
TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 1

Fast Software Rejuvenation of
Virtual Machine Monitors

Kenichi Kourai, Member, IEEE Computer Society, and Shigeru Chiba

Abstract—As server consolidation using virtual machines (VMs) is carried out, software aging of virtual machine monitors (VMMs)
is becoming critical. Since a VMM is fundamental software for running VMs, its performance degradation or crash failure affects all
VMs running on top of it. To counteract such software aging, a proactive technique called software rejuvenation has been proposed.
A simple example of rejuvenation is to reboot a VMM. However, simply rebooting a VMM is undesirable because that needs rebooting
operating systems on all VMs. In this paper, we propose a new technique for fast rejuvenation of VMMs called the warm-VM reboot.
The warm-VM reboot enables efficiently rebooting only a VMM by suspending and resuming VMs without saving the memory images
to persistent storage. To achieve this, we have developed two mechanisms: on-memory suspend/resume of VMs and quick reload
of a VMM. Compared with a normal reboot, the warm-VM reboot reduced the downtime by 74% at maximum. It also prevented the
performance degradation due to cache misses after the reboot, which was 52% in case of a normal reboot. In a cluster environment,
the warm-VM reboot achieved higher total throughput than the system using VM migration and a normal reboot.

Index Terms—Operating systems, checkpoint/restart, main memory, availability, performance.

F

1 INTRODUCTION

THE phenomenon that the state of running software
degrades with time is known as software aging [1].

The causes of this degradation are the exhaustion of
system resources and data corruption. This often leads to
performance degradation of running software or crash
failure. Software aging has been studied in the UNIX
operating system [2] and the Apache web server [3],
[4]. Recently, software aging in virtual machine monitors
(VMMs) is becoming critical as server consolidation
using virtual machines (VMs) is being widely carried
out. A VMM is fundamental software that multiplexes
physical resources such as CPU and memory to the
VMs running on top of it. Since many VMs run on
one machine consolidating multiple servers, aging of the
VMM directly affects all the VMs.

To counteract such software aging, a proactive tech-
nique called software rejuvenation has been proposed [1].
Software rejuvenation occasionally stops running soft-
ware, cleans its internal state, and restarts it. A well-
known and simple example of rejuvenation is a system
reboot [5]. This technique can be applied to rejuvenate a
VMM because a VMM is similar software to an operating
system kernel, which can be rejuvenated by a system
reboot [2]. However, operating systems running on the
VMs built on top of a VMM also have to be rebooted

• K. Kourai is with the Department of Creative Informatics, Kyushu Institute
of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820–8502, Japan.
Email: kourai@ci.kyutech.ac.jp

• S. Chiba is with the Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152–
8552, Japan.
Email: chiba@is.titech.ac.jp

Manuscript received 15 Feb. 2008; revised 18 May 2009; accepted 25 Jan.
2010; published online xx 2010.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number xxx.

when the VMM is rejuvenated. This increases the down-
time of services provided by the operating systems. It
takes a long time to reboot many operating systems in
parallel when the VMM is rebooted. After the operating
systems are rebooted with the VMM, their performance
can be degraded due to cache misses. The file cache
used by the operating systems is lost by the reboot. Such
downtime and performance degradation are critical for
servers.

This paper proposes a new technique for fast rejuve-
nation of VMMs called the warm-VM reboot. The basic
idea is that a VMM preserves the memory images of all
VMs through the reboot of the VMM and reuses those
memory images after the reboot. The warm-VM reboot
enables efficiently rebooting only a VMM by using the
on-memory suspend/resume mechanism of VMs and the
quick reload mechanism of a VMM. Using the on-memory
suspend/resume mechanism, the VMM suspends VMs
running on it before it is rebooted. At that time, the
memory images of the VMs are preserved on main
memory and they are not saved to any persistent storage.
The suspended VMs are quickly resumed by directly
using the preserved memory images after the reboot.
To preserve the memory images during the reboot, the
VMM is rebooted without a hardware reset using the
quick reload mechanism. The warm-VM reboot can re-
duce the downtime of operating systems running on
VMs and prevent performance degradation due to cache
misses because it does not need to reboot the operating
systems.

To achieve this fast rejuvenation, we have developed
RootHammer based on Xen [6]. According to our ex-
perimental results, the warm-VM reboot reduced the
downtime due to rejuvenating the VMM by 74% at
maximum, compared with rebooting the VMM normally.

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 2

After the warm-VM reboot, the throughput of a web
server was not degraded because the file cache was
restored completely. When we rebooted the VMM nor-
mally, the throughput of a web server was degraded by
52% just after the reboot. In addition, we estimated the
availability, based on the time-based rejuvenation [7],
when we considered not only the rejuvenation of the
VMM but also that of operating systems in the VMs.

