
Application-Level Scheduling Using AOP

Kenichi Kourai�, Hideaki Hibino��, and Shigeru Chiba

Tokyo Institute of Technology
{kourai,hibino,chiba}@csg.is.titech.ac.jp

Abstract. Achieving sufficient execution performance is a challenging
goal of software development. Unfortunately, violating performance re-
quirements is often revealed at a late stage of the development. Fix-
ing a performance problem at such a late stage is difficult in terms of
cost and time. To solve this problem, this paper presents QoSWeaver,
which is a tool suite for developing application-level scheduling using
aspects. QoSWeaver weaves scheduling code written in an aspect into
web application code. The scheduling code gets an application thread to
voluntarily yield its execution to implement a custom scheduling pol-
icy. The idea of scheduling at the application level is not new, but
aspect-oriented programming (AOP) makes it more realistic by sepa-
ration of scheduling code. For fine-grained scheduling, QoSWeaver pro-
vides a profile-based pointcut generator, which automatically generates
appropriate pointcuts. To investigate the ability of QoSWeaver for im-
plementing practical scheduling policies, we used QoSWeaver for tuning
the performance of a river monitoring system named Kasendas, which is
a web application system. For reliable examination, Kasendas was orig-
inally developed by an outside corporation and then it was tuned by
the authors with QoSWeaver. The authors could successfully improve
the performance of Kasendas under heavy workload. The cost of the
performance tuning was a reasonably small. Furthermore, our approach
achieved better performance than other techniques such as admission
control and priority scheduling provided by the JVM or Linux. We could
implement various policies such as deadlock-aware or adaptive schedul-
ing.

Key words: scheduler, aspect, QoS, performance tuning, case study

1 Introduction

Achieving sufficient execution performance is one of the primary goals of soft-
ware development. However, it is always a challenging goal. For example, a web
application may not satisfy its performance requirement but this fact is often
uncovered when a stress test is performed at the final stage of software develop-
ment, or in a worse case, after the application starts servicing to the users. Of
� Presently with Kyushu Institute of Technology

�� Presently with Hitachi Software Engineering Co.,Ltd.

course, the performance characteristics of the software should be carefully con-
sidered at the stage of architecture design but estimating the actual performance
is difficult at that stage.

Fixing a performance problem at such a late stage is difficult in terms of cost
and time. Some readers might think that the problem can be fixed by upgrading
hardware, but this approach is the last resort because it needs extra cost. In
the case of web applications, the second-best solution would be to improve the
quality of service (QoS), but it is still a challenge. To exploit schedulers provided
by operating systems or middleware for controlling QoS, developers must modify
web applications, sometimes largely. Such modification may be difficult to finish
within a limited time. If the scheduling policy provided by operating systems
or middleware is not suitable for the web applications, developers can use a
different operating system or middleware. However, changing such underlying
software requires them to test their software again because they must guarantee
that the software system correctly works under the new circumstances. Executing
all the test again would take long time.

To solve this problem, this paper presents QoSWeaver, which is a tool suite
for developing application-level scheduling using aspects. QoSWeaver enables
changing a scheduling policy for web applications on demand. QoSWeaver weaves
scheduling code written in an aspect into application code. The scheduling code
gets an application thread to voluntarily yield its execution to implement a new
scheduling policy. The idea of scheduling at the application level is not new,
but aspect-oriented programming (AOP) makes it more realistic by separating
scheduling code from applications. AOP prevents application logic from being
corrupted when scheduling code is added or changed. This has been one of major
obstacles to adopt application-level scheduling. In addition, QoSWeaver provides
a profile-based pointcut generator, which helps developers write aspects for fine-
grained scheduling. The pointcut generator automatically generates pointcuts so
that the scheduling code is executed at as regular intervals as possible, according
to profile information of the execution of web applications.

To examine that QoSWeaver enables implementing a practical non-toy schedul-
ing policy, we used a river monitoring system named Kasendas. Kasendas is a
web application that periodically collects the water levels of major Japanese
rivers and reports the collected data to the public through the web. We then
executed the performance tuning of Kasendas so that Kasendas can periodically
collect water levels at correct intervals even if a large number of clients simulta-
neously send requests to visualize the data of water levels. From the viewpoint
of thread scheduling, we tried to give sufficient CPU time to the thread for pe-
riodically collecting water levels than the other threads for processing requests
from clients. For reliable examination, we ordered the initial development of
Kasendas to an outside corporation and we only executed performance tuning.
We used QoSWeaver and we could successfully implement a scheduling policy
that gives sufficient CPU time to the thread for collecting water levels. The work
of the performance tuning was not large, compared with the modification of the
software design of Kasendas.

Our contributions presented in this paper are the followings:

– We propose an AOP-based implementation of application-level scheduling,
which is a new application from the AOP perspective.

– We report our experience of applying the application-level scheduling to a
fairly realistic web application.

– We show that our approach worked well at least in our case study.

Note that this paper does not propose a new scheduling or resource-allocation al-
gorithm. It proposes using AOP for implementing an application-specific sched-
uler. Since AOP makes the implementation easier, the use of such a custom
scheduler is made practical. Although this paper deals with QoS, we imple-
mented proportional-share scheduling; it is not real-time scheduling. It is out of
the scope of this paper whether or not the proposed approach can be used to
implement a real-time scheduler.

This paper is an extended version of our previous paper [1]. A difference
between the two papers is that this paper presents two more scheduling poli-
cies implemented by our QoSWeaver: deadlock-aware and adaptive scheduling.
Another difference is that this paper also shows that our application-level sched-
uler achieved better performance than the priority schedulers included in the
standard Java virtual machine (JVM) and the Linux kernel. This paper also
presents that the use of our pointcut generator makes a non-negligible impact
on the overall performance. Selecting appropriate pointcuts is significant from
the performance viewpoint.

The rest of this paper is organized as follows. Section 2 explains why fixing
a performance problem at a late stage of software development is difficult and
describes related work. Section 3 presents QoSWeaver, which enables application-
level scheduling by using AOP. Section 4 illustrates a river monitoring system
named Kasendas, which is our case study, and shows an applied scheduling
policy. Section 5 reports the results of our experiments to examine the usefulness
of QoSWeaver. Section 6 discusses the applicability of QoSWeaver. Section 7
concludes this paper.

2 Motivation

A web application normally processes various kinds of tasks requested from web
browsers (i.e. users) in parallel. Some kinds of tasks have higher importance
while others have lower importance. The QoS of such a web application is often
kept acceptable if higher-importance tasks obtain more computing resources
such as CPU time than lower-importance tasks. However, this solution is still a
challenge. Since modern operating systems provide a scheduling mechanism for
controlling QoS, some readers might think that what developers should do is only
to slightly modify their web applications to exploit that scheduling mechanism.
Unfortunately, the reality is not such a simple thing.

First of all, the software sometimes has to be largely modified to exploit
that scheduling mechanism. Such modification is not easy to finish within a

limited time before the expected shipping date. For example, to use real-time
scheduling provided by operating systems, developers may have to move a part
of application code into kernel modules. Even if developers just want to use
priority scheduling, which is provided by most operating systems, and raise the
priorities of some threads, they may change their applications so that the threads
will run with the root privilege. This change may cause security problems and
thus the developers must check the entire code of their applications. In addition,
developers cannot exploit the scheduling mechanism of the operating system
if an application (Java) thread is not always bound to a particular operating-
system thread. This depends on the implementation of the application threads.
If the mapping between application threads and operating-system threads may
change, for example, it is difficult to raise the priority of a particular application
thread by changing the priorities of operating-system threads.

Furthermore, scheduling policies provided by operating systems may not be
suitable for web applications. For example, the priority scheduling provided by
some general-purpose operating systems may not allocate sufficient CPU time to
an application thread executing a periodic task with a high priority. If there are
too many low-priority threads, a high-priority thread tends to miss its deadline.
This problem will be avoided if developers use a different operating system,
in particular, a real-time operating system, but changing an operating system
at the final stage of software development is not acceptable. According to our
previous work, the performance behavior of web applications largely changes if
the underlying operating system is changed, even from a general-purpose one to
another [2]. Developers must spend a long time for testing an entire software
system again. They must guarantee that the software system correctly works
under the new circumstances.

Exploiting the QoS mechanism provided by middleware has a similar prob-
lem. The standard JVM supports priority scheduling of Java threads, but it does
not guarantee its effectiveness. Priorities passed from applications to the JVM
are only used as hints. Whether or not the priorities really affect the schedul-
ing depends on the implementation of the JVM and the underlying operating
system. If the scheduling policy provided by the standard JVM is not suitable,
developers can use another implementation of the JVM, for example, a real-time
JVM implementing Real-Time Specification for Java [3]. However, changing the
JVM at the final stage is not acceptable as well as changing the operating system.
Although some web application servers provide built-in mechanisms for control-
ling QoS, those mechanisms are often insufficient. For example, if the maximum
number of threads is limited to avoid excessive concurrency, high-priority threads
cannot start execution when too many low-priority threads are already running.

2.1 Aspect-Oriented QoS Control

Re-QoS [4] uses a QoS aspect package to adapt applications to the real-time
systems. A QoS aspect package is a set of aspects and components that provide
different QoS policies. In their case study, the authors showed that Re-QoS could

control the deadline miss ratio by admission control of requests. Although Re-
QoS uses aspects to add a new QoS management policy like our QoSWeaver,
it is difficult to use Re-QoS for fine-grained scheduling because the developers
have to find appropriate pointcuts by hand. On the other hand, our QoSWeaver
provides the pointcut generator, which automatically generates pointcuts so that
scheduling code will be executed periodically.

QuO [5] builds a QoS management system as an aspect and weaves it into
the boundary between the application and the middleware. Its aspect language
allows the developers to describe adaptive QoS, which changes the behavior of
applications according to available system resources. QuO supports distributed
object middleware like CORBA and it compiles an aspect into a delegate, which
is a proxy for calls to remote objects (remote method invocation in Java). There-
fore, QoS control is enforced only when an application calls remote objects. This
is not sufficient for applications that do not frequently call remote objects.

Bossa [6] enables a scheduling expert to implement a new scheduling policy
for operating system kernels. It provides a domain-specific language (DSL) to
describe a scheduling policy using high-level abstractions. This DSL simplifies
scheduler programming and allows the formal verification of safety properties.
To make the kernel raise scheduling events to a scheduler compiled as a kernel
module, Bossa inserts the code for raising events into the kernel using AOP
[7]. Using DSL and AOP, Bossa allows web application developers to change
the kernel scheduler without changing the source code of the operating system.
However, if the developers change the kernel scheduler, they need to spend a
long time for examining the scheduling behavior of the entire software system.

2.2 Previous Approaches to Application-Level Scheduling

MS-Manners [8] achieves process scheduling called progress-based regulation at
the application level. It stops low-importance processes when the progress rate
is lower than expected and it gives remaining CPU time to high-importance pro-
cesses. Its platform-independent implementation is to insert calls to the Testpoint
function everywhere in a program. This function examines the progress rate and
blocks the process for a while if necessary. This method is similar to our ap-
proach. However, MS-Manners requires the developers to manually modify the
source code of their applications so that Testpoint will be called. They may also
have to modify the source code of the libraries used by their applications. Oth-
erwise, the developers have to write scheduling code together while they are
writing the application logic. Either way, their productivity will be decreased.
Maintaining the source code becomes difficult because the scheduling code is
directly embedded into the source code. To solve these problems, QoSWeaver
separates scheduling code into an aspect and it automatically inserts scheduling
code at appropriate places in the source code when it performs weaving.

