CacheMind: Fast Performance Recovery
Using a Virtual Machine Monitor

Kenichi Kourai
Kyushu Institute of Technology
kourai@ci.kyutech.ac.jp

Abstract

The reboot of an operating system is a final but power-
ful recovery technique. However, the system performance
is largely degraded just after the reboot due to losing the
file cache. For fast performance recovery, we propose a
new reboot mechanism called the warm-cache reboot. The
warm-cache reboot preserves the file cache on main mem-
ory during the reboot and enables an operating system to
restore the file cache after the reboot. A virtual machine
monitor (VMM) underlying an operating system guarantees
that the reused file cache is consistent with the correspond-
ing files on disks. We have implemented the warm-cache
reboot mechanism in the Xen VMM and the Linux operat-
ing system. From our experimental results, the warm-cache
reboot decreases performance degradation just after the re-
boot. In addition, we confirmed that the file cache corrupted
by faults was not reused.

1. Introduction

The reboot of an operating system is frequently used for
the recovery of the whole system. When an operating sys-
tem crashes due to Mandelbugs [1], it can usually recover
from the crash by its reboot. Since the causes of Mandel-
bugs are so complex, the rebooted operating system rarely
crashes again. The reboot is also used as a simple method
for software rejuvenation [2]. Software rejuvenation [3] is a
proactive technique to counteract software aging, which is
the phenomenon that the state of running software degrades
with time. Even if an operating system slows down due to
aging-related bugs [1] such as memory leaks, the rebooted
operating system can easily restore its normal state.

However, the system performance is largely degraded
just after the reboot of an operating system. The primary
cause is to lose the file cache. An operating system stores
file contents in main memory as the file cache to speed up
file accesses. When an operating system is rebooted, the
contents of main memory are erased and the file cache is

lost. Without the file cache, an operating system has to read
files from slow disks. Worse, if the operating system runs in
a virtual machine (VM), such cache misses may largely af-
fect the whole system performance because disks are shared
between VMs. The conflicts of disk accesses degrade the
performance of not only the rebooted VM but also the other
VMs.

For fast performance recovery, we propose a new reboot
mechanism called the warm-cache reboot. The warm-cache
reboot preserves the file cache on main memory during the
reboot and enables an operating system to restore the file
cache after the reboot. This mechanism prevents perfor-
mance degradation caused by frequent cache misses. To
maintain the consistency of the file cache after the reboot,
we use a virtual machine monitor (VMM), which runs un-
derneath an operating system. The VMM maintains the
consistency of the file cache of operating systems by man-
aging whether the contents of the file cache are the same as
those of corresponding files on disks. Such a software layer
like a VMM is necessary to reuse only consistent file cache
through the crashes of an operating system.

We have developed CacheMind based on Xen [6] and
implemented the warm-cache reboot mechanism in the
VMM and the Linux operating system running on top of
it. The VMM manages a P2M-mapping table for contin-
uous memory allocation to rebooted VMs, cache-mapping
tables for reusing the file cache after the reboot, and reuse
bitmaps for maintaining cache consistency. From our ex-
perimental results, the performance degradation just after
the warm-cache reboot was from 5 % to 16 % while that
just after a normal reboot was 41 % to 90 %. In addition,
our fault-injection test showed that a part of the file cache
could be corrupted by faults but it was not reused by the
consistency mechanism of the warm-cache reboot.

The rest of this paper is organized as follows. Section 2
describes problems of recovering the system performance
after the reboot of an operating system. Section 3 presents
the warm-cache reboot and Section 4 shows our experimen-
tal results. Section 5 examines related work and Section 6
concludes the paper.

2. Performance Recovery

After the reboot of an operating system, the system per-
formance is largely degraded for a while. The primary cause
is to lose various caches in an operating system. Particu-
larly, losing the file cache largely affects the performance.
An operating system stores file contents in main memory as
the file cache when it reads them from disks. Since disks
are much slower than main memory, an operating system
can speed up file accesses by using the file cache on mem-
ory. When an operating system is rebooted, the contents of
main memory are erased and the file cache managed by the
operating system is lost. Just after the reboot of an operating
system, the execution performance of applications running
on top of it is degraded due to frequent cache misses.

