
Fast and Safe Performance Recovery

on OS Reboot

Kenichi Kourai

The reboot of an operating system is a final but

powerful recovery technique. However, the system

performance is largely degraded just after the re-

boot due to losing the file cache. For fast perfor-

mance recovery, we propose a new reboot mech-

anism called the warm-cache reboot. The warm-

cache reboot preserves the file cache on main mem-

ory during the reboot and enables an operating sys-

tem to restore the file cache after the reboot. A vir-

tual machine monitor (VMM) underlying an oper-

ating system guarantees that the reused file cache is

consistent with the corresponding files on disks. We

have implemented the warm-cache reboot mech-

anism in the Xen VMM and the Linux operat-

ing system. From our experimental results, the

warm-cache reboot decreases performance degra-

dation just after the reboot. In addition, we con-

firmed that the file cache corrupted by faults was

not reused.

1 Introduction

The reboot of an operating system is frequently

used for the recovery of the whole system. When an

operating system crashes due to Mandelbugs [5], it

can usually recover from the crash by its reboot.

Since the causes of Mandelbugs are so complex,

the rebooted operating system rarely crashes again.

Kenichi Kourai, Kyushu Institute of Technology

The reboot is also used as a simple method for soft-

ware rejuvenation [4]. Software rejuvenation [7] is

a proactive technique to counteract software aging,

which is the phenomenon that the state of running

software degrades with time. Even if an operating

system slows down due to aging-related bugs [5]

such as memory leaks, the rebooted operating sys-

tem can easily restore its normal state.

However, the system performance is largely de-

graded just after the reboot of an operating system.

The primary cause is to lose the file cache. An op-

erating system stores file contents in main memory

as the file cache to speed up file accesses. When

an operating system is rebooted, the contents of

main memory are erased and the file cache is lost.

Without the file cache, an operating system has to

read files from slow disks. Worse, if the operating

system runs in a virtual machine (VM), such cache

misses may largely affect the whole system perfor-

mance because disks are shared between VMs. The

conflicts of disk accesses degrade the performance

of not only the rebooted VM but also the other

VMs.

For fast performance recovery, we propose a new

reboot mechanism called the warm-cache reboot.

The warm-cache reboot preserves the file cache on

main memory during the reboot and enables an op-

erating system to restore the file cache after the re-

boot. This mechanism prevents performance degra-

dation caused by frequent cache misses. To main-

tain the consistency of the file cache after the re-

boot, we use a virtual machine monitor (VMM),

which runs underneath an operating system. The

VMM maintains the consistency of the file cache of

operating systems by managing whether the con-

tents of the file cache are the same as those of cor-

responding files on disks. Such a software layer like

a VMM is necessary to reuse only consistent file

cache through the crashes of an operating system.

We have developed CacheMind based on Xen [2]

and implemented the warm-cache reboot mecha-

nism in the VMM and the Linux operating system

running on top of it. The VMM manages a P2M-

mapping table for continuous memory allocation to

rebooted VMs, cache-mapping tables for reusing the

file cache after the reboot, and reuse bitmaps for

maintaining cache consistency. From our experi-

mental results, the performance degradation just

after the warm-cache reboot was from 5 % to 16 %

while that just after a normal reboot was 41 % to

90 %. In addition, our fault-injection test showed

that a part of the file cache could be corrupted

by faults but it was not reused by the consistency

mechanism of the warm-cache reboot.

The rest of this paper is organized as follows. Sec-

tion 2 describes problems of recovering the system

performance after the reboot of an operating sys-

tem. Section 3 presents the warm-cache reboot and

Section 4 shows our experimental results. Section 5

examines related work and Section 6 concludes the

paper.

2 Performance Recovery

After the reboot of an operating system, the sys-

tem performance is largely degraded for a while.

The primary cause is to lose various caches in an

operating system. Particularly, losing the file cache

largely affects the performance. An operating sys-

tem stores file contents in main memory as the file

cache when it reads them from disks. Since disks

are much slower than main memory, an operating

system can speed up file accesses by using the file

cache on memory. When an operating system is

rebooted, the contents of main memory are erased

and the file cache managed by the operating sys-

tem is lost. Just after the reboot of an operating

system, the execution performance of applications

running on top of it is degraded due to frequent

cache misses.