For UNIX processes, several application-level scheduling mechanisms have
been proposed. User-level scheduling [9] and ALPS [10] control UNIX processes
from a scheduler process by using signals such as SIGSTOP and SIGCONT. User-
level sandboxing [11] restricts the CPU usage of processes by changing the priori-

ties of threads. These mechanisms enable more accurate control than QoSWeaver
because they can perform preemptive scheduling. However, it is difficult to apply
them to threads instead of processes. User-level scheduling and ALPS distinguish
applications by running them with different user accounts. User-level sandbox-
ing enforces a policy by a controller attached to a process. These mechanisms
cannot distinguish or control threads. In addition, preemptive scheduling is dif-
ficult to implement on the standard Java 2 Platform. Its API specification does
not recommend to use APIs for suspending and resuming threads by another
thread. Also, Java provides the API for changing the priorities of Java threads
but its effectiveness is not guaranteed.

Gatekeeper [12] can transparently apply admission control and request schedul-
ing to servers by using a proxy server. The admission control limits the number
of concurrently processed requests to avoid excessive concurrency. The request
scheduling changes the order of handling requests to improve the response time.
The proxy analyzes the kinds of requests and schedules the requests appropri-
ately. Installing the proxy does not need modifying operating systems, middle-
ware, or applications. However, if there are heavy-weight applications, which
take long time for processing each request, the threads for those applications
are not controllable once they start the execution. They cannot be suspended
to decrease concurrency. QoSWeaver enables finer-grained control by weaving
scheduling code, for example, at a method-call granularity.

Admission control based on the SEDA architecture [13] enables fine-grained
scheduling by dividing an application into several stages [14]. In SEDA, the
execution of the application is performed by sending a request to the next stage.
Each stage has a queue to receive the request and allows admission control
for each request. If an application is divided into a sufficient number of small
stages, fine-grained scheduling is achievable. The advantage of this architecture
is that there are no threads suspended by a scheduler unlike our approach. Until
a request is admitted, no thread is allocated to it. However, the developers
must re-implement their applications using multiple stages to fix performance
problems if they have already implemented the applications.

3 Aspect-Oriented Application-Level Scheduling

To solve the problem described in the previous section, this paper presents QoS-
Weaver, which is a tool suite for developing application-level scheduling by as-
pects. It enables developers to customize a policy of thread scheduling at the
application level. In this section, we describe how AOP makes application-level
scheduling feasible in practice.

3.1 Application-Level Scheduling

Application-level scheduling is implemented by the cooperation among applica-
tion threads, which voluntarily yield their execution in favor of other threads.
Thus a thread must periodically invoke a method on a scheduler object. The

scheduler’s method suspends the caller thread according to a specified schedul-
ing policy. The suspended thread can be woken up and rescheduled when another
thread calls the scheduler’s method. The scheduler’s method suspends a caller
thread only if the yield flag of the thread is set. Thus, we can control the schedul-
ing by setting and clearing this flag. Suppose that a scheduling policy is that all
other threads are suspended while a particular thread A is running. This policy
is implemented as illustrated in Fig. 1. If the thread A first calls the sched-
uler’s method, the method does not suspend the thread but sets the yield flag
of another thread B. This will suspend the thread B when the thread calls the
scheduler’s method next time. The thread B will not be woken up again until
the thread A finishes its execution and the scheduler clears the yield flag of the
thread B.

1. call
2. set the yield flag
 of thread B

3. call

4. suspend thread B

5. call

6. wake up
 thread B

scheduler
object

thread A

thread B

7. return

Fig. 1. A scheduling method based on thread yielding.

Application-level scheduling has several advantages, compared with schedul-
ing at a lower level such as the operating system level or middleware level. One
advantage is to enable developers to implement various scheduling policies with-
out modifying the underlying systems. Application-level scheduling is indepen-
dent of the underlying operating system and middleware and hence it does not
need to change them. It changes only the scheduling policy of the target appli-
cations. Since application-level scheduling affects only the threads of the target
applications, the rest of the threads in the software can obtain at least the same
amount of CPU time as they can when application-level scheduling is not applied.
Of course, application-level scheduling cannot achieve all kinds of scheduling in-
dependently of the underlying schedulers. For example, time-sharing scheduling
cannot be developed on top of a batch scheduler. Another advantage is to en-
able developers to develop application-specific schedulers. Such schedulers can
use application semantics given by application threads. For example, if applica-
tion threads inform a scheduler of their roles, the scheduler can allocate CPU
time to these threads according to their role. If a low-level scheduler is used, ap-
plication threads must translate such high-level semantics to low-level properties
such as thread priorities.

3.2 AOP Support for Application-Level Scheduling

The idea of scheduling at the application level is not new but it has not been
practical because the developers have to insert scheduling code into their appli-
cation programs by hand. For example, our web applications presented in Sect. 4
consist of about ten thousand lines of our own code and more than one hundred
thousand lines of library code. It is difficult to insert scheduling code at right
places, in particular, for average developers. Hence the code they inserted must
be later checked by an experienced developer. This work is annoying and time
consuming. Moreover, if a scheduling policy requires a thread to frequently yield
its execution, developers must insert scheduling code at a large number of places.
This causes the application logic to be tangled with scheduling code. Maintain-
ing the tangled scheduling code is difficult. For example, if developers want to
change a scheduling policy, they may have to remove old scheduling code and in-
sert new scheduling code. This modification is error-prone and hence developing
an appropriate scheduling policy by a trial-and-error approach is difficult.

QoSWeaver lets developers to write scheduling code as an aspect and weaves
it into application code. AOP makes the idea of the application-level schedul-
ing practical. Since scheduling code is separated from application-logic code, it
can be written by only a few experienced developers. Other average developers
do not have to write scheduling code any more and can concentrate on writ-
ing application-logic code without being aware of scheduling. Writing schedul-
ing code as an aspect also allows developers to take a trial-and-error approach
to develop an appropriate scheduling policy. Developers can easily try various
scheduling policies to find the most appropriate one because an aspect weaver
automatically inserts and removes scheduling code. They never accidentally cor-
rupt their programs when they change a scheduling policy.

Furthermore, QoSWeaver supports creating a scheduling mechanism for application-
level scheduling. Scheduling code written as an aspect consists of a scheduling
mechanism and the implementation of a scheduling policy. A scheduling mech-
anism for application-level scheduling is a set of method calls on a scheduler
object from various places in application programs as in Fig. 1. This corre-
sponds to timer interrupts for kernel-level scheduling. A scheduler for kernel-level
scheduling is called periodically from hardware. A scheduler for application-level
scheduling is called from the join points selected by pointcuts. AOP is used to
implement this mechanism.

A pointcut generator provided by QoSWeaver automatically generates a set
of pointcuts to create such an application-specific scheduling mechanism. This
tool helps developers define a right set of pointcuts for getting an application to
call a scheduler at as regular intervals as possible. Calling a scheduler at regular
intervals is desirable for stable control of application threads. In particular, fine-
grained scheduling needs such a tool support because an application needs to
frequently call a scheduler to yield its execution. It is difficult to manually define
pointcuts for fine-grained scheduling because the pointcuts must select a large
number of join points and a thread must reach those join points in regular inter-
vals. Furthermore, the number of the join points selected by pointcuts should be

minimum; otherwise, a scheduler will be called redundantly. Calling a scheduler
twice within a single interval is useless. The second call is just a performance
penalty.

Figure 2 illustrates the architecture of QoSWeaver. QoSWeaver consists of
two tools: an AOP system and a pointcut generator. QoSWeaver receives a web
application and weaves a profiling aspect, which is provided by QoSWeaver, into
it using the aspect weaver. Then QoSWeaver deploys the extended web applica-
tion for profiling on a web application server. If developers run it, the profiling
aspect records its execution profile. From the execution profile that the aspect
recorded, the pointcut generator generates appropriate pointcuts for efficient
application-level scheduling. Then, developers write a scheduler aspect by using
the pointcuts. A scheduling policy is implemented as advice, which is executed
at scheduling points specified by the pointcuts. In Fig. 1, it is implemented by
the scheduler object. Finally, QoSWeaver weaves this aspect into the original
web application and deploys the resulting web application on the server.

aspect
weaver

application pointcut
generator

pointcuts

run

scheduler
aspect

aspect
weaver

application
with scheduling

profiling
aspect

scheduling
policy

profile
information

merge

creating a scheduling mechanism

application
with profiling

Fig. 2. The architecture of QoSWeaver.

Note that QoSWeaver does not directly support the development of a schedul-
ing policy itself. It only generates appropriate pointcuts for creating a custom
scheduling mechanism. Details of a scheduling policy have to be chosen by de-
velopers. For example, how priorities are assigned to tasks depends on the user
requirements for the web applications. The maximum number of threads concur-
rently running for each task depends on scheduling algorithms. These parameters
should be selected by experiments. QoSWeaver helps developers to select those
parameters by using a trial-and-error approach.

3.3 Profile-Based Pointcut Generator

The pointcut generator generates appropriate pointcuts on the basis of the profile
information of the execution of a target application. The profile data collected by
QoSWeaver is when a thread reaches each join point. Our current implementation
of the pointcut generator deals with only method calls as join points. QoSWeaver
first weaves a target application with a profiling aspect that records a caller’s
method name, a callee’s method signature (the method name, the parameter
types, and the return type), and the time stamp for each method call. Then
developers run the target application into which the profiling aspect has been
woven. Since their application is a web application, they also run a client to send
requests to the application. The client sequentially sends requests to minimize
the disturbance by the outside because we want to know when each single thread
calls which method.

The execution profile should be the representative of the behavior of a target
web application. If the behavior of an application is largely different from the
execution profile, the application could not call the scheduler at regular inter-
vals. However, it is difficult to guarantee that the obtained execution profile is
a representative because this fact strongly depends on the characteristics of ap-
plications. A guideline for obtaining a representative execution profile is to send
the most common request to the target web application. The developers should
know what the most common request is for their applications. If the behavior
of the application largely changes by request patterns, they can obtain multiple
execution profiles for all the patterns and merge generated pointcuts. Currently,
QoSWeaver does not provide any support for obtaining a representative execu-
tion profile.

To generate appropriate pointcuts from that execution profile, the pointcut
generator takes two parameters from the developers:

– a target interval between adjacent join points selected by pointcuts, and
– the acceptable maximum occurrences of join points selected by a single point-

cut.

The target interval specifies the time from when an application thread calls a
scheduler until when the thread calls it again, on the profiled execution. The
criterion for the pointcut generator is that the average time elapsed between
adjacent join points selected by pointcuts is close to the target interval t given
from the developers. The pointcut generator generates pointcuts that satisfy this
criterion as much as possible. The maximum occurrence m is used to avoid that
too many join points are selected.

These two parameters should be determined so that QoSWeaver will generate
a scheduling mechanism with acceptable accuracy and overhead for an intended
scheduling policy. The accuracy and overhead of application-level scheduling also
depends on the characteristics of the web application, the patterns of requests to
web applications, and the underlying systems. Therefore, developers should give
different sets of parameters to the pointcut generator and obtain multiple sets of
pointcuts. Then they should choose the best one by changing the sets of pointcuts

and running the web application for evaluation. Our pointcut generator makes
this kind of parameter tuning easy.

