21] The Carnegie Mellon Software Engineering Institute. Capability
maturity model integration. http://www.sei.cmu.edu/cmmi/.

[22] M. Welsh and D. Culler. Adaptive overload control for busy Internet
servers. In Proceedings of the 4th USENIX Conference on Internet
Technologies and Systems, 2003.

[23] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-
conditioned, scalable Internet services. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles, pages 230–243,
2001.