It takes long time to recover the same performance as
before the reboot. For regaining the same performance, an
operating system has to re-fill the file cache. However, mod-
ern operating systems use most of free memory as the file
cache for performance improvement. The amount of the file
cache is almost equivalent to that of free memory, which
tends to be larger because the size of memory installable
to one machine is increasing due to cheaper memory mod-
ules. In addition, widespread 64-bit processors enable an
operating system to deal with more than 4 GB of memory.
Until the file cache is re-filled, an operating system has to
read necessary files from slow disks and cannot recover the
performance.

In a VM environment, the performance recovery needs
longer time after an operating system in a VM is rebooted.
Recently, server consolidation is performed with VMs for
cost efficiency. In such an environment, physical disks
are often shared among VMs. Although a different phys-
ical disk may be allocated to each VM exclusively, that is
usually difficult due to physical constraints or its cost. In
other words, one VM cannot occupy the whole disk band-
width. Worse, disk bandwidth allocated to each VM may
be limited for fairness. Since this disk sharing degrades the
throughput of disk accesses, it takes longer time to re-fill
the file cache by reading files from disks.

On the other hand, frequent disk accesses affect not only
a rebooted VM but also all the other VMs. The conflicts of
disk accesses degrade the performance of all the VMs. Just
after an operating system in a VM is rebooted, it frequently
accesses a physical disk. Increasing disk accesses in one
VM affects the performance of the disk access by the other
VMs. From the same reason, prefetching does not work
well in a VM environment. Prefetching is a popular tech-
nique for hiding the initial cache misses particularly when
the system is booted. Files are read from disks in advance
before they are accessed. Prefetching issues too many re-
quests for disk accesses during a short period because it is
batch processing, not on-demand. This gives worse influ-

ences to the performance of the other VMs.

Thus, recovery by the reboot does not complete until the
system performance is recovered. When an operating sys-
tem is booted and all the applications on top of it are started,
the system can start providing the same services as before
the reboot. To make this reboot procedure faster, several
techniques have been proposed [4, 5]. However, the sys-
tem does not restore the same performance at that time. For
example, server processes can accept new connections, but
they may not return quick responses due to performance
degradation caused by frequent cache misses. Such perfor-
mance degradation lasts until the file cache is re-filled. The
size of the file cache tends to increase as the size of main
memory becomes large.

3. Warm-cache Reboot

To quickly recover the system performance after the re-
boot of an operating system, we propose a new reboot
mechanism called the warm-cache reboot. The warm-cache
reboot is achieved by the cooperation of an operating sys-
tem and the underlying VMM. To use the VMM, operating
systems run on VMs created by the VMM. A VMM is a use-
ful software layer underlying operating systems to preserve
the file cache through the reboot and maintain its consis-
tency.

3.1. Preserving the File Cache

The basic idea of the warm-cache reboot is to preserve
the file cache on memory during the reboot and enable an
operating system to restore the file cache after its reboot.
We believe that the file cache does not need to be discarded
at a reboot. The purpose of a reboot is to initialize the inter-
nal state in an operating system or to update its components
such as its kernel. Even if the data structures in an oper-
ating system are changed by its update, the contents of the
file cache are reusable because they are just the copies of file
blocks on disks. However, an operating system should not
reuse corrupted file cache. Rather, it should read file blocks
from disks. The warm-cache reboot discards only corrupted
file cache by the consistency mechanism described in Sec-
tion 3.2.

By reusing the file cache, the warm-cache reboot pre-
vents performance degradation caused by cache misses just
after the reboot. In other words, it recovers the system per-
formance as well as the functionality. After the reboot, most
of files accessed are expected to exist on the file cache as
far as a working set is within the size of the file cache. The
workload is not largely changed between before and after
the reboot because the time needed for the reboot is not so
long. Normally, the files accessed during the reboot are not

included in the working set just before the reboot. How-
ever, the access would just replace a very small part of the
file cache in many cases.