It takes long time to recover the same perfor-

mance as before the reboot. For regaining the

same performance, an operating system has to re-

fill the file cache. However, modern operating sys-

tems use most of free memory as the file cache for

performance improvement. The amount of the file

cache is almost equivalent to that of free memory,

which tends to be larger because the size of mem-

ory installable to one machine is increasing due to

cheaper memory modules. In addition, widespread

64-bit processors enable an operating system to

deal with more than 4 GB of memory. Until the

file cache is re-filled, an operating system has to

read necessary files from slow disks and cannot re-

cover the performance.

In a VM environment, the performance recovery

needs longer time after an operating system in a

VM is rebooted. Recently, server consolidation is

performed with VMs for cost efficiency. In such an

environment, physical disks are often shared among

VMs. Although a different physical disk may be

allocated to each VM exclusively, that is usually

difficult due to physical constraints or its cost. In

other words, one VM cannot occupy the whole disk

bandwidth. Worse, disk bandwidth allocated to

each VM may be limited for fairness. Since this

disk sharing degrades the throughput of disk ac-

cesses, it takes longer time to re-fill the file cache

by reading files from disks.

On the other hand, frequent disk accesses affect

not only a rebooted VM but also all the other

VMs. The conflicts of disk accesses degrade the

performance of all the VMs. Just after an oper-

ating system in a VM is rebooted, it frequently

accesses a physical disk. Increasing disk accesses

in one VM affects the performance of the disk ac-

cess by the other VMs. From the same reason,

prefetching does not work well in a VM environ-

ment. Prefetching is a popular technique for hiding

the initial cache misses particularly when the sys-

tem is booted. Files are read from disks in advance

before they are accessed. Prefetching issues too

many requests for disk accesses during a short pe-

riod because it is batch processing, not on-demand.

This gives worse influences to the performance of

the other VMs.

Thus, recovery by the reboot does not complete

until the system performance is recovered. When

an operating system is booted and all the applica-

tions on top of it are started, the system can start

providing the same services as before the reboot.

To make this reboot procedure faster, several tech-

niques have been proposed [13] [8]. However, the

system does not restore the same performance at

that time. For example, server processes can accept

new connections, but they may not return quick re-

sponses due to performance degradation caused by

frequent cache misses. Such performance degrada-

tion lasts until the file cache is re-filled. The size of

the file cache tends to increase as the size of main

memory becomes large.

3 Warm-cache Reboot

To quickly recover the system performance after

the reboot of an operating system, we propose a

new reboot mechanism called the warm-cache re-

boot. The warm-cache reboot is achieved by the

cooperation of an operating system and the under-

lying VMM. To use the VMM, operating systems

run on VMs created by the VMM. A VMM is a

useful software layer underlying operating systems

to preserve the file cache through the reboot and

maintain its consistency.

3.1 Preserving the File Cache

The basic idea of the warm-cache reboot is to pre-

serve the file cache on memory during the reboot

and enable an operating system to restore the file

cache after its reboot. We believe that the file cache

does not need to be discarded at a reboot. The pur-

pose of a reboot is to initialize the internal state in

an operating system or to update its components

such as its kernel. Even if the data structures in

an operating system are changed by its update, the

contents of the file cache are reusable because they

are just the copies of file blocks on disks. However,

an operating system should not reuse corrupted file

cache. Rather, it should read file blocks from disks.

The warm-cache reboot discards only corrupted file

cache by the consistency mechanism described in

Section 3.2.

By reusing the file cache, the warm-cache reboot

prevents performance degradation caused by cache

misses just after the reboot. In other words, it re-

covers the system performance as well as the func-

tionality. After the reboot, most of files accessed

are expected to exist on the file cache as far as

a working set is within the size of the file cache.

The workload is not largely changed between be-

fore and after the reboot because the time needed

for the reboot is not so long. Normally, the files

accessed during the reboot are not included in the

working set just before the reboot. However, the

access would just replace a very small part of the

file cache in many cases.