Note that the target interval is the interval to be achieved in the same exe-
cution contexts as when we obtained the execution profile. During the profiled
execution, we ran only one application thread on a server. If production run is
also single-threaded, an observed interval, at which an application thread calls
a scheduler, would be almost the same as the target interval on average. If it is
multi-threaded, however, an observed interval for each application thread would
be longer than the target. In application-level scheduling, the observed interval
largely depends on the patterns of the requests to web applications.

Algorithm for Pointcut Generation. Figure 3 shows our algorithm of point-
cut generation. The inputs to this algorithm are an execution profile and the two
parameters described above. The execution profile consists of the data of the join
points that an application thread reached during the profiled execution. In our
implementation, it is a sequence of the invoked method calls, as in Fig. 4. Ac-
cording to the time stamps recorded at the join points, the algorithm divides the
sequence into time slots by the target interval t. The aim of this algorithm is that
the generated pointcuts select only one (or as a small number as possible) join
point for each time slot. Since a scheduler is called only at selected join points,
this algorithm enables application threads to call a scheduler at as regular in-
tervals as possible. The generated pointcuts are chosen among possible pairs of
call and withincode pointcuts. The call pointcut specifies a method by its name
and signature and matches points at which the method is called at runtime. The
withincode pointcut limits the scope in which the call pointcut selects method
calls to a specified method body. Thus each pair of pointcuts selects join points
representing calls to the same method within the same method body. In this
algorithm, no pointcut includes wildcards.

The algorithm first chooses pairs of pointcuts that select a join point oc-
curring only once in the execution profile. For example, if a method A is called
from a method B only once during the entire profiled execution, the caller and
the callee are used to make a pair of withincode and call pointcuts. Let PC1 be
the set of chosen pointcuts. Then, the algorithm computes a subset of PC1 that
covers as many time slots as possible. Here, covering a time slot means that a
join point selected by a pointcut occurs in that time slot. If there are multiple
pointcuts that cover the same time slot, the algorithm chooses one of them. Let
PCgen be the computed subset of PC1.

Then, for the time slots that have not been covered, which are denoted by
SLOT , the algorithm chooses pointcuts that select join points occurring only
twice in the execution profile. Let PC2 be the set of chosen pointcuts. The
algorithm computes a subset of PC2 that covers as many not-covered time slots
as possible. If there are multiple pointcuts that cover the same time slot, the
algorithm chooses the pointcut that covers the most time slots. The elements
of the computed subset are added to PCgen. If PCgen contains an element that
covers the same time slots as an element newly added to PCgen, then the former

t := target interval
m := maximum occurrence
exec time := total execution time

PCall := a set of possible pointcuts
PCgen := {}
SLOT := {0, ..., �exec time/t�}

for each i = 1..m
PCi = {pc ∈ PCall | |select(pc)| = i}
for each j ∈ SLOT

PCij = {pc ∈ PCi | j ∈ cover(pc)}
PCbest = {pc ∈ PCij | |cover(pc) ∩ SLOT | is biggest}
best pc = eval(PCbest)
PCdel = {pc ∈ PCgen | cover(pc) ⊂ cover(best pc)}
PCgen = PCgen − PCdel + best pc
SLOT = SLOT − cover(best pc)

endfor
endfor

Fig. 3. The algorithm for pointcut generation. Function select receives a pair of call
and withincode pointcuts. It returns a set of join points selected by the pair. Function
cover receives a pair of pointcuts and returns a set of time slots covered by the pair.
Function eval receives a set of pairs of pointcuts and returns one of them. |S| is the
size of a set S.

element is removed from PCgen. If the former element covers a time slot that
the latter element does not cover, it is not removed. The algorithm iterates
this choosing process from PC1 to PCm, where m is a parameter given by the
developers. After the iteration, the pointcut generator generates PCgen as its
result.

 f1()
 f2()
 f3()
 f4()
 f5()
 f3()

 f4()
 f5()

 f2()
 f5()

 f6()
 f2()

(a) (b)

*f1()
 f2()
 f3()
 f4()
 f5()
 f3()

 f4()
 f5()

 f2()
 f5()

*f6()
 f2()

(c)

*f1()
 f2()
 f3()
*f4()
 f5()
 f3()

*f4()
 f5()

 f2()
 f5()

*f6()
 f2()

(d)

 f1()
*f2()
 f3()
*f4()
 f5()
 f3()

*f4()
 f5()

*f2()
 f5()

 f6()
*f2()

0

1

2

3

4

time slot

Fig. 4. An example of pointcut generation. A sequence of method calls invoked during
profiled execution is divided by a target interval. Marked method calls are selected join
points.

For example, suppose that the profiled execution is modeled as a sequence of
invoked method calls, f1() to f6(), in Fig. 4 (a). For simplicity, we ignore caller’s
methods in this example. The profiled execution consists of five time slots. The
algorithm first chooses a pointcut that selects f1() in time slot 0 and one that
selects f6() in time slot 4. Now, these two pointcuts are in PCgen and the time
slot 0 and 4 are covered (Fig. 4 (b)). Then the algorithm chooses PC2, which
contains two pointcuts: a pointcut that selects two f3() and one that selects two
f4(). Since the pointcut that selects f4() covers two new time slots (time slot 1
and 2), the algorithm adds the pointcut that selects f4() to PCgen (Fig. 4 (c)).
The pointcut that selects f3() covers only one new time slot (time slot 1). At the
final iteration, a pointcut that selects three f2() is added to PCgen. At the same
time, the pointcuts that select f1() and f6() are removed from PCgen (Fig. 4 (d)).
The time slot 0 and 4 are covered by the pointcut that selects f2(). The algorithm
results in the pointcuts that select f2() and f4(). In this example, all the time
slots are covered by those pointcuts and each time slot includes only one selected
method call.

3.4 Concerns for Scheduling Policies

Synchronization. Scheduling code woven into applications by QoSWeaver in-
cludes synchronization code for suspending and restarting a thread. We imple-
mented the synchronization by the Object.wait and Object.notify methods in Java.

Adding such synchronization code may cause deadlocks if the original applica-
tions also include synchronization code. Suppose that thread A and B running
in an application access the same synchronized object in a synchronized block as
shown in Fig. 5. If join points in the block are selected by pointcuts, the thread
B calls the scheduler object and can be suspended in the block to yield the al-
located CPU time. While the thread B is suspended in the block, the thread A
will be blocked if it attempts to enter the block because the thread B does not
release the lock. If the thread A has a role to wake up the thread B within or
after the block, a deadlock occurs. The thread A cannot wake up the thread B
forever. However, typical web applications do not often include synchronization
code. In particular, the Enterprise JavaBeans (EJB) specification [15] prohibits
using thread synchronization. In fact, the web applications that QoSWeaver was
applied to in Sect. 4 did not use thread synchronization although they were not
EJB applications.

2. suspend thread B

scheduler
object

thread A

thread B

5. return if no progresssynchronized
object

3. block

1. call

4. thread B checks
 thread A’s progress

6. return

deadlock

Fig. 5. A scheduling method for breaking deadlocks.

If web applications include synchronization code, developers can write schedul-
ing policies that wake up suspended threads periodically and run application
code a little. This is implemented by using the Object.wait method with timeout
in scheduler code. As shown in Fig. 5, when the specified timeout is expired after
thread B was suspended, thread B executes the scheduler code, which checks the
progress of the other running threads, in this case, thread A. If some threads do
not make progress for a while, the scheduler decides to restart thread B tem-
porarily because those threads may make no progress due to deadlocks. If all
threads make progress when thread B calls the scheduler code at the next join
point selected, thread B calls the Object.wait method to suspend again. It is
guaranteed that the applications recover from a deadlock if all the suspended
threads temporarily run, as far as the original applications do not include dead-
locks in their logic. This approach also prevents livelocks, that is, a restarted

thread never suspends instantly again for waiting the same lock. When a sus-
pended thread is restarted by timeout, it necessarily proceeds to the next join
point selected by pointcuts.

To record the progress of threads for the above method, AOP is also use-
ful. For example, QoSWeaver can weave an aspect for incrementing a progress
counter at various join points in applications. Such join points should be se-
lected by pointcuts so that a thread will reach them at as regular intervals as
possible and the accurate progress can be monitored. Our pointcut generator
can generate appropriate pointcuts for that purpose.

If applications are written without using thread synchronization, the develop-
ers can write scheduling policies concisely because they do not need to consider
deadlocks. Even when thread synchronization is used, deadlocks are avoidable
if the usage is localized. The pointcut generator can generate pointcuts that do
not select any join points in synchronized blocks.

Some readers may think that using an independent scheduler thread is straight-
forward to solve deadlocks because the scheduler thread can always run. How-
ever, it is difficult in Java that such a scheduler thread preemptively suspends
other threads. Although Java provides the Thread.suspend and Thread.resume
methods for thread preemption, these methods are not recommended to use be-
cause they are inherently deadlock-prone. If an application thread is suspended
within a synchronized method in a system class, the scheduler thread may block
at that method and then a deadlock may occur.

I/O. When a thread blocks for I/O, the schedulers of the underlying operating
system and middleware automatically allocate CPU time to another thread.
An application-level scheduler does not need to reschedule threads whenever a
thread issues blocking I/O. This makes it easy to implement scheduling policies.
This mechanism assumes that the underlying schedulers schedule threads in a fair
manner. This assumption is satisfied in most operating systems and middleware.
If developers want to control threads strictly, they can modify scheduling policies
to make a thread call a scheduler and temporarily run another thread just before
it issues blocking I/O. After the thread completes the I/O, it can immediately
call the scheduler to suspend the temporarily running thread.

4 Case Study

To examine that QoSWeaver enables implementing practical scheduling policies,
we executed performance tuning of a web application system with QoSWeaver.
The web application that we used is a river monitoring system named Kasendas.
This section describes the overview of the web application and what scheduling
policy we developed for the web application.

4.1 Kasendas: A River Monitoring System

Kasendas is a river monitoring system that collects and reports the water levels of
major rivers in Japan to the public through the web. Figure 6 shows a screenshot

of its client’s view. The web applications that supply such information related
to natural disaster should be carefully implemented to be able to work under a
large number of simultaneous accesses, known as flash crowds. Usually people
will not access such a web application but, once a large typhoon approaches, they
will rush to the web application for making sure that their local rivers are not
flooded. We executed performance tuning so that the software will work under
such heavy workload. We chose this application because this work was done for
demonstrating our AOP technology within the framework of a research project
funded by Japan Science and Technology Agency, which is studying dependable
IT infrastructure for secure life. Since Kasendas is for technology demonstration,
the water levels shown by Kasendas were pseudo data produced by the data
generator, which emulates sensor nodes that measure the water levels of rivers
and provides the data to Kasendas.

Fig. 6. The up-to-date water levels in Tokyo shown by Kasendas.

To make the results of our experiment reliable, Kasendas was initially devel-
oped by an outside corporation with CMMI level 3 [16]. We only received its
source files and executed performance tuning. Although we told them the aim
of Kasendas, they developed it independently of QoSWeaver. The requirement
from us was to build Kasendas with typical open source middleware: JBoss ap-
plication server [17], the Tomcat web container [18], the Struts framework [19],
and the Seasar2 container [20]. Table 1 shows the code size of Kasendas. JSP
files specify the design of web pages and the dicon files specify the configuration
of components. This table does not include third-party libraries and frameworks.
The development cost of Kasendas was 8.8 man-month, including tests and the
design of web pages.

