
Preventing Performance Degradation on Operating System Reboots

Kenichi Kourai

Tokyo Institute of Technology
kourai@is.titech.ac.jp

1. Introduction

The reboots of operating systems (OSes) are not avoid-
able because OSes have many bugs. When OSes crash or
slow down critically, the administrators must reboot them.
Although patches for fixing such bugs and security prob-
lems are frequently released, critical ones related to OSes
and system libraries need the OS reboots. A technique
called software rejuvenation [2] has been also proposed to
avoid unplanned reboots due to software aging, but the sim-
ple implementation for the OS rejuvenation is to reboot the
OSes.

Just after an OS is rebooted, its performance is degraded.
The primary cause is to lose the file cache. An OS stores
file contents in main memory as the file cache when it reads
them from disks. An OS speeds up file accesses by using
the file cache on memory. When an OS is rebooted, main
memory is initialized and the file cache managed by the OS
is lost. To fill the file cache after the reboot, an OS needs
to read necessary files from slow disks. Since modern OSes
use most of free memory as the file cache, it takes long time
to fill free memory with the file cache.

Particularly, for servers consolidated with virtual ma-
chines (VMs), the performance degradation affects not only
a rebooted VM itself but also all the other VMs on the same
machine. The conflicts of disk accesses makes the perfor-
mance of all the VMs degraded. Just after the OS in a VM
is rebooted, it frequently accesses a physical disk. Since
the disk is a shared resource for all VMs, increasing disk
accesses in one VM affects the performance of the disk ac-
cess by the other VMs. Also, prefetching does not work
well in this kind of system because it issues too many disk
accesses during a short period.

To reduce such performance degradation due to reboot-
ing OSes, we propose a new reboot mechanism for OSes,
which is called the warm-cache reboot. This mechanism
enables an OS to be rebooted without losing the file cache.
We claim that the file cache does not need to be discarded
by the reboot as long as the integrity of the file cache is pre-
served. The purpose of the reboot is to initialize the inter-
nal state or to update the components in an OS kernel. The

warm-cache reboot guarantees the integrity using the virtual
machine monitor (VMM), which is an underlying software
layer for VMs.

2. Warm-cache Reboot

2.1. Preserving the File Cache

The basic idea of the warm-cache reboot is to preserve
the file cache on memory during the OS reboot and restore it
after the reboot. This is implemented by the cooperation of
an OS and the VMM. To preserve the file cache during the
reboot, the VMM allocates the same physical memory as
before the reboot to a rebooted VM. At this time, the VMM
does not erase the contents of the memory. Normally, the
contents are erased for security because the memory pages
may include sensitive information used by another OS. For
the warm-cache reboot, reusing the memory pages without
erasing the contents is secure because it is guaranteed that
those pages are reused for the same OS.

Each OS on a VM manages the relationship between the
information on file blocks and cache pages using a cache-
mapping table. This table is a hash table whose keys are a
tuple of a device number, an inode number, and a file off-
set, and whose value is a page frame number assigned to a
memory page used for the file cache. When the OS reads
a file block from a disk and allocates a new cache page, it
adds a new entry to the cache-mapping table. When the OS
discards the file cache, it removes the corresponding entry
from the table.

When the OS is rebooted, its kernel reserves the memory
areas for the cache-mapping table and the file cache so that
the contents are not used for other purposes. This reserva-
tion is performed at the early stage of booting the OS kernel,
that is, before the kernel starts dynamic memory allocation.
The kernel first obtains the address of the cache-mapping ta-
ble preserved by the VMM and reserves its memory pages.
Then, it reserves cache pages, based on the entries in the ta-
ble. To reuse the file cache that was stored before the reboot,
the OS looks up the restored table.