While an operating system in a VM is rebooted

by using the warm-cache reboot mechanism, the

VMM preserves the contents of the memory allo-

cated to the VM. The VMM allocates the same

physical memory as before the reboot to the VM.

The memory layout is the same as well. Without

the VMM, it is not guaranteed that the contents of

physical memory are preserved because of a hard-

ware reset. A hardware reset may corrupt a part

of memory, depending on hardware and tempera-

ture [6]. When the VMM reallocates physical mem-

ory, it leaves the contents of the memory as it is.

Normally, when the VMM allocates memory pages

to VMs, it erases the contents for security. The

memory pages may include sensitive information

used by another operating system. At the warm-

cache reboot, reusing memory pages without eras-

ing the contents is secure. Those pages are neces-

sarily reused for the same operating system.

A rebooted operating system reserves all the

memory pages used for the file cache. We call such

memory pages cache pages. This reservation is per-

formed at the early stage of booting the kernel, that

is, before the kernel starts dynamic memory allo-

cation. This prevents the cache pages from being

used for other purposes and corrupted. Since the

cache management in an operating system is initial-

ized by the reboot, the VMM manages information

for reusing the file cache of an operating system.

When an operating system allocates a cache page,

it registers the page to the VMM, with the infor-

mation on the corresponding file block. When an

operating system uses that page for other purposes,

it unregisters the page. When an operating system

is rebooted, it obtains the information on the file

cache from the VMM.

3.2 Maintaining Cache Consistency

The warm-cache reboot reuses the file cache only

when it is guaranteed that the file cache is consis-

tent. We assume that the file cache is consistent

when the contents of the file cache are the same as

those of file blocks on disks. When a file block is

read from a disk to a cache page, the cache page

is consistent. After the cache page is modified by

cache page

VM

VMM

disk

writeread

OS

consistency
mechanism

Fig.1 Tracking the consistency of the file

cache.

file writes or destroyed by faults, it becomes incon-

sistent. When the cache page is written back to a

disk, it becomes consistent again.

The VMM maintains the consistency of each

cache page. In a VM environment, device accesses

in an operating system running on a VM are per-

formed via the VMM. The VMM reads data on a

disk into a cache page passed from an operating sys-

tem or writes data in a cache page into a disk, as

illustrated in Figure 1. When disk reads and writes

complete, the VMM makes the cache page reusable

because it is guaranteed that the contents of the

cache page is the same as those of a file block on a

disk. We assume that the VMM works as intended

and disk reads and writes are performed correctly.

Since the VMM is much smaller software than an

operating system, this assumption is reasonable.

To track the cache consistency, the VMM pro-

tects cache pages in a read-only manner. When

the VMM reads a file block into a cache page, it

protects the page before that file read so that it can

detect the modification to the cache page. While

a cache page is protected, it is reusable because

it is guaranteed that the cache page is consistent.

This memory protection also prevents a cache page

from being corrupted by faults. When an operating

system modifies the protected cache page to write

data into a file, the VMM changes its protection

mode to writable before that write so that an op-

erating system can modify the cache page without

any overhead. In this state, the cache page is not

reusable because the page is not consistent. When

the VMM writes back the contents of a cache page

into a disk, it protects the page again before that

file write. Thus the cache page becomes reusable

again.

This cache consistency cannot be guaranteed

without the VMM. An operating system cannot

read data on disk into protected cache pages be-

cause they cannot write data in protected memory

pages. Therefore, before an operating system pro-

tects cache pages, the contents in cache pages may

be corrupted during disk reads. Since an operating

system becomes unreliable by bugs, device drivers

may not perform disk reads and writes correctly

and the cache page may not be protected correctly.

Even if the page is protected, the protection mode

may be changed to writable by corrupting the page

table. Although an operating system has to man-

age the reusability of cache pages, such manage-

ment information may be corrupted accidentally. If

that information is wrong, the warm-cache reboot

reuses inconsistent cache pages.