While an operating system in a VM is rebooted by using
the warm-cache reboot mechanism, the VMM preserves the
contents of the memory allocated to the VM. The VMM al-
locates the same physical memory as before the reboot to
the VM. The memory layout is the same as well. Without
the VMM, it is not guaranteed that the contents of physi-
cal memory are preserved because of a hardware reset. A
hardware reset may corrupt a part of memory, depending on
hardware and temperature [7]. When the VMM reallocates
physical memory, it leaves the contents of the memory as
it is. Normally, when the VMM allocates memory pages to
VMs, it erases the contents for security. The memory pages
may include sensitive information used by another operat-
ing system. At the warm-cache reboot, reusing memory
pages without erasing the contents is secure. Those pages
are necessarily reused for the same operating system.

A rebooted operating system reserves all the memory
pages used for the file cache. We call such memory pages
cache pages. This reservation is performed at the early
stage of booting the kernel, that is, before the kernel starts
dynamic memory allocation. This prevents the cache pages
from being used for other purposes and corrupted. Since
the cache management in an operating system is initialized
by the reboot, the VMM manages information for reusing
the file cache of an operating system. When an operat-
ing system allocates a cache page, it registers the page to
the VMM, with the information on the corresponding file
block. When an operating system uses that page for other
purposes, it unregisters the page. When an operating sys-
tem is rebooted, it obtains the information on the file cache
from the VMM.

3.2. Maintaining Cache Consistency

The warm-cache reboot reuses the file cache only when
it is guaranteed that the file cache is consistent. We assume
that the file cache is consistent when the contents of the file
cache are the same as those of file blocks on disks. When a
file block is read from a disk to a cache page, the cache page
is consistent. After the cache page is modified by file writes
or destroyed by faults, it becomes inconsistent. When the
cache page is written back to a disk, it becomes consistent
again.

The VMM maintains the consistency of each cache page.
In a VM environment, device accesses in an operating sys-
tem running on a VM are performed via the VMM. The
VMM reads data on a disk into a cache page passed from an
operating system or writes data in a cache page into a disk,
as illustrated in Figure 1. When disk reads and writes com-
plete, the VMM makes the cache page reusable because it

VM

cache page
1

L

(OF

consistency
mechanism
VMM
read < write

Figure 1. Tracking the consistency of the file
cache.

is guaranteed that the contents of the cache page is the same
as those of a file block on a disk. We assume that the VMM
works as intended and disk reads and writes are performed
correctly. Since the VMM is much smaller software than an
operating system, this assumption is reasonable.

To track the cache consistency, the VMM protects cache
pages in a read-only manner. When the VMM reads a file
block into a cache page, it protects the page before that file
read so that it can detect the modification to the cache page.
While a cache page is protected, it is reusable because it is
guaranteed that the cache page is consistent. This memory
protection also prevents a cache page from being corrupted
by faults. When an operating system modifies the protected
cache page to write data into a file, the VMM changes its
protection mode to writable before that write so that an op-
erating system can modify the cache page without any over-
head. In this state, the cache page is not reusable because
the page is not consistent. When the VMM writes back the
contents of a cache page into a disk, it protects the page
again before that file write. Thus the cache page becomes
reusable again.

This cache consistency cannot be guaranteed without the
VMM. An operating system cannot read data on disk into
protected cache pages because they cannot write data in pro-
tected memory pages. Therefore, before an operating sys-
tem protects cache pages, the contents in cache pages may
be corrupted during disk reads. Since an operating system
becomes unreliable by bugs, device drivers may not perform
disk reads and writes correctly and the cache page may not
be protected correctly. Even if the page is protected, the
protection mode may be changed to writable by corrupting
the page table. Although an operating system has to man-
age the reusability of cache pages, such management infor-
mation may be corrupted accidentally. If that information
is wrong, the warm-cache reboot reuses inconsistent cache

pages.

domain 0 domain U
file
cache
blkback blkfront

P2M-mapping cache-mapping reuse
table table bitmap
-

Figure 2. The system architecture.