Figure 7 shows the architectural overview of Kasendas. Kasendas has three
web applications for periodic data collection, chart generation, and water-level

Table 1. The code size of Kasendas.

server file type number lines

Kasendas .java files 82 9238
JSP files 12 1736
dicon files 15 558

data generator .java files 8 646

update. One web application collects the water levels of rivers through web ser-
vices provided by the data generator periodically, for example, every 15 seconds.
To collect the water levels of all rivers, the application sends the same number
of requests as rivers to the data generator. The collected data are stored in the
PostgreSQL database [21] and the latest data is also kept in memory. The other
two applications generate web pages for the users. One generates a web page
showing recent changes of water levels, for example, for the last 12 hours. It
reads data from the database and generates a chart of water levels by using the
JFreeChart library [22]. This is a heavy-weight application because it accesses
the database and produces a PNG image of the chart like Fig. 8. The other
generates a web page showing up-to-date water levels. It reads data on memory
and generates an image like Fig. 6.

DB
Kasendas

application
(chart generation)

application
(water-level update)

application
(data collection)

memory

web
service

store

store

read

read

data
generator

up-to-date
water levels

chart

Fig. 7. The architecture of Kasendas.

Kasendas executes these three applications as follows. A timer in Kasendas
triggers the execution of the application for periodic data collection. A single
thread allocated by the timer executes the application at regular intervals. On
the other hand, the other two applications for the chart generation and the water-
level update are executed when Kasendas receives requests from the clients. Since
these applications must be able to process a number of simultaneous requests in
parallel, they are multi-threaded. When Kasendas receives a request, it obtains
a thread from the thread pool provided in the web application server and the
thread executes the requested application.

Fig. 8. The generated chart of recent changes of water levels in a river.

The initial version of Kasendas that we obtained from the outside corporation
was unstable under heavy workload. It frequently failed to collect water levels on
time from the data generator. According to our investigation, it became unstable
when a number of clients simultaneously access the web page showing a chart.
Since generating that page is a heavy-weight task, it consumes a large amount of
CPU time and thus it disturbs another application for periodic data collection.
This collector application will miss its deadline and lose a part of the water levels
at that time. Furthermore, this application continues to collect the rest of the
water levels in the next time period because it is not aware of the deadline miss.
Thus it fails again to collect the up-to-date water levels in the next time period.

4.2 The Applied Scheduling Policy

To fix this performance problem, we used QoSWeaver. There were two perfor-
mance requirements:

– preventing a deadline miss in the periodic data collection even under heavy
workload, and

– preventing performance degradation of the chart generation.

Note that true real-time scheduling was not required for this case. These re-
quirements are somewhat vague and they are about user experiences. Our goal
is to satisfy these requirements as much as possible with a minimum software
development cost when we already have a program that mostly works well on a
normal software stack.

Therefore, the scheduling policy applied to Kasendas was proportional-share
scheduling for two groups of threads for the chart generation and a thread for
periodic data collection. The former threads have low importance and the lat-
ter has high importance in this policy. While the high-importance thread does

not run, the scheduling policy runs all the low-importance threads to generate a
chart. When the high-importance thread starts running for periodic data collec-
tion, the scheduling policy quickly limits the number of low-importance threads
to keep the ratio of the number of threads for each group. The scheduling policy
did not consider threads that execute the application for the water-level update.
They did not have high importance and did not make the system load high
because they were light-weight.

The scheduling policy makes a low-importance thread call a scheduler pe-
riodically. If the yield flag of the thread is set by the scheduler, the thread is
suspended. On the other hand, the scheduling policy makes a high-importance
thread call the scheduler when the thread starts periodic data collection. At
this time, the scheduler limits the number of running low-importance threads by
setting the yield flags. We experimentally configured the number to one, which
made the behavior of the high-importance thread the stablest. This means that
our scheduling policy gives a share of 50% to each group of threads. We did
not limit the number to zero because we wanted low-importance threads to run
while a high-importance thread was running. The scheduling policy makes a
high-importance thread call the scheduler again when it finishes the execution.
The scheduler removes the limitation on the number of running low-importance
threads, resets the yield flags of the low-importance threads, and wakes up all
the suspended low-importance threads.

To write an aspect that implements this scheduling policy for QoSWeaver, we
used our own AOP system named GluonJ [23]. In GluonJ, an aspect is written
in XML as glue code 1. An aspect is woven into web applications when they are
loaded into a web application server. The aspect we wrote is shown in Fig. 9 and
Fig. 10.

Figure 9 shows the part of pointcut declaration in our aspect. For simplicity,
we omit package names from class names. A pointcut is declared within the
pointcut-decl tag. It is named with the name tag and specified with the pointcut
tag. In our case, we declared three pointcuts: lowImportance, highImportance,
and controlPoint. The lowImportance and highImportance pointcuts consist of the
execution pointcut, which specifies a method by its name and signature and
matches points at which the method is executed at runtime. The lowImportance
pointcut selects the execution of the method starting the chart generation. The
highImportance pointcut selects the execution of the method starting periodic
data collection. These two pointcuts were written by hand with the knowledge
of the source code of Kasendas.

On the other hand, the controlPoint pointcut was generated by our pointcut
generator. The definition of controlPoint consists of 17 pairs of withincode and call
pointcuts, which are concatenated with OROR. ANDAND and OROR correspond
to && and || in AspectJ [24], respectively. The call pointcut specifies a method
by its name and signature and matches points at which the method is called
at runtime, and the withincode pointcut limits a caller’s method within which

1 In the latest version of GluonJ, an aspect is written in Java. See http://www.csg.

is.titech.ac.jp/projects/gluonj/.

<pointcut-decl>

<name> lowImportance </name>

<pointcut>

execution(void PlaceChartCreatePseudActionImpl.execute(..))

</pointcut>

</pointcut-decl>

<pointcut-decl>

<name> highImportance </name>

<pointcut>

execution(void CollectorImpl.doObtain())

</pointcut>

</pointcut-decl>

<pointcut-decl>

<name> controlPoint </name>

<pointcut>

(withincode(Range CategoryPlot.getDataRange(ValueAxis)) ANDAND

call(Range Range.combine(Range,Range)))

OROR

:

</pointcut>

</pointcut-decl>

Fig. 9. The pointcut declaration in our aspect.

the call pointcut matches method calls. The controlPoint pointcut selects various
method calls during the chart generation as far as these methods are called from
the specified caller methods. A scheduling mechanism specific to Kasendas is
constructed from these pointcuts. The pointcuts specify scheduling points in the
source code of Kasendas and its application threads call a scheduler implemented
as advice when they reach the scheduling points at runtime.

Figure 10 shows the part of advice declaration in our aspect. Advice is de-
clared within the behavior tag. It consists of the pointcut tag and the around
or before tag. The pointcut tag specifies a named pointcut declared with the
pointcut-decl tag. The around and before tags specify around advice and before
advice, respectively. The around advice is executed in place of its join points
selected by a pointcut while the before advice is executed before its join points.
In the around tag, proceed() calls the original method selected by a pointcut.
A special variable $$ represents arguments passed to a target method and $
represents a return value in this context. The advice bodies invoke the methods
declared in the PSScheduler class, which is a support class of our aspect, shown
in Fig. 11. Advice and its support classes are the implementation of a scheduling
policy, which is named a scheduler.

<behavior>

<pointcut> lowImportance() </pointcut>

<around>

PSScheduler.startLowImportance();

$_ = proceed($$);

PSScheduler.endLowImportance();

</around>

</behavior>

<behavior>

<pointcut> highImportance() </pointcut>

<around>

PSScheduler.startHighImportance();

$_ = proceed($$);

PSScheduler.endHighImportance();

</around>

</behavior>

<behavior>

<pointcut> controlPoint() </pointcut>

<before> PSScheduler.yield(); </before>

</behavior>

Fig. 10. The advice declaration in our aspect.

The first around advice is executed when a low-importance thread generates
a chart. It calls the scheduler to register the thread to be controlled before the

selected method execution and to unregister it after that. The second around
advice is executed when a high-importance thread performs the periodic data
collection. It calls the scheduler to control the number of running low-importance
threads before and after the selected method execution. This policy temporar-
ily reduces the number to one and restores it to 40, which was equal to the
maximum number of concurrent requests to a web page showing a chart in our
experiments. While the periodic data collection was not performed, we did not
need to restrict the number of running threads. The last before advice is executed
before a low-importance thread performs the selected method calls during the
chart generation. It calls the scheduler to yield the execution of the thread itself
that executed the advice.

public class PSScheduler {

private static ThreadController controller =

ThreadController.getInstance();

public static void startLowImportance() {

controller.add(Thread.currentThread());

}

public static void endLowImportance() {

controller.remove(Thread.currentThread());

}

public static void startHighImportance() {

controller.schedule(1);

}

public static void endHighImportance() {

controller.schedule(40);

}

public static void yield() {

controller.yield(Thread.currentThread());

}

}

Fig. 11. A support class for our aspect.

The ThreadController class used in PSScheduler implements our scheduling al-
gorithm. This class is reusable and the code size is 151 lines. The implementation
is as follows:

– The add method puts the current thread into a run queue of a scheduler
if the number of threads in the run queue is under the configured maxi-
mum. Otherwise, the method puts the current thread into a wait queue and
suspends the current thread by invoking the Object.wait method.

– The remove method removes the current thread from the run queue. If the
number of threads in the run queue is under the maximum, the method

resets the yield flags of some threads in the wait queue and wakes up the
threads by invoking the Object.notify method.

– The schedule method moves some threads in the run queue to the wait queue
if the number of threads in the run queue is above the new maximum spec-
ified by the argument. Then, the method sets yield flags of those threads.
Otherwise, the method moves some threads in the wait queue to the run
queue, resets their yield flags, and wakes up those threads.

– The yield method suspends the current thread, if its yield flag is set, by
invoking the Object.wait method.

We did not specify a timeout for the Object.wait method because the original
Kasendas did not include synchronization code among threads and it was guar-
anteed that suspended threads were always woken up by other threads.

4.3 Our Experiences

Throughout the development of our scheduling policy, we found that QoSWeaver
made the development easy. First, our scheduling policy was not affected by
the modifications of the source code of Kasendas, thanks to aspects and our
pointcut generator. During one month before the final release of Kasendas, we
had to develop the scheduling policy for the intermediate version of Kasendas
in parallel while the development team of Kasendas was still testing and fixing
bugs. This is because we had to demonstrate Kasendas at a symposium held by
our grant sponsor soon after the expected final release date. Since our scheduling
policy was implemented by an aspect and its support classes, we could apply our
scheduling policy to the final version of Kasendas without manual modifications
of the policy. Although pointcut declaration strongly depends on the code of
Kasendas, the pointcut generator automatically generated a new appropriate
controlPoint pointcut for the final version.

Second, an aspect allowed us to change a scheduling policy without affecting
the source code of Kasendas. We developed the best scheduling policy in the
following steps. At the beginning, we tried to cause low-importance threads to
yield their execution by getting them to sleep during a certain period by the
Thread.sleep method. We implemented the scheduling policy that got threads to
sleep at join points except the JFreeChart library. This policy could not control
a system load well because the execution of low-importance threads took long
time in that library. Next, we changed this policy so as to get threads to sleep at
join points within the library. This policy almost worked well, but it sometimes
failed to collect water levels at correct intervals when many threads were woken
up accidentally at the same time. Finally, we changed this policy so as to use
the Object.wait method for thread yielding. This policy could always control
thread execution properly. While we modified our aspect and its support classes
through these steps, we could not need to modify the source code of Kasendas.
In addition, it was easy to change our scheduling policy to other ones for our
experiments described in the next section.