The above definition of the cache consistency is

stricter than ideal one. When the file cache is not

corrupted, it can be reused even if the contents have

not been written back to disk. This enables using

the latest updates to files after an operating sys-

tem is rebooted. However, it is difficult to distin-

guish correct modification from corruption because

the correctness of modification depends on seman-

tics. To avoid this semantic problem, we reuse a

cache page only after the modification to the page

is written back to a disk. Since the modification

becomes persistent at that time, the cache page be-

comes reusable even if its contents are corrupted.

In this situation, applications always use the cor-

rupted file even without the file cache. The admin-

istrator should recover corrupted files, for example,

from the backup.

3.3 Consistency of File Systems

The consistency of file systems depends on that

between data and their metadata, which include

information on i-nodes. Since the warm-cache re-

boot makes operating systems read data directly

from the file cache without reading metadata from

disks, we have to reconsider how reusing the file

cache affects the consistency of the whole file sys-

tems. First, let us consider journaling file systems.

For example, Linux ext3 is one of the journaling

file systems and has three modes: journaled, or-

dered, and writeback. When we use the journaled

mode, the consistency is always maintained even

if the file cache is reused. In the journaled mode,

both data and metadata are written in the journal.

After the commit of the journal completes, both

data and metadata are made persistent in a con-

sistent manner. Since the contents of the file cache

are the same as those on a disk, the file cache can

be reused. If the commit aborts, updates to both

data and metadata are discarded. In this case, the

file cache is not reused.

In the ordered mode, the file system may become

inconsistent. In this mode, only metadata is writ-

ten in the journal but data are directly written back

to a disk before metadata. If data is not written

back before a crash, the file cache is not reused and

an operating system reads old data and metadata

from a disk after the reboot. Since all updates are

lost, the file system is consistent. On the other

hand, if only data is written back before a crash,

the file cache is reused but updates to metadata

are lost. If the file size is not reflected to a disk by

a crash, the old file size in metadata on a disk is

used. However, the part that exceeds the old file

size in the file cache is just ignored when the file

size has become larger. If data is appended to the

end of a file, only the latest updates are lost and

the consistency of the file system is maintained.

In addition, the emergence of the inconsistency

between the file cache and the file system may be

delayed. If new links to new data are not reflected

to a disk by a crash, an operating system would tra-

verse old links of i-nodes and read old data. When

the file cache is reused after the reboot, an oper-

ating system can read new data without traversing

links on a disk. This result is not the same as the

original one, but it is more desirable because the

latest data survive a crash of an operating system.

However, the latest data in the file cache are not

made persistent until they are written back again

to a disk. When the file cache is released due to

full of the cache or a normal reboot is performed,

the kernel traverses old links on a disk and read old

data.

When we use the writeback mode in ext3, only

metadata is written in the journal as well as in the

ordered mode, but the order of writing back data

and metadata is not guaranteed. If only meta-

data has been written back to a disk, the situ-

ation is the same as when the file cache is not

reused. Therefore, the file system may be inconsis-

tent. Otherwise, the situation is the same as in the

ordered mode. For non-journaling file systems such

as Linux ext2, metadata may be corrupted because

they are not written in the journal. If metadata are

not corrupted, the situation is the same as when we

use the writeback mode in ext3.

3.4 Implementation

To achieve the warm-cache reboot, we have de-

veloped CacheMind based on Xen 3.0.0 [2]. Fig-

ure 2 shows the system architecture. Xen provides

the VMM and VMs running on top of it. A VM

is called a domain in Xen. In particular, the priv-

ileged VM that manages VMs and handles I/O is

blkback blkfront

cache-mapping
table

P2M-mapping
table

reuse
bitmap

domain 0 domain U

disk

file
cache

VMM

Fig.2 The system architecture.

called domain 0 and the other VMs are called do-

main Us. When an operating system in domain U

accesses a virtual disk, its device driver called blk-

front sends requests to the blkback driver in domain

0. The blkback driver accesses a physical disk drive

and returns the results to the blkfront driver.

Our VMM manages a P2M-mapping table,

cache-mapping tables, and reuse bitmaps. A P2M-

mapping table is used for preserving the contents of

the memory of domain U even through its reboot.