2.2. Protecting the File Cache

The VMM prevents the file cache from being corrupted
by OS crashes. The OS protects cache pages in a read-only
manner using the functionality of the VMM. Therefore, the
OS can directly read cache pages without any overheads. In
addition, the pages are protected before a file block is read
from a disk so that the contents are not corrupted during file
reads. This is impossible if the VMM is not involved be-
cause the OS must perform the write access to the pages at
file reads. To enable this, our system installs a virtual disk
device driver into the OSes like many other VM implemen-
tation. The driver passes a memory page to the VMM and
the VMM reads a file block from a disk into the page using
a real disk device driver. The VMM can perform the write
access to the pages protected by the OS on a VM.

When the VMM completes to read a file block, it sets the
reuse flag to the corresponding entry in the cache-mapping
table if the cache page is still protected in the VM. The OS
reuses the page as the file cache if the flag is set when the
OS is rebooted. On the other hand, when the OS attempts
to write the file block, it unprotects the cache page. At the
same time, the VMM reset the reuse flag. The unprotected
cache page is not reused because the integrity between the
file cache and file blocks on a disk may be lost. Only the
VMM can set the reuse flag at the completion of file reads.
Therefore, it is guaranteed that the cache page is protected
while the flag is set.

Also, the VMM protects the cache-mapping table using
memory protection. Since the cache-mapping table is write-
protected when it is created, the OS can access the cache-
mapping table without any overheads. To safely modify the
cache-mapping table, the VMM provides a new hypervisor
call, which is a call to a VMM and similar to a system call
to an OS. When the OS needs to add a new entry to this
table or remove an existing entry, it issues the hypervisor
call. The hypervisor call checks the request and modifies
the table. The OS cannot modify the table without using the
hypervisor call. The possibility of wrongly issuing these hy-
pervisor calls is low, compared to that of directly corrupting
the table without protection.

The warm-cache reboot is similar to the Rio file
cache [1], but there are two main differences. One is that
Rio enables the OS to reuse only dirty file cache. The pur-
pose of Rio is to prevent data that is not written back to a
disk from being lost by OS crashes. The warm-cache reboot
reuses a larger amount of non-dirty file cache to prevent per-
formance degradation after the OS reboot. The other dif-
ference is how to protect cache pages. Rio protects cache
pages using the functionality of the OS while the warm-
cache reboot uses that of the VMM. The OS itself may not
be able to protect its file cache when it crashes.

1st test 2nd test
0

100

200

300

400

500

600

700

tim
e 

ne
ed

ed
 fo

r 
th

e 
po

w
er

 te
st

 (
se

c)

before OS reboot

1st test 2nd test

normal reboot
warm-cache reboot

after OS reboot

Figure 1. The results of the DBT-3 benchmark.

3. Experiments

We have developed our VMM and Linux, which are
based on Xen 3.0.0 and Linux 2.6.12, respectively. Using
our system, we performed experiments to show the useful-
ness of the warm-cache reboot. We used a PC with two
dual-core Opteron processors Model 280, 12 GB of mem-
ory, and a 146 GB of Ultra-320 SCSI disk. We allocated
11 GB of memory to one VM. One physical partition of the
disk was used for a virtual disk of the VM.

To examine performance degradation due to cache
misses, we measured the time needed for the power test
with the scale factor of one in DBT-3 before and after the
OS reboot. DBT-3 is a benchmark tool for databases and its
power test measures the performance of the read access to
databases. To examine the effect of the file cache, we mea-
sured the performance of the first and second tests. We used
PostgreSQL and all the file blocks were cached on memory
in this experiment. We performed this experiment for the
warm-cache reboot and the normal reboot.

Figure 1 shows the results. When we used the nor-
mal reboot, the performance just after the reboot was de-
graded by 67 %, compared with that just before the reboot.
On the other hand, when we used the warm-cache reboot,
the performance was not degraded. This improvement was
achieved by no miss in the file cache even when a file was
accessed at the first time after the reboot.

References

[1] P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani, and
D. Lowell. The Rio File Cache: Surviving Operating System
Crashes. In Proc. Int’l Conf. ASPLOS, pages 74–83, 1996.

[2] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software
Rejuvenation: Analysis, Module and Applications. In Proc.
Int’l Symp. Fault-Tolerant Computing, pages 381–391, 1995.