Moreover, we show the usefulness of our warm-
VM reboot in a cluster environment. Since the ser-
vice downtime becomes zero when multiple hosts in
a cluster provide the same service, we consider the
total throughput of a cluster instead of availability. The
total throughput can include the impacts of both the
downtime and performance degradation of VMs. We
also compare our warm-VM reboot with the migration
of VMs. The migration technique can move all VMs to
another host before the rejuvenation of the VMM and
reduce the downtime. From our experimental results, the
warm-VM reboot achieved the highest total throughput.

This paper substantially extends our previous work [8]
as follows:

• We define the availability for the systems using our
warm-VM reboot and the traditional approach when
both a VMM and operating systems running on
VMs are rejuvenated. In our previous work, we de-
fined only the downtime due to the rejuvenation of
a VMM and did not define the availability explicitly.

• We define the total throughput in a cluster environ-
ment for the systems using the warm-VM reboot,
the traditional approach, and VM migration. More-
over, we perform its quantitative analysis through
experiments. Our previous work did not define it
and performed only qualitative analysis.

The rest of this paper is organized as follows. Section 2
describes the problems of current software rejuvenation
of VMMs. Section 3 presents a new technique for fast
rejuvenation of VMMs and defines the availability when
using it. Section 4 explains our implementation based
on Xen and Section 5 shows our experimental results.
Section 6 shows the usefulness of the warm-VM reboot in
a cluster environment. Section 7 examines related work
and Section 8 concludes the paper.

2 SOFTWARE REJUVENATION OF VMMS

As server consolidation using VMs is widely carried
out, software aging of VMMs is becoming critical. Re-
cently, multiple server machines are consolidated into
one machine using VMs. In such a machine, many VMs
are running on top of a VMM. Since a VMM is long-
running software and is not rebooted frequently, the
influences due to software aging accumulate more easily
than the other components. For example, a VMM may
leak its memory by failing to release a part of memory. In
Xen [6], the size of the heap memory of the VMM is only
16 MB by default in spite of the size of physical memory.
If the VMM leaks its heap memory, it would become out

VMM

privileged
VM

normal VM

OS OS OS
...

Fig. 1. The assumed VM architecture.

of memory easily. Xen had a bug that caused available
heap memory to decrease whenever a VM was rebooted
[9] or when some error paths were executed [10]. Out-
of-memory errors can lead performance degradation or
crash failure of the VMM. Such problems of the VMM
directly affect all the VMs.

In addition to the aging of VMMs, that of privileged
VMs can also affect the other VMs. Privileged VMs are
used in some VM architectures such as Xen and VMware
ESX server [11] to help the VMM for VM management
and/or I/O processing of all VMs, as shown in Fig. 1.
They run normal operating systems with some modi-
fications. For operating systems, it has been reported
that system resources such as kernel memory and swap
spaces were exhausted with time [2] and the exhaustion
also depended on system workload [12], [13]. In priv-
ileged VMs, memory exhaustion easily occurs because
privileged VMs do not run large servers and therefore
the typical size of the memory allocated to them is not
so large. For example, Xen had a bug of memory leaks
in its daemon named xenstored running on a privileged
VM [14]. If I/O processing in the privileged VM slows
down due to out of memory, the performance in the
other VMs is also degraded. Since xenstored is not
restartable, restoring from such memory leaks needs to
reboot the privileged VM. Furthermore, the reboot of the
privileged VM causes the VMM to be rebooted because
the privileged VM strongly depends on the VMM. For
this reason, we consider such privileged VMs as a part
of a VMM and we do not count them as normal VMs.

Software rejuvenation [1] is a proactive technique to
counteract such software aging. Since the state of long-
running software such as VMMs degrades with time
under aging conditions, preventive maintenance by soft-
ware rejuvenation would decrease problems due to ag-
ing. Although the essence of rejuvenation is to clean
the internal state of software, a system reboot is well-
known as its simple example [5]. However, when a VMM
is rejuvenated, operating systems on the VMs built on
top of the VMM also have to be rebooted. Operating
systems running on VMs have to be shut down to keep
the integrity before the VMM terminates the VMs. Then,
after the reboot of the VMM, newly created VMs have to
boot the operating systems and restart all services again.

This increases the downtime of services provided by

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 3

operating systems. First of all, many operating systems
are shut down and booted in parallel when the VMM is
rebooted. The time for rebooting each operating system
is proportional to the number of VMs because shutting
down and booting multiple operating systems in parallel
cause resource contention among them. The number of
VMs that can run simultaneously is increasing due to
processor support of virtualization such as Intel VT [15]
and AMD-V [16] and multicore processors. In addition,
recent servers tend to provide heavyweight services such
as the JBoss application server [17] and the time for stop-
ping and restarting services is increasing. Second, shut-
ting down operating systems, rebooting the VMM, and
booting operating systems are performed sequentially.
The in-between reboot of the VMM increases the service
downtime. The reboot of the VMM includes shutting
down the VMM, resetting hardware, and booting the
VMM. In particular, a hardware reset involves power-
on self-test by the BIOS such as a time-consuming check
of large amount of main memory and SCSI initialization.