In Xen, the VMM manages machine memory, which

is physical memory installed in the machine. For

each machine page frame, a machine frame num-

ber (MFN) is consecutively numbered from 0. The

VMM allocates a part of machine memory to do-

mains as pseudo-physical memory, which gives the

illusion of contiguous physical memory to every do-

main. For each physical page frame, a physical

frame number (PFN) is consecutively numbered. A

P2M-mapping table is one-dimensional array that

records mapping from PFN to MFN for each do-

main. Our VMM preserves the P2M-mapping table

while a domain is rebooted.

A cache-mapping table is used for restoring the

file cache after the reboot. It is a hash table whose

keys are a tuple of a device number, an i-node num-

ber, and a file offset. Its value is a PFN assigned to

a cache page. When an operating system reads a

file block from a disk to a new cache page, it adds

a new entry to this table by invoking a hypervisor

call to the VMM. This hypervisor call performs the

sanity check of a request and modifies the cache-

mapping table atomically. Even if an operating

system is unreliable, it cannot directly corrupt the

table in the VMM. When an operating system is

rebooted, its kernel first reserves cache pages to be

reused, based on this table.

A reuse bitmap is used for maintaining the

reusability of cache pages. It is a bitmap whose

bit represents whether the corresponding pseudo-

physical memory page is reusable as a file cache.

When a file block is read from a disk to a cache

page, the corresponding reuse bit is set if the con-

tents of the page are not corrupted during disk I/O.

To guarantee this, the VMM changes the protec-

tion mode of the page to read-only in domain U.

If domain U changes the protection mode for writ-

ing the page, the VMM can detect it. In addition,

the VMM checks that the page is not mapped in a

writable manner during disk I/O anywhere except

domain 0 because the blkback driver in domain 0

needs to write a file block into the page. Once the

page has been mapped in a writable manner, there

is a possibility of data corruption.

4 Experiments

We performed experiments to show that our tech-

nique is effective. For a server machine, we used a

PC with two Dual-Core Opteron processors Model

280, 12 GB of PC3200 DDR SDRAM memory, a

36.7 GB of 15,000 rpm SCSI disk (Ultra 320), and

Gigabit Ethernet NICs. We used our VMM and

Linux 2.6.12 modified for the warm-cache reboot.

For comparison, we used the original Xen 3.0.0 for

a normal reboot. We used the 64-bit execution en-

vironment except experiments in Section 4.3. For

a client machine, we used a PC with dual Core

2 Quad processors, 4 GB of memory, and Gigabit

1st 2nd 3rd 4th 5th 6th
access attempt

0

200

400

600

800

1000

1200

1400

re
ad

 th
ro

ug
hp

ut
 (

M
B

/s
)

warm-cache reboot
normal reboot

before reboot after reboot

Fig.3 File access performance before and after

a reboot.

Ethernet NICs. The operating system was Linux

2.6.18.

4.1 File Access Performance

To examine performance degradation due to

cache misses, we measured the throughput of file

read access in a VM before and after the reboot of

an operating system. To examine the effect of the

file cache, we measured the throughput of the first-

, second-, and third-time accesses. We allocated 4

GB of memory to one domain U and 4 GB to do-

main 0. We measured the time needed to read a file

of 1 GB. In this experiment, all the file blocks were

cached on memory. We performed this experiment

for the warm-cache reboot and a normal reboot.

First, we used one physical partition of the disk

for a virtual disk of the domain U. In this configura-

tion, the blkback driver in domain 0 directly reads

the physical partition without the interference with

any file systems of the operating system in domain

0.

Figure 3 shows the result. When we used a nor-

mal reboot, the throughput just after the reboot

was degraded by 90 %, compared with that just be-

fore the reboot. The time needed for performance

recovery was 8.9 seconds for a file of 1 GB. On the

other hand, when we used the warm-cache reboot,

the throughput just after the reboot was degraded

only by 16 %. The time for performance recov-

ery was 1 second. This improvement was achieved

by no miss in the file cache even when a file was

accessed at the first time after the reboot. The

remaining performance degradation is caused by

misses of other caches such as i-node cache. The

reason why the third-time access is better than the

second-time is because cache pages are linked at

the active list in Linux at the second time.