Third, our pointcut generator enabled us to select the controlPoint pointcut
for periodic thread yielding without examining the source code of Kasendas in

detail. For periodic thread yielding, we had to choose pointcuts that selected
join points that a thread reached at reasonable intervals. However, there were
too many candidates for pointcuts in Kasendas even if we limited pointcuts to
the pair of the withincode and call pointcuts without wildcards. For a web ap-
plication generating a chart, there were 803 candidates of pointcuts even in the
execution profile we obtained. If we did not have the execution profile, there
were much more candidates in the source code of Kasendas. It was impossi-
ble to select appropriate pointcuts among these enormous candidates by hand.
Using our pointcut generator, we only needed to run a target application for
obtaining execution profile, which was used to run the pointcut generator with
several sets of parameters, so that the best set of generated pointcuts would be
experimentally selected.

The development of our scheduling policy was less than one man-month.
Our student, which is one of the authors of this paper, found the condition
where Kasendas became unstable and developed the best scheduling policy by
trial and error. He found the condition in one week, developed a scheduling
policy in less than two weeks, and tested and modified it in one week. For
comparison, the developers of Kasendas proposed 0.9 man-month for modifying
Kasendas for potential performance improvement. Note that the proposed work
was not equivalent to our work. It did not include the analysis of performance
bottlenecks. The work was only modifying Kasendas to use multiple threads
for collecting water levels in parallel from the data generator. Furthermore, the
developers could not guarantee that their modification prevented data loss under
heavy workload because they did not know the real performance bottlenecks.
Since their modification would make the software more complicated, estimating
the performance was difficult.

4.4 Additional Scheduling Policies

Deadlock-Aware Scheduling Policy. To examine that QoSWeaver can break
deadlocks introduced by woven scheduling code, we modified Kasendas so that
it would cause a deadlock when it ran with our scheduling policy described
in Sect. 4.2. We added a Logging class including two synchronized methods to
Kasendas. These two methods, writeCollection and writeGeneration, are called by
a high-importance thread for the periodic data collection and low-importance
threads for the chart generation, respectively. When a low-importance thread
is suspended within the writeGeneration method and waits for being woken up
by the high-importance thread, a deadlock occurs if the high-importance thread
calls the writeCollection method. Since the high-importance thread blocks at the
writeCollection method, it cannot wake up the suspended low-importance thread.

An aspect as shown in Fig. 12 records the progress of the high-importance
thread. The advice calls the PSScheduler.setProgress method 100 times during
the execution of the high-importance thread. The pointcut was generated by
our pointcut generator on the basis of the execution profile for the periodic data
collection. The setProgress method increments the value of a progress variable.
In addition, we modified the controlPoint pointcut in our original aspect so that

a join point within the writeGeneration method was selected to yield thread’s
execution.

<pointcut-decl>

<name> progress </name>

<pointcut>

(withincode(int CollectorImpl.getWaterLevel(int)) ANDAND

call(int Integer.parseInt(java.lang.String)))

</pointcut>

</pointcut-decl>

<behavior>

<pointcut> progress() </pointcut>

<before> PSScheduler.setProgress(); </before>

</behavior>

Fig. 12. The aspect added for measuring a progress.

To enable breaking deadlocks, we also modified the yield method in the PS-
Scheduler class. Within the yield method, a thread calls the Object.wait method
with the timeout of 200ms if its yield flag is set. When the execution of the
Object.wait method finishes, the thread checks its yield flag again. If the flag is
reset, the thread finishes the execution of the yield method and executes appli-
cation code because this means that the thread is woken up by the Object.notify
method. Otherwise, the thread compares the current value of the progress vari-
able with the saved previous one to check the progress of the high-importance
thread. If the value is changed, the high-importance thread is running and no
deadlock occurs. Therefore, the thread calls the Object.wait method again. Oth-
erwise, it temporarily executes application code to break potential deadlocks.
During this temporary execution, the yield flag is set.

After that, the low-importance thread checks the progress of the high-importance
thread whenever the yield method is called. If the yield flag is set and if the
high-importance thread makes no progress, the thread skips the rest of the yield
method and continues the temporal execution. If the high-importance thread
makes progress, the low-importance thread finishes the temporal execution and
executes the yield method normally.

Adaptive Scheduling Policy. So far, we considered only the low-importance
threads for the chart generation and the high-importance thread for the periodic
data collection. Kasendas has another web application for the water-level update.
This application is of intermediate importance and should be run by a middle-
priority thread. It is more important than that for the chart generation because,
in the disaster case, the up-to-date water levels are more critical information
than their changes in the past. It is not as important as the application for the

periodic data collection. When we consider such middle-importance threads as
well, they conflict with both low- and high-importance threads. The through-
put of the middle-importance task may decrease due to the low-importance task
when many low-importance threads are running because the chart generation
performed by the low-importance threads is a heavy-weight task. While the pe-
riodic data collection is performed, the time needed for periodic data collection
may be increased by the middle-importance task. Although the web applica-
tion for the water-level update is light-weight, too many requests to the web
application affect the other applications.

To minimize such conflicts, we extended our scheduling policy described in
Sect. 4.2. The extended policy guarantees the target throughput for the middle-
importance task on average when a high-importance thread does not run. It
adaptively adjusts the number of low-importance threads so that the middle-
importance task achieves the target throughput. While the high-importance
thread is running, the policy limits the maximum throughput of the middle-
importance task. It directly adjusts the execution of the middle-importance
threads because the number of the low-importance threads is limited to one
during data collection by our original policy and it is difficult to be adjusted
furthermore. Figure 13 is an aspect added for the middle-importance task. The
midImportance pointcut selects the execution of the method in the AbstractMa-
pAction class, which is invoked from the ActionServlet class used by the Struts
framework [19]. The around advice is executed when a middle-importance thread
performs the water-level update.

<pointcut-decl>

<name> midImportance </name>

<pointcut>

execution(ActionForward AbstractMapAction.execute(..))

</pointcut>

</pointcut-decl>

<behavior>

<pointcut> midImportance() </pointcut>

<around>

PSScheduler.startMidImportance();

$_ = proceed($$);

PSScheduler.endMidImportance();

</around>

</behavior>

Fig. 13. The aspect added for the middle-importance task.

First, we consider only middle- and low-importance tasks when the periodic
data collection is not performed. To calculate the throughput of the middle-
importance task, our scheduler counts the number of pages generated during a

certain period. The number is incremented by the PSScheduler.endMidImportance
method, which is called after the execution of the water-level update. To adjust
the maximum number of low-importance threads, we added the adjust method
to the ThreadController class, which is described in Sect. 4.2. The method is
called in the startMidImportance, endMidImportance, and yield methods of the
PSScheduler class. Thus the adjust method is frequently called if the middle- or
low-importance threads are running.

The adjust method adjusts the maximum number of low-importance threads
if the specified time elapses since the last adjustment. It does nothing until the
specified time elapses. In the current implementation, the time is one second. The
adjust method first calculates the latest throughput of the middle-importance
task from the number of generated pages and the time elapsed since the last ad-
justment. Then it calculates the ratio of the observed throughput to the specified
target throughput. If the ratio is less than one, the method decreases the maxi-
mum number of low-importance threads by the ratio to decrease the load by the
low-importance threads. If the ratio is more than one, the method increases the
number by the ratio to suppress the execution of the middle-importance threads.
For example, suppose that the maximum number of low-importance threads is 5.
When the observed throughput is 180 pages/sec and the target is 150 pages/sec,
the ratio is 1.2 and then the maximum number is increased to 6.

Next, we consider three kinds of tasks when the periodic data collection is
performed. To limit the number of requests processed in parallel, our scheduler
maintains the number of running middle-importance threads. The startMidImpor-
tance method increments the number and the endMidImportance method decre-
ments it. While the high-importance thread is running, the startMidImportance
method checks the number of running middle-importance threads. If the num-
ber is more than the specified value, the current thread is suspended. When a
middle-importance thread finishes the water-level update, the endMidImportance
method wakes up one of the suspended threads. The woken-up thread waits for
the specified time because of adjusting the rate of request processing. The max-
imum throughput is determined by the maximum number of middle-importance
threads and the waiting time. When the high-importance thread finishes the pe-
riodic data collection, all the suspended threads are woken up. At the same time,
the maximum number of low-importance threads is restored to the value just
before starting the periodic data collection. This behavior is changed from the
original policy, which restores the number to the fixed value, 40. This change en-
ables quickly stabilizing the maximum number of low-importance threads after
the periodic data collection.

5 Experiments

Our application-level scheduler successfully improved the execution performance
of Kasendas. Interestingly, we could not achieve this improvement by using exist-
ing schedulers of the underlying software layers such as the JVM and the Linux

operating system. This section illustrates this fact through the results of our
experiments.

5.1 Five Versions of Kasendas

We ran not only our Kasendas tuned with QoSWeaver but also the original
Kasendas without any tuning and other versions of Kasendas tuned with admis-
sion control, Java priority scheduling, and Linux priority scheduling. Admission
control is a simple scheduling technique for limiting the number of threads con-
currently running. Because of its simplicity, it is often used for controlling the
concurrency of web application servers. A web application server adopting ad-
mission control checks the number of running threads when it receives a new
request from a client. If the number exceeds the limit, the server does not start
processing the new request. A main difference between admission control and
our scheduling by QoSWeaver is that admission control can suspend processing
a request only when the server starts processing it. Once it starts processing, a
thread processing the request is not suspended until it finishes processing. It is
never suspended halfway.

The admission control for Kasendas restricts the maximum number of run-
ning low-importance threads for generating a chart. It limits the maximum num-
ber to one while a high-importance thread is collecting water levels. This policy
is the same as the policy of our scheduling except that it is enforced only when a
thread starts. Thus, the comparison between admission control and QoSWeaver
will reveal a performance benefit of enforcing the policy by suspending a thread
halfway through the execution.

The other two versions of Kasendas were tuned by scheduling mechanisms
in the JVM and the operating system. To support our claim in Sect. 2, it is
important to show that only using such existing scheduling mechanisms is in-
sufficient. Java provides the Thread.setPriority method for priority scheduling.
Using this method, Kasendas sets the priority of the high-importance thread
to high (MAX PRIORITY) while it sets the priority of the low-importance threads
to low (MIN PRIORITY). After the low-importance threads finish to process re-
quests, Kasendas resets their priorities to normal (NORM PRIORITY) because those
threads were reused via a thread pool.

Kasendas tuned with Linux priority scheduling issues the setpriority system
call using a native method in Java when threads start processing requests. Like
the setPriority method in Java, Kasendas sets the priorities of the high- and low-
importance threads to high (-20) and low (19), respectively. However, Kasendas
has to be run with root privilege to raise the priority of the native thread. It has
to change the priority of the high-importance thread from normal (0) to high.
In addition, it has to change the priority of the low-importance thread from low
to normal when it returns the low-importance thread to the thread pool.

We did not change the operating system and the JVM used in Kasendas to
real-time ones because that is not realistic at software development in practice
as described in Sect. 2. If we largely change such underlying software, we may
rewrite our applications. In addition, all of the underlying software need to be

changed to real-time systems, but there existed no real-time JBoss server, which
Kasendas required.