VMM

The above definition of the cache consistency is stricter
than ideal one. When the file cache is not corrupted, it can
be reused even if the contents have not been written back to
disk. This enables using the latest updates to files after an
operating system is rebooted. However, it is difficult to dis-
tinguish correct modification from corruption because the
correctness of modification depends on semantics. To avoid
this semantic problem, we reuse a cache page only after the
modification to the page is written back to a disk. Since
the modification becomes persistent at that time, the cache
page becomes reusable even if its contents are corrupted.
In this situation, applications always use the corrupted file
even without the file cache. The administrator should re-
cover corrupted files, for example, from the backup.

3.3. Implementation

To achieve the warm-cache reboot, we have developed
CacheMind based on Xen 3.0.0 [6]. Figure 2 shows the sys-
tem architecture. Xen provides the VMM and VMs running
on top of it. A VM is called a domain in Xen. In particu-
lar, the privileged VM that manages VMs and handles 1I/O
is called domain 0 and the other VMs are called domain Us.
When an operating system in domain U accesses a virtual
disk, its device driver called blkfront sends requests to the
blkback driver in domain 0. The blkback driver accesses
a physical disk drive and returns the results to the blkfront
driver.

Our VMM manages a P2M-mapping table, cache-
mapping tables, and reuse bitmaps. A P2M-mapping table
is used for preserving the contents of the memory of domain
U even through its reboot. In Xen, the VMM manages ma-
chine memory, which is physical memory installed in the
machine. For each machine page frame, a machine frame
number (MFN) is consecutively numbered from 0. The
VMM allocates a part of machine memory to domains as

pseudo-physical memory, which gives the illusion of con-
tiguous physical memory to every domain. For each physi-
cal page frame, a physical frame number (PFN) is consecu-
tively numbered. A P2M-mapping table is one-dimensional
array that records mapping from PFN to MFN for each do-
main. Our VMM preserves the P2M-mapping table while a
domain is rebooted.

A cache-mapping table is used for restoring the file
cache after the reboot. It is a hash table whose keys are a tu-
ple of a device number, an i-node number, and a file offset.
Its value is a PFN assigned to a cache page. When an oper-
ating system reads a file block from a disk to a new cache
page, it adds a new entry to this table by invoking a hyper-
visor call to the VMM. This hypervisor call performs the
sanity check of a request and modifies the cache-mapping
table atomically. Even if an operating system is unreliable,
it cannot directly corrupt the table in the VMM. When an
operating system is rebooted, its kernel first reserves cache
pages to be reused, based on this table.

A reuse bitmap is used for maintaining the reusability of
cache pages. It is a bitmap whose bit represents whether the
corresponding pseudo-physical memory page is reusable as
a file cache. When a file block is read from a disk to a cache
page, the corresponding reuse bit is set if the contents of the
page are not corrupted during disk I/O. To guarantee this,
the VMM changes the protection mode of the page to read-
only in domain U. If domain U changes the protection mode
for writing the page, the VMM can detect it. In addition,
the VMM checks that the page is not mapped in a writable
manner during disk I/O anywhere except domain O because
the blkback driver in domain O needs to write a file block
into the page. Once the page has been mapped in a writable
manner, there is a possibility of data corruption.

4. Experiments

We performed experiments to show that our technique
is effective. For a server machine, we used a PC with
two Dual-Core Opteron processors Model 280, 12 GB of
PC3200 DDR SDRAM memory, a 36.7 GB of 15,000 rpm
SCSI disk (Ultra 320), and Gigabit Ethernet NICs. We used
our VMM and Linux 2.6.12 modified for the warm-cache
reboot. For comparison, we used the original Xen 3.0.0 for
a normal reboot. We used the 64-bit execution environment
except experiments in Section 4.3. For a client machine, we
used a PC with dual Core 2 Quad processors, 4 GB of mem-
ory, and Gigabit Ethernet NICs. The operating system was
Linux 2.6.18.