Second, we used an image file for a virtual disk

of the domain U. In this configuration, the blk-

back driver reads the image file via a file system

of the operating system in domain 0. When the

domain U reads a file block in a virtual disk, the

blkback driver in domain 0 reads the correspond-

ing file block from the image file. At that time, the

operating system in domain 0 also caches the file

block. Even if the domain U is rebooted, the file

block is still cached in domain 0. When domain

U reads a file after the reboot, the blkback driver

in domain 0 returns data in the file cache without

accessing a physical disk.

Figure 4 shows the result. When we used a nor-

mal reboot, the throughput was degraded by 46 %.

Compared with when we used a partition-based vir-

tual disk above, the performance is improved be-

cause of the file cache in domain 0. However, the

performance degradation is larger than when we

used the warm-cache reboot. The blkfront driver

has to communicate with the blkback driver in do-

main 0 and copy file blocks from domain 0 to do-

main U. Another drawback is that domain 0 needs

larger memory to cache file blocks for domain Us.

It is not efficient to have the same size of the file

cache both in domain 0 and a domain U.

1st 2nd 3rd 4th 5th 6th
access attempt

0

200

400

600

800

1000

1200

1400

re
ad

 th
ro

ug
hp

ut
 (

M
B

/s
)

warm-cache reboot
normal reboot

before reboot after reboot

Fig.4 File access performance on a file-backed

virtual disk.

4.2 Web Server

We measured the changes of the throughput of

a web server before and after the reboot of an op-

erating system. The Apache web server 2.0.54 [1]

served 4000 files of 1 MB and httperf 0.8 [11] in a

client host sent requests to the server one by one.

Since we allocated 11 GB of memory to one domain

U, all the files served by the web server were cached

on memory. We allocated 512 MB of memory to

domain 0.

Figure 5 shows the changes of the throughput of

a web server when we used a normal reboot and the

warm-cache reboot. We executed the reboot com-

mand in domain U at time 30 seconds. When we

used the warm-cache reboot, the throughput was

degraded only by 5 % after the reboot. In 60 sec-

onds after the web server restarts its service, the

throughput is recovered completely. On the other

hand, when we used a normal reboot, the through-

put was degraded by 41 % on average. The per-

formance degradation lasts for 90 seconds after the

web server restarts its service. During this period,

the web server loses the profit to be gained by about

3300 requests, compared with before the reboot.

0

20

40

60

80

100

120
th

ro
ug

hp
ut

 (
re

qs
/s

ec
)

0 30 60 90 120 150 180
elapsed time (sec)

0

20

40

60

80

100

120

th
ro

ug
hp

ut
 (

re
qs

/s
ec

)

(a) normal reboot

(b) warm-cache reboot

Fig.5 The changes of the throughput of a web

server when an operating system is rebooted.

4.3 Fault Injection

We injected faults to an operating system in do-

main U and examined the consistency of reused

cache pages. We have ported the fault injection

tool used in the Nooks [14] project to the Linux

2.6 kernel. Originally, the tool was developed for

the Rio file cache [3] project. Since the tool de-

veloped by the Nooks project strongly depends on

Intel 32-bit architecture, we used the 32-bit execu-

tion environment.

We examined the consistency of the file cache af-

ter we injected faults into an operating system and

rebooted it using the warm-cache reboot. First, we

boot an operating system in a VM and waits until

the file cache is filled by sending HTTP requests.

Then we injected ten faults of the same type into

the kernel and waited for 60 seconds. Finally we re-

booted the operating system and checked the con-

sistency of the file cache by comparing it with files

on a disk. We repeated this fault injection 50 times

for each fault type.