For our experiments, the interval at which Kasendas collects water levels
was 15 seconds. To generate workloads, we used Apache JMeter [25]. JMeter
concurrently sent requests to the web page showing a chart of recent changes for
the last 12 hours, except one experiment in Sect. 5.2. The number of concurrent
requests was 40, except one experiment in Sect. 5.3. The number, 40, was the
maximum number of concurrent requests through our experiments because the
chart generation was a heavy-weight task and processing 40 requests in parallel
caused overload in our server. Although more requests may be sent to the server
in practice, we assume that more than 40 requests are discarded by admission
control. We did not send requests to the web page showing the up-to-date water
levels, except one experiment in Sect. 5.5.

To run Kasendas and the data generator, we used two Sun Fire V60x with
dual Intel Xeon 3.06 GHz processors, 2 GB of memory, a gigabit Ethernet NIC.
These machines ran Linux 2.6.8 as the operating systems, Sun JVM 1.4.2 06,
and JBoss 4.0.2 as the J2EE servers. To run JMeter, we used Sun Fire B100x
with a single AMD AthlonXP-M 1.53 GHz processor, 1 GB of memory, and a
gigabit Ethernet NIC. This machine ran the Solaris 9 operating system and Sun
JVM 1.4.2 05. These machines were connected with a gigabit Ethernet switch.

5.2 Effectiveness of Our Scheduling

We examined whether our scheduling could give sufficient CPU time to the
thread executing the application periodically collecting water levels.

Time for Collecting Water Levels. We measured the elapsed time from when
a high-importance thread starts collecting water levels until it completes the
collection. Since this data collection is performed periodically, data loss occurs
if the collection does not finish within its interval, which was 15 seconds in our
configuration. Our aim is to prevent such deadline misses for the periodic data
collection.

Figure 14 shows the changes of the time needed for collecting water levels
every 15 seconds and Fig. 15 shows the average collection time. When we used
the original Kasendas, we could measure the collection time only six times during
180 seconds. This is because each data collection took long time. The average
collection time was 24.8 seconds and every collection time was more than 15
seconds, which was a deadline, except at 30 seconds. On the other hand, our
scheduling reduced the average collection time to 5.3 seconds. The collection time
was always within 15 seconds and no data was lost. In addition, the collection
time was the stablest among the five versions of Kasendas. The variance of
our scheduling was the smallest. This is very important for applications with
deadlines because it becomes easier to guarantee that applications do not miss
their deadlines. For the admission control, the average collection time was 10.9
seconds, but the collection time sometimes exceeded 15 seconds, for example,

at 30 seconds after the start. This means that the admission control could not
always prevent data loss. Fine-grained scheduling by QoSWeaver could prevent
data loss by giving sufficient CPU time to the thread for collecting water levels.

0 15 30 45 60 75 90 105 120 135 150 165 180
elapsed time (s)

0

10

20

30

40

50

co
lle

ct
io

n
tim

e
(s

)
original
our scheduling
admission control
Java priority scheduling
Linux priority scheduling

Fig. 14. The changes of the time needed for a high-importance thread to collect water
levels.

Kasendas tuned by Java priority scheduling achieved a little shorter collec-
tion time on average than the original one, but the average was still longer than
15 seconds. The average collection time of Kasendas tuned by Linux priority
scheduling was 9.0 seconds. However, Linux priority scheduling was not as good
as our scheduling. The collection time was not stable and longer than 15 seconds
at the first data collection. The cause of this instability is that the execution of
the chart generation has several phases. Since JMeter simultaneously sent 40 re-
quests at time 0, many threads tended to execute the same phase synchronously.
Therefore, the characteristics in each phase affected the performance of the pe-
riodic data collection.

The deadline miss ratio was 0.89 for the original Kasendas, but it was reduced
to zero by our scheduling. The other approaches could not achieve this: 0.31
for the admission control, 0.89 for Java priority scheduling, and 0.18 for Linux
priority scheduling.

Number of Running Low-Importance Threads. To examine the schedul-
ing behaviors in detail, we measured changes of the number of running low-
importance threads for generating a chart. In our configuration, both our schedul-
ing and the admission control give CPU time to the high-importance thread for
the periodic data collection by suspending all but one low-importance thread
after the data collection is started. The aim of this experiment is to examine

original
our scheduling

admission control
Java priority

Linux priority
0

10

20

30

40

av
er

ag
e

co
lle

ct
io

n
tim

e
(s

)

Fig. 15. The average time needed for a high-importance thread to collect water levels.

how quickly low-importance threads are suspended. The quickness of the thread
suspension can affect the collection time of water levels.

Figure 16 shows the changes of the number of running low-importance threads.
Our scheduling always suspended all but one low-importance thread just af-
ter the data collection was started every 15 seconds. The average suspension
time was 2.2 seconds. The suspension time means the time from when a high-
importance thread calls a scheduler until all but one low-importance thread
are suspended. For the admission control, on the other hand, the number of low-
importance threads was not reduced to one in several intervals, for example, from
time 0 second to time 30 seconds. Even when all but one low-importance thread
were suspended, the average suspension time was 10.2 seconds. This suspension
time is long, compared with the interval of 15 seconds. Since the high-importance
thread runs together with low-importance threads, the data collection performed
by the high-importance thread tends to be delayed.

Impact of Changing Workloads. In the above experiments, JMeter sent re-
quests to a web page showing a chart of recent changes for the last 12 hours.
Generating the 12-hours chart was the same workload as what we used to obtain
execution profile for our pointcut generator. We changed workloads so that JMe-
ter sent requests to web pages showing charts for the last 24, 12, 6, and 3 hours.
As the period of a generated chart becomes smaller, the application generating a
chart obtains the smaller number of water levels from the database and produces
a chart in shorter time. Nevertheless, the system load becomes higher because
Kasendas must process more requests per second. The aim of this experiment is
to examine how well our scheduling can give sufficient CPU time to the thread
for the periodic data collection under different workloads.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

10

20

30

40

50

nu
m

be
r

of
 r

un
ni

ng
 th

re
ad

s

0 15 30 45 60 75 90 105 120 135 150 165 180
elapsed time (s)

0

10

20

30

40

50
nu

m
be

r
of

 r
un

ni
ng

 th
re

ad
s

(a) our scheduling

(b) admission control

Fig. 16. The changes of the number of running low-importance threads.

Figure 17 shows the average time needed for a high-importance thread to
collect water levels when we changed the workloads. Our scheduling, the admis-
sion control, and Linux priority scheduling kept the average collection time to
almost the same under any workloads. On the other hand, when we used the
original Kasendas, the average collection time increased from 23.5 to 49.0 sec-
onds at maximum and more data were lost. Kasendas tuned with Java priority
scheduling was worse than the original one for the 24-hours and 6-hours charts.
Like Fig. 15, the variance of our scheduling was the smallest. That of the orig-
inal Kasendas becomes larger for the shorter period. On the contrary, that of
our scheduling becomes smaller as the period of the generated chart is decreas-
ing. This indicates that threads for generating a chart of a shorter period are
easier to control under application-level scheduling because the chart generation
becomes relatively lighter-weight task. Table 2 shows the deadline miss ratios.
In our scheduling, the deadline miss ratio was zero for every case. From these
results, it is shown that our scheduling can control Kasendas stably even when
the workload is a little different from that used in the profiled execution.

Table 2. The deadline miss ratios.

period 24-hours 12-hours 6-hours 3-hours

original 0.92 0.89 0.97 0.95
our scheduling 0.00 0.00 0.00 0.00
admission control 0.39 0.31 0.28 0.11
Java priority 0.95 0.89 1.00 0.98
Linux priority 0.15 0.18 0.18 0.00

original
our scheduling

admission control
Java priority

Linux priority
0

10

20

30

40

50

60

70

80

co
lle

ct
io

n
tim

e
(s

)

24 h chart
12 h chart
6 h chart
3 h chart

Fig. 17. The time needed for collecting water levels when the workload is changed.

Influences to Low-Importance Threads. To examine how our scheduling af-
fects the performance of low-importance threads, we first measured the through-
put of the chart generation, which is executed by low-importance threads. Since
our scheduling policy temporarily suspends low-importance threads to give suffi-
cient CPU time to a high-importance thread, the throughput of the chart gener-
ation would be degraded. Figure 18 (a) shows the throughput of the chart gener-
ation. Compared with the original Kasendas, the performance degradation under
our scheduling was 15.7% and larger than that under the other approaches. This
is because our scheduling gave more sufficient CPU time to the high-importance
thread than the other approaches. In the case of Kasendas, this level of perfor-
mance degradation was acceptable because our first priority was to prevent data
loss for providing reliable information.

Next, we measured the response time of a web page showing a chart. Fig-
ure 18 (b) shows the average response time. Compared with the original Kasendas,
the average response time under our scheduling increased by 18%. The 95% con-
fidence intervals are (17.2, 18.2) and (19.7, 21.2) for the original Kasendas and
our scheduling, respectively. Since these two do not overlap, the increase is sta-
tistically significant. In addition, the variance of our scheduling was larger than
that in the original Kasendas because the low-importance threads were given a
low priority and all but one thread were suspended during periodic data collec-
tion.

Scheduling Overhead. To examine the scheduling overhead, we measured the
throughput of the chart generation without performing the periodic collection of
water levels. In our scheduling policy, low-importance threads execute the chart
generation and periodically call a scheduler’s method. Thus the chart generation
can cause scheduling overhead. We stopped the periodic data collection to mea-

0

0.5

1

1.5

2

2.5

th
ro

ug
hp

ut
 (

pa
ge

s/
s)

(a) throughput

0

5

10

15

20

25

30

re
sp

on
se

 ti
m

e
(s

)

(b) response time

original

our scheduling

admission contro
l

Java priority

Linux priority

our scheduling
original

admission contro
l

Java priority

Linux priority

Fig. 18. The throughput of the chart generation and the response time of a web page
showing a chart.

sure pure overhead because the periodic data collection makes low-importance
threads be suspended.

Compared with the original Kasendas, the throughput was not degraded in
our scheduling and no scheduling overhead was measured. This is because calling
a scheduler’s method was very light-weight and a low-importance thread called
the method at only 17 join points during handling one request in our experiment.
For the admission control, there was also no overhead. On the other hand, the
throughputs were degraded by 3% and 11% with the priority scheduling by the
JVM and by Linux, respectively. This is because priority scheduling gave a low
priority to low-importance threads even while the periodic data collection was
not performed.

5.3 Usefulness of the Pointcut Generator

We examined the impact of parameters given to our pointcut generator. The
pointcut generator takes two parameters: a target interval between adjacent join
points selected and the maximum occurrences of join points selected by a single
pointcut. In Sect. 5.2, we used the controlPoint pointcut generated with the
target interval of 10ms and the maximum occurrence of 1. For the experiments
in this section, we changed the target interval to either 10 or 100ms and the
maximum occurrence to 1, 50, 100, or 200.

Generated Pointcuts. Compared with when we used a pointcut that selects
all method calls without the pointcut generator, the pointcut generator dramat-
ically reduced the number of selected join points. Table 3 shows the number

of generated pairs of call and withincode pointcuts and join points selected by
them. The number of join points selected without the pointcut generator was
248661, but the number was reduced to several hundreds at most by using the
pointcut generator. As the specified target interval got longer or the maximum
occurrence got smaller, the number of selected join points was reduced more
largely. In addition, the pointcut generator generated the reasonable number of
pairs of pointcuts. The number of possible pairs of pointcuts in the execution
of the application generating a chart was 803 whereas the pointcut generator
selected only 17 pairs of pointcuts from them at maximum.