4.1. File Access Performance

To examine performance degradation due to cache
misses, we measured the throughput of file read access in

before OS reboot

1400~ | normal reboot
[|HE warm-cache reboot

1200 —

after OS reboot

1000 [~

file access rate (MB/s)
[} @
o (=3
o o
T T

N

S

=}
T

N

=3

S
T

1st 2nd 3rd 4th 5th 6th

Figure 3. File access performance before and
after a reboot.

a VM before and after the reboot of an operating system.
To examine the effect of the file cache, we measured the
throughput of the first-, second-, and third-time accesses.
We allocated 4 GB of memory to one domain U and 4 GB
to domain 0. We measured the time needed to read a file of
1 GB. In this experiment, all the file blocks were cached on
memory. We performed this experiment for the warm-cache
reboot and a normal reboot.

Figure 3 shows the result. When we used a normal re-
boot, the throughput just after the reboot was degraded by
90 %, compared with that just before the reboot. The time
needed for performance recovery was 8.9 seconds for a file
of 1 GB. On the other hand, when we used the warm-cache
reboot, the throughput just after the reboot was degraded
only by 16 %. The time for performance recovery was 1
second. This improvement was achieved by no miss in the
file cache even when a file was accessed at the first time af-
ter the reboot. The remaining performance degradation is
caused by misses of other caches such as i-node cache. The
reason why the third-time access is better than the second-
time is because cache pages are linked at the active list in
Linux at the second time.

4.2. Web Server

We measured the changes of the throughput of a web
server before and after the reboot of an operating system.
The Apache web server [8] 2.0.54 served 4000 files of 1
MB and httperf [9] 0.8 in a client host sent requests to the
server one by one. Since we allocated 11 GB of memory to
one domain U, all the files served by the web server were
cached on memory. We allocated 512 MB of memory to
domain 0.

Figure 4 shows the changes of the throughput of a web
server when we used a normal reboot and the warm-cache
reboot. We executed the reboot command in domain U at

120

BOW

60 —

40 —

throughput (reqs/sec)

20— (a) normal reboot i

0 ‘ ‘ \ ‘ \
120 ‘ — T —

o
=)
T
|

1

IS
o
T

throughput (regs/sec)
(o2}
o
T

(b) warm-cache reboot _|

n
=]
T

. I | I | L | L
30 60 90 120 150 180
elapsed time (sec)

o
O

Figure 4. The changes of the throughput of a
web server when an operating system is re-
booted.

time 30 seconds. When we used the warm-cache reboot, the
throughput was degraded only by 5 % after the reboot. In 60
seconds after the web server restarts its service, the through-
put is recovered completely. On the other hand, when we
used a normal reboot, the throughput was degraded by 41 %
on average. The performance degradation lasts for 90 sec-
onds after the web server restarts its service. During this
period, the web server loses the profit to be gained by about
3300 requests, compared with before the reboot.

4.3. Fault Injection

We injected faults to an operating system in domain U
and examined the consistency of reused cache pages. We
have ported the fault injection tool used in the Nooks [10]
project to the Linux 2.6 kernel. Originally, the tool was de-
veloped for the Rio file cache [11] project. Since the tool
developed by the Nooks project strongly depends on Intel
32-bit architecture, we used the 32-bit execution environ-
ment.

This tool injects various types of faults. DST flips a ran-
dom bit of the destination of an instruction. PTR flips a ran-
dom bit of the address for memory reference. INIT deletes
an instruction that initializes a local variable on the kernel
stack. I/F deletes an instruction that reads a function pa-
rameter. BR deletes a branch instruction or a repeat prefix.
LOORP inverts the termination condition for a repeat pre-
fix or a branch instruction. PANIC causes a kernel panic.
ALLOC returns NULL at the kmalloc function. FREE re-
leases a memory region that is still used. LEAK does not
release a memory region at the kfree function. COPY over-
runs the length of memory copy by one byte to four pages.
TEXT flips a random bit of a random instruction in the ker-
nel. STACK flips a random bit in a stack of a random pro-

100

90 El kernel crash —
L W process crash il
80— O nocrash -
~ 70+ —
& L 4
iel L -
5 60
° L 4
o —
i=
2 4
o
17} _
j=
Q 4
o
£ | ! -
w
B ¥ oz &
£ 8 ¥

ALLOC
LEAK [

STACK

NOP

Figure 5. The ratio of cache inconsistency
when the consistency mechanism was dis-
abled.

cess. NOP deletes a random instruction in the kernel.