Figure 6 shows the ratio at which the file cache

was inconsistent when the consistency mechanism

in the VMM was disabled. The VMM did not man-

age the file cache. Instead, an operating system

managed a cache-mapping table and a reuse bitmap

without the help of the VMM. For most of fault

D
S

T

P
T

R

IN
IT I/F B
R

LO
O

P

P
A

N
IC

A
LL

O
C

F
R

E
E

LE
A

K

C
O

P
Y

T
E

X
T

S
T

A
C

K

N
O

P

0

10

20

30

40

50

60

70

80

90

100

in
co

ns
is

te
nc

y
ra

tio
 (

%
)

kernel crash
process crash
no crash

Fig.6 The ratio of cache inconsistency when

the consistency mechanism was disabled.

types, the file cache was inconsistent at a high ra-

tio. This figure also shows the breakdown of the

results of this fault injection when the file cache

was inconsistent. Although fault injection did not

always cause crash, the file cache became inconsis-

tent.

When the consistency mechanism in the VMM

was enabled, the file cache was consistent for all

fault types except one. According to our deep in-

spection, some faults were injected into the ext3

file system in this exceptional case. Then the file

system failed to write back cache pages to a disk.

This resulted in the inconsistency between the file

cache and files on the disk. However, the contents

of the file cache were correct while those of files

on the disk were incorrect. Therefore, reusing the

file cache is correct although the consistency is not

maintained.

5 Related work

The Rio file cache [3] enables dirty file cache

to survive crashes of an operating system. When

an operating system crashes, Rio saves dirty cache

pages to a disk and prevents any modification to

files from being lost by the reboot. The biggest

difference between Rio and CacheMind is that Rio

is designed for reliability while CacheMind is for

high performance. When an operating system is re-

booted, Rio discards non-dirty cache pages because

saving them is not necessary for improving reliabil-

ity. To the contrary, CacheMind reuses non-dirty

cache pages but discards dirty ones because dirty

cache pages are inconsistent with a disk. In addi-

tion, because Rio has to read saved file cache from

a slow disk, the performance is degraded just after

the reboot. CacheMind prevents such performance

degradation by reusing the file cache preserved on

memory.

The other big difference is that Rio relies only on

an operating system (and hardware) while Cache-

Mind relies on the VMM. For example, Rio provides

two mechanisms to save the file cache to a disk on

a crash. One is to perform a warm reboot, which

preserves memory contents during the reboot, and

save dirty file cache after the reboot [3]. The other

is to save the file cache using a BIOS routine before

a reboot [12]. The former depends on hardware and

is not generally supported in PCs. The latter might

fail because Rio does not always execute the BIOS

routine after a crash. In CacheMind, an operating

system in a VM can perform a warm reboot, inde-

pendent of hardware, because the VMM guarantees

to preserve memory contents during the reboot of

the VM.

Besides, Rio uses memory protection to prevent

the file cache from being corrupted by crashes of

an operating system. Rio protects the file cache by

using functions in an operating system while Ca-

cheMind protects it by the VMM. In Rio, if the

page table is corrupted by a crash of an operat-

ing system, memory protection might be ineffec-

tive. In CacheMind, although the page table may

be corrupted, the VMM tracks any modification

and maintains the reusability of the file cache. Also,

Rio cannot atomically modify its registry for cache

management because the registry is also managed

by an operating system. Therefore, the consis-

tency of the registry is not guaranteed when an

operating system crashes. In CacheMind, a cache-

mapping table for cache management is managed

by the VMM. The modification of the table can be

atomically performed by the VMM.

Our previous work, RootHammer [9] [10], uses a

similar technique of preserving memory contents

during reboots. It enables quickly rebooting only

the VMM by leaving VM images on memory. It

uses the fact that VM images can be reused after

the reboot of the VMM. Similarly, CacheMind uses

the fact that the file cache can be reused after the

reboot of an operating system. RootHammer does

not assume that the VM images are corrupted be-

cause it reboots the VMM to recover from software

aging. In contrast, CacheMind assumes that the file

cache may be corrupted by various bugs. Therefore,

CacheMind provides the consistency mechanism of

the file cache.