Table 3. The numbers of generated pairs of pointcuts and join points selected by them
for different sets of parameters.

target maximum generated selected
interval occurrence pointcuts join points

10 ms 1 15 15
50 16 32

100 17 231
200 15 309

100 ms 1 8 8
50 9 13

100 8 83
200 8 83

random 15 2034

all 803 248661

For comparison, we chose 15 pointcuts from 803 candidates at random with-
out the pointcut generator. Such random pointcuts become the baseline for ex-
amining the goodness of the pointcuts generated by the pointcut generator.
Choosing pointcuts at random only reduces the number of pointcuts whereas
the pointcut generator minimizes the number of join points selected in a certain
period as well. When we used random pointcuts, the number of selected join
points was much larger than when we used the pointcut generator. This is be-
cause some pointcuts selected too many join points in Kasendas. We should also
compare the pointcuts generated by the pointcut generator with ideal ones, but
obtaining ideal ones is very difficult for non-toy applications.

The time needed for generating these pointcuts was 20 seconds even when
we specified 10ms for the target interval and 200 for the maximum occurrence.
The time depends mainly on the number of join points included in execution
profile. To examine the scalability of pointcut generation, we also measured the
time needed to generate pointcuts for the web application generating a chart for
the last 24 hours. The number of join points was 959148 in its execution profile
and the time needed for pointcut generation was 103 seconds. Compared with
the chart generation for the last 12 hours, the number of join points becomes
3.9 times larger while the time becomes 5.2 times longer. The increment of the

time is not proportional to that of the number of join points, but the time is not
too long.

Influences to Scheduling Intervals. We examined how the parameters given
to the pointcut generator affected the interval at which the scheduler was called
at runtime. Since the scheduler is called at join points selected by generated
pointcuts, the interval is the time between adjacent join points selected. For
comparison, we also examined the interval between all adjacent join points and
that between adjacent join points selected by random pointcuts. First, we mea-
sured these intervals in single-thread execution, which was performed to obtain
execution profile for pointcut generation. Only one low-importance thread ran at
the same time. Figure 19 shows the averages of the observed intervals for differ-
ent sets of parameters given to the pointcut generator. When we did not use the
pointcut generator, the observed intervals were too small for application-level
scheduling. The observed interval was 0.01ms when all join points were selected
and that was 0.9ms when join points were selected by random pointcuts. When
we gave appropriate parameters, the pointcut generator could generate pointcuts
so that the observed interval approached the target. For example, if the target
interval was 10ms and the maximum occurrence was 100, the average interval
was the nearest to the target one. The observed interval tends to be smaller as
the maximum occurrence became larger.

10/1 10/50
10/100

10/200
100/1

100/50
100/100

100/200
random all

target interval / maximum occurrence

0

20

40

60

80

100

120

140

160

180

200

220

ob
se

rv
ed

 in
te

rv
al

 (
m

s)

Fig. 19. The intervals at which the scheduler is called in single-thread execution.

The variance of observed intervals was very large. The reason is that the
pointcut generator cannot always generate pointcuts so that join points selected
by them occur at regular intervals. It depends on the characteristics of applica-
tions. Figure 20 plots the time when a program flow reached join points selected

by pointcuts. This figure shows that there were no join points in parts of a
program flow: time 0.0 to 0.2 second, time 0.6 to 0.7 second, and time 1.6 to
1.9 seconds. In the first part, the application waited for finishing database ac-
cesses. In the second part, the application created a large buffered image for a
chart. In the third part, the application sent the image for the chart to the client
through the network. The pointcut generator could not generate any pointcuts
that selected join points during these periods. By contrast, there was a part
that included too many join points: time 1.0 to 1.6 seconds, for example. In this
part, JFreeChart repeated the same processing to generate a chart too many
times. Even the most infrequent method call was done every 1.8ms. This is too
frequent, compared with the time quantum of 5 ms assigned to processes with
the lowest priority in Linux. The pointcut generator could not generate any
pointcuts so that the occurrence of join points was within the specified maxi-
mum value. Nevertheless, our scheduling worked well because it did not need to
control threads too strictly.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
elapsed time (s)

all

random

100/200

100/100

100/50

100/1

10/200

10/100

10/50

10/1

ta
rg

et
 in

te
rv

al
 /

m
ax

im
um

 o
cc

ur
re

nc
e

Fig. 20. The time when a program flow reaches join points selected by generated
pointcuts.

Next, we measured the intervals in multi-thread execution. JMeter sent 10,
20, and 40 requests to a web page showing a chart in parallel. The aim of this
experiment is to examine how a server load affects the observed intervals. Fig-
ure 21 shows the average of the observed intervals. At worst, each low-importance
thread could call the scheduler every 1.9 seconds on average. For the parame-
ters used in our experiments in Sect. 5.2, each low-importance thread called the
scheduler every 1.1 seconds on average. This enabled stable control as shown in
Sect. 5.2. This figure also shows that the observed interval was proportional to
the number of concurrent requests. These results show that we could predict the
observed interval in multi-thread execution from that in single-thread execution.

10/1 10/50
10/100

10/200
100/1

100/50
100/100

100/200
random all

target interval / maximum occurrence

0.0

0.5

1.0

1.5

2.0

ob
se

rv
ed

 in
te

rv
al

 (
s)

10 clients
20 clients
40 clients

Fig. 21. The intervals at which the scheduler is called in multi-thread execution.

Influences to Execution Performance. To examine how these parameters
affect execution performance, we first measured the time needed for suspending
low-importance threads and the time needed for periodically collecting water
levels. In this experiment, JMeter sent 40 requests in parallel. The result is shown
in Fig. 22. The time needed for thread suspension was different for each set of
parameters. The time needed for the data collection reflected these differences,
but it was not different as largely as the suspension time. The collection time
was between 4.5 and 5.3 seconds and sufficient for avoiding deadline misses.
On the other hand, when we used a pointcut that selected all method calls,
the suspension time decreased too much and achieved short collection time. By
contrast, when we used random pointcuts, the suspension time increased by
a factor of two and the collection time became long. Also, its variance of the
suspension time became very large because the scheduler was called at random
intervals. The deadline miss ratio was zero for every case.

Next, we measured the throughput and the response time of the chart gener-
ation. The performance was almost never affected by the parameters. However,
when too many join points were selected due to using no pointcut generator, the
performance was degraded largely. The throughput was degraded by 57% and
the response time was 2.2 times longer. This means that decreasing the number
of selected join points is important in terms of performance.

Finally, we examined scheduling overheads by measuring the throughput of
the chart generation without the periodic data collection. When we did not
use the pointcut generator, the scheduling overhead was 63%. The pointcut
generator reduced the overhead to less than 5 % for every set of parameters. For
our experiments in Sect. 5.2, we experimentally selected the target interval of
10ms and the maximum occurrence of 1 so that the scheduling overhead was
minimized.

10
/1

10
/5

0

10
/1

00

10
/2

00

10
0/

1

10
0/

50

10
0/

10
0

10
0/

20
0

ra
nd

om al
l0

1

2

3

4

5

6

7

8

9

10

co
lle

ct
io

n
tim

e
(s

)

(b) collection time

10
/1

10
/5

0

10
/1

00

10
/2

00

10
0/

1

10
0/

50

10
0/

10
0

10
0/

20
0

ra
nd

om al
l0

1

2

3

4

5

6

su
sp

en
si

on
 ti

m
e

(s
)

(a) suspension time

Fig. 22. The time for the thread suspension and the data collection for different sets
of parameters.

5.4 Effectiveness of Deadlock-Aware Scheduling

In this subsection, we used the Kasendas to which the Logging class described
in Sect. 4.4 was added for introducing synchronization. When we wove the orig-
inal aspect into this Kasendas and sent requests, a deadlock always occurred
soon as we intended. A thread for collecting water levels blocked at the Log-
ging.writeCollection method and it was not continued. On the other hand, when
we wove the deadlock-aware version of aspect into the Kasendas, deadlocks did
not occur.

Next, we measured the time needed for collecting water levels when we wove
the deadlock-aware version of aspect. We also measured the times for the other
four versions of Kasendas, which used their own scheduling policies. For them,
we introduced synchronization by adding the Logging class. They did not cause
deadlocks although we did not change their scheduling policies. The results were
almost the same as Fig. 15 and the average collection time by our scheduling was
the shortest (6.1 seconds). However, this is 0.8 second longer than that by the
results in Fig. 15. The increment was caused by the overhead due to checking
progress and the delay for detecting deadlocks.

Figure 23 shows the changes of the number of running low-importance threads.
The result was different a little from that in Fig. 16 (a). The scheduling policy
was to reduce the number of running low-importance threads to one, but this goal
was often not achieved due to synchronization among low-importance threads.
If low-importance threads are blocked at the Logging.writeGeneration method af-
ter another low-importance thread is suspended within the same method, the
blocked threads cannot yield their execution.

0 15 30 45 60 75 90 105 120 135 150 165 180
elapsed time (s)

0

10

20

30

40

50

nu
m

be
r

of
 r

un
ni

ng
 th

re
ad

s

Fig. 23. The changes of the number of running low-importance threads for Kasendas
with synchronization.

The performance of a chart generation under the new scheduling was similar
to that in Fig. 18, but the performance degradation was larger. Compared with
the original Kasendas, the throughput under the new scheduling was degraded
by 20% and the response time was 25% longer. This is caused by the increment
of the collection time. The collection time increased by 0.8 second while the
response time was increased by 1.0 second.

5.5 Effectiveness of Adaptive Scheduling

First, we examined the effectiveness of our adaptive scheduling policy described
in Sect. 4.4 when the periodic data collection was not performed. JMeter sent
requests to both the web page showing a chart of recent changes for the last
12 hours and the web page showing the up-to-date water levels. The number of
concurrent requests was 40 for the former page and 100 for the latter page.

Figure 24 shows the changes of the throughput of the middle-importance
task for the water-level update when we did not apply any scheduling policy.
The dotted line is the observed throughput and the solid line is the average
per five seconds. Even the average throughput was very unstable because the
execution of the middle-importance threads was largely affected by that of the
low-importance threads. The cause of the periodic changes is that the execution
of the chart generation had several phases as we explained in the experiment for
Linux priority scheduling in Sect. 5.2.

Figure 25 shows the changes of the throughput when we applied our adaptive
scheduling policy. We set the target throughput of the middle-importance task
to 150 pages/sec. The average throughput per five seconds was stabilized and
achieved 152 pages/sec, which was very near to the target throughput. This figure
also shows the changes of the maximum number of low-importance threads. Our
scheduler frequently adjusted the maximum number of low-importance threads
between one and six. It was almost exactly called every second according to
our policy. In addition, it decreased the number just after the server started
processing requests to the web page for the water-level update and increased the
number just after JMeter stopped sending requests.

The response time of the water-level update was also improved by a factor of
two. The response time under no scheduling policy was 1.2 seconds while that

0 30 60 90 120 150 180
elapsed time (s)

0

50

100

150

200

250

300

th
ro

ug
hp

ut
 (

pa
ge

s/
s) average per 5 s

Fig. 24. The changes of the throughput of the middle-importance task under no
scheduling policy.