We examined the consistency of the file cache after we
injected faults into an operating system and rebooted it us-
ing the warm-cache reboot. First, we boot an operating sys-
tem in a VM and waits until the file cache is filled by send-
ing HTTP requests. Then we injected ten faults of the same
type into the kernel and waited for 60 seconds. Finally we
rebooted the operating system and checked the consistency
of the file cache by comparing it with files on a disk. We
repeated this fault injection 50 times for each fault type.

Figure 5 shows the ratio at which the file cache was in-
consistent when the consistency mechanism in the VMM
was disabled. The VMM did not manage the file cache. In-
stead, an operating system managed a cache-mapping table
and a reuse bitmap without the help of the VMM. For most
of fault types, the file cache was inconsistent at a high ra-
tio. This figure also shows the breakdown of the results of
this fault injection when the file cache was inconsistent. Al-
though fault injection did not always cause crash, the file
cache became inconsistent.

When the consistency mechanism in the VMM was en-
abled, the file cache was consistent for all fault types ex-
cept DST. According to our deep inspection, some faults
were injected into the ext3 file system in this exceptional
case. Then the file system failed to write back cache pages
to a disk. This resulted in the inconsistency between the file
cache and files on the disk. However, the contents of the file
cache were correct while those of files on the disk were in-
correct. Therefore, reusing the file cache is correct although
the consistency is not maintained.

5. Related work

The Rio file cache [11] enables dirty file cache to sur-
vive crashes of an operating system. When an operating
system crashes, Rio saves dirty cache pages to a disk and
prevents any modification to files from being lost by the re-
boot. The biggest difference between Rio and CacheMind
is that Rio is designed for reliability while CacheMind is
for high performance. When an operating system is re-
booted, Rio discards non-dirty cache pages because saving
them is not necessary for improving reliability. To the con-
trary, CacheMind reuses non-dirty cache pages but discards
dirty ones because dirty cache pages are inconsistent with a
disk. In addition, because Rio has to read saved file cache
from a slow disk, the performance is degraded just after the
reboot. CacheMind prevents such performance degradation
by reusing the file cache preserved on memory.

The other big difference is that Rio relies only on an op-
erating system (and hardware) while CacheMind relies on
the VMM. For example, Rio provides two mechanisms to
save the file cache to a disk on a crash. One is to perform a
warm reboot, which preserves memory contents during the
reboot, and save dirty file cache after the reboot [11]. The
other is to save the file cache using a BIOS routine before
a reboot [12]. The former depends on hardware and is not
generally supported in PCs. The latter might fail because
Rio does not always execute the BIOS routine after a crash.
In CacheMind, an operating system in a VM can perform a
warm reboot, independent of hardware, because the VMM
guarantees to preserve memory contents during the reboot
of the VM.

Besides, Rio uses memory protection to prevent the file
cache from being corrupted by crashes of an operating sys-
tem. Rio protects the file cache by using functions in an op-
erating system while CacheMind protects it by the VMM.
In Rio, if the page table is corrupted by a crash of an op-
erating system, memory protection might be ineffective. In
CacheMind, although the page table may be corrupted, the
VMM tracks any modification and maintains the reusabil-
ity of the file cache. Also, Rio cannot atomically modify
its registry for cache management because the registry is
also managed by an operating system. Therefore, the con-
sistency of the registry is not guaranteed when an operating
system crashes. In CacheMind, a cache-mapping table for
cache management is managed by the VMM. The modifica-
tion of the table can be atomically performed by the VMM.

Non-volatile disk cache such as Microsoft hybrid hard
drive (HHD) and Intel Turbo Memory is useful for fast
performance recovery. HHD includes non-volatile mem-
ory inside a disk drive while Turbo Memory is attached to
a motherboard. They enable an operating system to read
file blocks from fast non-volatile memory even if the file
cache on memory is lost after the reboot. Furthermore, a

solid-state drive (SSD) speeds up the whole disk accesses
by using flash memory. However, it is necessary to copy file
blocks from non-volatile memory to the file cache on main
memory. CacheMind does not need any memory copies be-
cause it preserves the file cache on main memory through
the reboot.