Non-volatile disk cache such as Microsoft hybrid

hard drive (HHD) and Intel Turbo Memory is use-

ful for fast performance recovery. HHD includes

non-volatile memory inside a disk drive while Turbo

Memory is attached to a motherboard. They en-

able an operating system to read file blocks from

fast non-volatile memory even if the file cache on

memory is lost after the reboot. Furthermore, a

solid-state drive (SSD) speeds up the whole disk

accesses by using flash memory. However, it is nec-

essary to copy file blocks from non-volatile memory

to the file cache on main memory. CacheMind does

not need any memory copies because it preserves

the file cache on main memory through the reboot.

6 Conclusion

In this paper, we proposed a new reboot mecha-

nism, called the warm-cache reboot, for fast perfor-

mance recovery. The warm-cache reboot preserves

the file cache on main memory during the reboot

and restores the file cache quickly after the reboot.

The VMM guarantees that the file cache reused af-

ter the reboot is consistent with the corresponding

files on disks by maintaining reuse bitmaps. We

have implemented the warm-cache reboot mecha-

nism in Xen. From our experimental results, when

we used the warm-cache reboot, the performance

degradation just after the reboot of an operating

system was 16 % at maximum. In addition, it was

shown that the reused file cache was not corrupted

by faults. One of our future work is to reuse other

caches in an operating system such as i-node cache

for improving the performance after the reboot.

Acknowledgments

This research was supported in part by JST,

CREST.

参考文献

[1] Apache Software Foundation: Apache HTTP

Server Project, http://httpd.apache.org/.

[2] Barham, P., Dragovic, B., Fraser, K., Hand, S.,

Harris, T., Ho, A., Neugebauer, R., Pratt, I., and

Warfield, A.: Xen and the Art of Virtualization,

Proc. Symp. Operating Systems Principles, 2003,

pp. 164–177.

[3] Chen, P., Ng, W., Chandra, S., Aycock, C., Ra-

jamani, G., and Lowell, D.: The Rio File Cache:

Surviving Operating System Crashes, Proc. Int’l

Conf. ASPLOS, 1996, pp. 74–83.

[4] Garg, S., Puliafito, A., Telek, M., and Trivedi,

K.: Analysis of Preventive Maintenance in Transac-

tions Based Software Systems, IEEE Trans. Com-

puters, (1998).

[5] Grottke, M. and Trivedi, K. S.: Fighting Bugs:

Remove, Retry, Replicate, and Rejuvenate, IEEE

Computer, Vol. 40,No. 2(2007), pp. 107–109.

[6] Halderman, J., Schoen, S., Heninger, N., Clark-

son, W., Paul, W., Calandrino, J., Feldman, A.,

Appelbaum, J., and Felten, E.: Lest We Remem-

ber: Cold Boot Attacks on Encryption Keys, Proc.

USENIX Security Symp., 2008, pp. 45–60.

[7] Huang, Y., Kintala, C., Kolettis, N., and Ful-

ton, N.: Software Rejuvenation: Analysis, module

and Applications, Proc. Int’l Symp. Fault-Tolerant

Computing, 1995, pp. 381–391.

[8] Kaminaga, H.: Improving Linux Startup Time

Using Software Resume, Proc. Linux Symp., 2006.

[9] Kourai, K. and Chiba, S.: A Fast Rejuvena-

tion Technique for Server Consolidation with Vir-

tual Machines, Proc. Int’l Conf. Dependable Sys-

tems and Networks, 2007, pp. 245–254.

[10] Kourai, K. and Chiba, S.: Fast Software Rejuve-

nation of Virtual Machine Monitors, To be published

in IEEE Transactions on Dependable and Secure

Computing, 2010.

[11] Mosberger, D. and Jin, T.: httperf: A Tool for

Measuring Web Server Performance, Performance

Evaluation Review, Vol. 26,No. 3(1998), pp. 31–37.

[12] Ng, W. and Chen, P.: The Design and Verifica-

tion of the Rio File Cache, IEEE Trans. Computers,

Vol. 50,No. 4(2001), pp. 322–337.

[13] Pfiffer, A.: Reducing System Reboot Time with

kexec, http://www.osdl.org/.

[14] Swift, M., Bershad, B., and Levy, H.: Improv-

ing the Reliability of Commodity Operating Sys-

tems, Proc. Symp. Operating Systems Principles,

2003, pp. 207–222.