0 30 60 90 120 150 180
0

10

20

30

40

m
ax

 n
um

be
r

of
 th

re
ad

s

0 30 60 90 120 150 180
elapsed time (s)

0

50

100

150

200

250

300

th
ro

ug
hp

ut
 (

pa
ge

s/
s) average per 5 s

Fig. 25. The changes of the maximum number of low-importance threads and the
throughput of the middle-importance task under our adaptive scheduling policy.

under our scheduling policy was 0.62 second. The variance was also smaller under
our scheduling policy. On the other hand, the throughput of the chart generation
was degraded by adjusting the maximum number of low-importance threads.
The throughput under no scheduling policy was 1.84 pages/sec, but that under
our scheduling policy was 1.27 pages/sec. This means that the low-importance
threads were given a lower priority than the middle-importance threads.

Figure 26 shows the maximum number of low-importance threads and the
observed throughputs for various target throughputs. We changed the target
throughput from 25 to 250 pages/sec. The observed throughput was near to the
target when the target was between 125 and 200 pages/sec. For these target
throughputs, the maximum number of low-importance threads was less than
ten and the variance was small. When the target throughput was more than
225 pages/sec, the observed throughput was lower than the target due to the
upper limits of the system. The maximum number of low-importance threads
was almost one because it was the best strategy to minimize the impact by
the low-importance threads in our policy. When the target throughput was less
than 100 pages/sec, the observed throughput was higher than the target one.
The middle-importance threads could run too much even if the large number of
low-importance threads simultaneously runs.

0 50 100 150 200 250
0

10

20

30

40

m
ax

 n
um

be
r

of
 th

re
ad

s

0 50 100 150 200 250
target throughput (pages/s)

0

50

100

150

200

250

ob
se

rv
ed

 th
ro

ug
hp

ut

Fig. 26. The averages of the maximum numbers of low-importance threads and the
observed throughputs of the middle-importance task for various target throughputs.

Next, we examined the effectiveness of our adaptive scheduling policy when
the periodic data collection was performed. We set the target throughput to
150 pages/sec on average when the high-importance thread for the data col-
lection does not run. While the high-importance thread is running, we set its
maximum throughput to 150 pages/sec. To limit the maximum throughput, the
maximum number of middle-importance threads was limited to 15 and each

middle-importance thread waited for 100ms before starting its execution. This
means that the water-level update is performed 10 times at maximum every
second for each middle-importance thread.

Figure 27 shows the changes of the maximum number of low-importance
threads and the throughput of the middle-importance task. The data collection
was performed during the periods marked as “C”. When the high-importance
thread did not run, the average throughput was 143 pages/sec, which is near
to the target throughput. While the high-importance thread was running, the
average throughput was 122 pages/sec, which is less than the specified maximum
throughput. In detail, the throughput was more than 150 pages/sec at the be-
ginning of each data collection. Since the number of running middle-importance
threads was decreasing to the specified one in several seconds, many middle-
importance threads were running just after the data collection started. The av-
erage collection time was 6.8 seconds, which is 1.5 seconds longer than the result
in Fig. 15 due to running middle-importance threads during the periodic data
collection.

0 15 30 45 60 75 90 105 120 135 150 165 180
0

10

20

30

40

m
ax

 n
um

be
r

of
 th

re
ad

s

0 15 30 45 60 75 90 105 120 135 150 165 180
elapsed time (s)

0

50

100

150

200

250

300

th
ro

ug
hp

ut
 (

pa
ge

s/
s) C C C C C C C C C C C C

Fig. 27. The changes of the maximum number of low-importance threads and the
throughput of the middle-importance task with the periodic data collection.

6 Applicability of QoSWeaver

QoSWeaver is not appropriate if the application needs accurate scheduling. The
application-level scheduler by QoSWeaver slowly responds to workload changes.
It may take several seconds because application threads are under the control
of the underlying operating-system scheduler and the threads only voluntar-
ily yields the allocated CPU time. For example, the result of our experiment
in Fig. 16 shows that the number of the running low-importance threads was

decreased from 40 to 25 in one second although it must be decreased to one ac-
cording to the scheduling policy. The scheduling accuracy could be improved if
the application program calls a scheduler more frequently. However, the schedul-
ing overheads would be bigger. In the worst case of our experiment, in which a
scheduler was called at every method call, the throughput was less than the half
of the original. Thus, QoSWeaver could not be used for implementing real-time
scheduling. Likewise, within a short period such as one second, it cannot allo-
cate the exact CPU time computed from the priority of the thread. It can only
allocate so that the average of the allocated CPU time during several seconds
reflects the priority.

QoSWeaver does not work well if the application is I/O intensive and the
threads frequently suspend for long time for waiting until an I/O request is
completed. Since the thread must be running to call a scheduler, every I/O re-
quest should be short and infrequent. Otherwise, the scheduler would not run
frequently enough to implement a specified scheduling policy. Furthermore, QoS-
Weaver does not work well if a small code block is repeatedly executed for long
time. If a pointcut does not select a join point in that code block, a scheduler
will not be called for long time. On the other hand, if it selects, a scheduler will
be called too frequently; the scheduling overheads will be non-negligible.

QoSWeaver assumes that the behavior of the application does not largely
change for every execution. It must be similar to the behavior of the profiled
execution. If the behavior of the application is categorized into several patterns,
we can obtain execution profiles for each pattern, generate pointcuts for each,
and merge them all. However, the accuracy of the scheduling will be degraded
more as the variation of the application behavior is larger. This fact has been
discussed in Sect. 3.3.

7 Concluding Remarks

In this paper, we presented QoSWeaver, which is a tool suite for developing
application-level scheduling using aspects. The idea of scheduling at the applica-
tion level is not new; it is a useful technique for adjusting execution performance
with a minimum development cost. We showed that AOP makes this technique
more realistic by separating scheduling code from applications. Furthermore,
the pointcut generator provided by QoSWeaver generates appropriate pointcuts
and helps developers create an application-specific scheduling mechanism, which
calls a scheduler from applications periodically.

As a case study, we used a river monitoring system named Kasendas, which
is a web application system initially developed by the outside corporation. Using
QoSWeaver, we could successfully implement three practical scheduling policies
for Kasendas. According to our experiences in the development of Kasendas,
QoSWeaver made it easy to develop the scheduling policies in (1) that the
scheduling policies could be developed independently of Kasendas and (2) that
appropriate pointcuts were automatically generated without examining a large
amount of source code of Kasendas. Through this case study, we also experi-

mentally showed the effectiveness of our scheduling policies and the usefulness
of the pointcut generator under several workloads.

One of our future work is to apply QoSWeaver to other types of applications.
As discussed in Sect. 6, the application classes to which QoSWeaver is applica-
ble are limited from the nature of application-level scheduling and profile-based
pointcut generation. To analyze the applicability quantitatively, we need to ex-
amine whether QoSWeaver is applicable or not to other real applications. An-
other direction is to develop other scheduling policies using QoSWeaver. In this
paper, we have developed three scheduling policies: proportional-share, deadlock-
aware, and adaptive scheduling. To develop scheduling policies that dynamically
change the frequency of calling a scheduler, depending on workload changes, it
would be necessary for QoSWeaver to support dynamic weaving, for example.
We would like to examine that QoSWeaver is useful in practice to achieve other
classes of scheduling.

References

1. Kourai, K., Hibino, H., Chiba, S.: Aspect-oriented application-level scheduling
for J2EE servers. In: Proceedings of the 6th ACM International Conference on
Aspect-Oriented Software Development. (2007) 1–13

2. Hibino, H., Kourai, K., Chiba, S.: Difference of degradation schemes among oper-
ating systems. In: Proceedings of DSN2005 Workshop on Dependable Software –
Tools and Methods. (2005) 172–179

3. Bollella, G., Brosgol, B., Dibble, P., Furr, S., Gosling, J., Hardin, D., Turnbull, M.:
The real-time specification for Java. Addison-Wesley (2000)

4. Tesanovic, A., Amirijoo, M., Björk, M., Hansson, J.: Empowering configurable
QoS management in real-time systems. In: Proceedings of the 4th International
Conference on Aspect-oriented Software Development. (2005) 39–50

5. Duzan, G., Loyall, J., Schantz, R., Shapiro, R., Zinky, J.: Building adaptive dis-
tributed applications with middleware and aspects. In: Proceedings of the 3rd
International Conference on Aspect-Oriented Software Development. (2004) 66–73

6. Barreto, L., Muller, G.: Bossa: A language-based approach to the design of real-
time schedulers. In: Proceedings of the 10th International Conference on Real-Time
Systems. (2002) 19–31

7. Åberg, R., Lawall, J., Südholt, M., Muller, G., Meur, A.L.: On the automatic
evolution of an OS kernel using temporal logic and AOP. In: Proceedings of the
18th IEEE International Conference on Automated Software Engineering. (2003)
196–204

8. Douceur, J., Bolosky, W.: Progress-based regulation of low-importance processes.
In: Proceedings of the 17th ACM Symposium on Operating Systems Principles.
(1999) 247–260

9. Newhouse, T., Pasquale, J.: A user-level framework for scheduling within service
execution environments. In: Proceedings of the IEEE International Conference on
Services Computing. (2004) 311–318

10. Newhouse, T., Pasquale, J.: ALPS: An application-level proportional-share sched-
uler. In: Proceedings of the 15th IEEE International Symposium on High Perfor-
mance Distributed Computing. (2006) 279–290

11. Chang, F., Itzkovitz, A., Karamcheti, V.: User-level resource-constrained sand-
boxing. In: Proceedings of the 4th USENIX Windows System Symposium. (2000)
25–36

12. Elnikety, S., Nahum, E., Tracey, J., Zwaenepoel, W.: A method for transparent
admission control and request scheduling in e-commerce web sites. In: Proceedings
of the 13th International Conference on World Wide Web. (2004) 276–286

13. Welsh, M., Culler, D., Brewer, E.: SEDA: An architecture for well-conditioned,
scalable Internet services. In: Proceedings of the 18th ACM Symposium on Oper-
ating Systems Principles. (2001) 230–243

14. Welsh, M., Culler, D.: Adaptive overload control for busy Internet servers. In:
Proceedings of the 4th USENIX Conference on Internet Technologies and Systems.
(2003)

15. Sun Microsystems: JSR 220: Enterprise JavaBeans, version 3.0 (2006)
16. The Carnegie Mellon Software Engineering Institute: Capability maturity model

integration. http://www.sei.cmu.edu/cmmi/

17. JBoss Group: JBoss application server. http://www.jboss.com/
18. Apache Jakarta Project: Apache Tomcat. http://tomcat.apache.org/

19. Apache Struts Project: Apache Struts. http://struts.apache.org/
20. Seasar Foundation Project: Seasar. http://www.seasar.org/

21. PostgreSQL Global Development Group: PostgreSQL. http://www.postgresql.

org/

22. Object Refinery Ltd: JFreeChart. http://www.jfree.org/

23. Chiba, S., Ishikawa, R.: Aspect-oriented programming beyond dependency in-
jection. In: ECOOP 2005 – Object-Oriented Programming. LNCS 3586 (2005)
121–143

24. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
overview of AspectJ. In: Proceedings of the 15th European Conference on Object-
Oriented Programming. (2001) 327–353

25. Apache Jakarta Project: Apache JMeter. http://jakarta.apache.org/jmeter/