Recovery Box [13] preserves the state of an operating
system and applications on non-volatile memory for fast re-
covery. It restores the state quickly after rebooting an oper-
ating system. The state stored in that memory is protected
by checksum. In addition, Recovery Box speeds up a reboot
by reusing the kernel image left on memory. This is less ef-
fective recently because recent disks are fast enough to read
the file for the kernel image. RootHammer [14] enables
quickly rebooting only the VMM by leaving VM images on
memory. It uses the fact that VM images can be reused af-
ter the reboot of the VMM. Similarly, CacheMind uses the
fact that the file cache can be reused after the reboot of an
operating system as far as it is not corrupted.

6. Conclusion

In this paper, we proposed a new reboot mechanism,
called the warm-cache reboot, for fast performance recov-
ery. The warm-cache reboot preserves the file cache on
main memory during the reboot and restores the file cache
quickly after the reboot. The VMM guarantees that the file
cache reused after the reboot is consistent with the corre-
sponding files on disks by maintaining reuse bitmaps. We
have implemented the warm-cache reboot mechanism in
Xen. From our experimental results, when we used the
warm-cache reboot, the performance degradation just after
the reboot of an operating system was 16 % at maximum.
In addition, it was shown that the reused file cache was not
corrupted by faults. One of our future work is to reuse other
caches in an operating system such as i-node cache for im-
proving the performance after the reboot.

Acknowledgments

This research was supported in part by JST, CREST.

References

[1] M. Grottke and K. S. Trivedi, “Fighting Bugs: Re-
move, Retry, Replicate, and Rejuvenate,” IEEE Com-
puter,vol. 40, no. 2, pp. 107-109, 2007.

[2] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Anal-
ysis of Preventive Maintenance in Transactions Based
Software Systems,” IEEE Trans. Computers, 1998.

[3] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton,
“Software Rejuvenation: Analysis, module and Ap-
plications,” in Proc. Int’l Symp. Fault-Tolerant Com-
puting, 1995, pp. 381-391.

[4] A. Pfiffer, “Reducing System Reboot Time with
kexec,” http://www.osdl.org/.

[5] H. Kaminaga, “Improving Linux Startup Time Using
Software Resume,” in Proc. Linux Symp., 2006.

[6] P.Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A.Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the Art of Virtualization,” in Proc. Symp. Operat-
ing Systems Principles,2003, pp. 164-177.

[7] J. Halderman, S. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. Calandrino, A. Feldman, J. Appelbaum,
and E. Felten, “Lest We Remember: Cold Boot At-
tacks on Encryption Keys,” in Proc. USENIX Security
Symp., 2008, pp. 45-60.

[8] Apache Software Foundation, “Apache HTTP Server
Project,” http://httpd.apache.org/.

[9] D.Mosberger and T. Jin, “httperf: A Tool for Measur-
ing Web Server Performance,” Performance Evalua-
tion Review, vol. 26, no. 3, pp. 31-37, 1998.

[10] M. Swift, B. Bershad, and H. Levy, “Improving
the Reliability of Commodity Operating Systems,” in
Proc. Symp. Operating Systems Principles, 2003, pp.
207-222.

[11] P.Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani,
and D. Lowell, “The Rio File Cache: Surviving Oper-
ating System Crashes,” in Proc. Int’l Conf. ASPLOS,
1996, pp. 74-83.

[12] W. Ng and P. Chen, “The Design and Verification of
the Rio File Cache,” IEEE Trans. Computers, vol. 50,
no. 4, pp. 322-337,2001.

[13] M. Baker and M. Sullivan, “The Recovery Box: Us-
ing Fast Recovery to Provide High Availability in the
UNIX Environment,” in Proc. Summer USENIX Conf.,
1992, pp. 31-44.

[14] K. Kourai and S. Chiba, “A Fast Rejuvenation Tech-
nique for Server Consolidation with Virtual Ma-
chines,” in Proc. Int’l Conf. Dependable Systems and
Networks, 2007, pp. 245-254.