Furthermore, the performance of operating systems on
VMs is degraded after they are rebooted with the VMM.
The primary cause is to lose the file cache. An operating
system stores file contents in main memory as the file
cache when it reads them from storage. An operating
system speeds up file accesses by using the file cache on
memory. When an operating system is rebooted, main
memory is initialized and the file cache managed by the
operating system is lost. Therefore, just after the reboot
of the operating system, the execution performance of
server processes running on top of it is degraded due
to frequent cache misses. To fill the file cache after the
reboot, an operating system needs to read necessary files
from storage. Since modern operating systems use most
of free memory as the file cache, it takes a long time to
fill free memory with the file cache. The size of memory
installable to one machine tends to increase due to 64-bit
processors and cheaper memory modules. Consequently,
more memory is allocated to each VM.

3 FAST REJUVENATION TECHNIQUE

We claim that only a VMM should be rebooted when
only the VMM needs rejuvenation. In other words,
rebooting operating systems should be independent of
rebooting an underlying VMM. Although an operating
system may be rejuvenated occasionally as well as a
VMM, the timing does not always the same as that of
the rejuvenation of a VMM. If some operating systems
do not need to be rejuvenated when the VMM is rejuve-
nated, rebooting these operating systems is just wasteful.

3.1 Warm-VM Reboot
To minimize the influences of the rejuvenation of VMMs,
we propose a new technique for fast rejuvenation. The
technique called the warm-VM reboot enables a VMM to
preserve the memory images of all the VMs through
its reboot and to reuse those memory images after the

reboot. The warm-VM reboot consists of two mecha-
nisms: on-memory suspend/resume of VMs and quick reload
of a VMM. The VMM suspends all VMs using the on-
memory suspend mechanism before it is rebooted, re-
boots itself by the quick reload mechanism, and resumes
all VMs using the on-memory resume mechanism after
the VMM is rebooted. Using these mechanisms, the
warm-VM reboot enables rebooting only a VMM.

The on-memory suspend mechanism simply freezes the
memory image used by a VM as it is. The memory
image is preserved on memory through the reboot of
the VMM until the VM is resumed. This mechanism
needs neither to save the image to any persistent storage
such as disks nor to copy it to non-volatile memory
such as flash memory. This is very efficient because the
time needed for suspend hardly depends on the size of
memory allocated to the VM. Even if the total memory
size of all VMs becomes larger, the on-memory suspend
mechanism can scale. At the same time, this mechanism
saves the execution state of the suspended VM to the
memory area that is also preserved through the reboot
of the VMM.

On the other hand, the on-memory resume mecha-
nism unfreezes the frozen memory image to restore the
suspended VM. The frozen memory image is preserved
through the reboot of the VMM by the quick reload
mechanism. The on-memory resume mechanism also
needs neither to read the saved image from persistent
storage nor to copy it from non-volatile memory. Since
the memory image of the VM, including the file cache,
is restored completely, performance degradation due to
cache misses is prevented even just after the reboot. At
the same time, the saved execution state of a VM is also
restored. These mechanisms are analogous to the ACPI
S3 state (Suspend To RAM) [18] in that they can suspend
and resume a VM without touching its memory image
on main memory.

The quick reload mechanism preserves the memory
images of VMs through the reboot of a VMM and
furthermore makes the reboot itself faster. Usually, re-
booting a VMM needs a hardware reset to reload a VMM
instance, but a hardware reset does not guarantee that
memory contents are preserved during it. In addition, a
hardware reset takes a long time as described in the pre-
vious section. The quick reload mechanism can bypass
a hardware reset by loading a new VMM instance by
software and start it by jumping to its entry point. Since
the software mechanism can manage memory during
the reboot, it is guaranteed that memory contents are
preserved. Furthermore, the quick reload mechanism
prevents the frozen memory images of VMs from being
corrupted while the VMM initializes itself.

Although many VMMs provide suspend/resume
mechanisms, they are not suitable for the rejuvenation
of VMMs because they have to use disks as persistent
storage to save memory images. These traditional sus-
pend/resume mechanisms are analogous to the ACPI
S4 state (Suspend To Disk), so-called hibernation. These

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 4

mechanisms need heavy disk accesses and they are
too slow. On the other hand, our on-memory sus-
pend/resume mechanism does not need to save the
memory images to persistent storage. The memory im-
ages on volatile main memory can be reused.

3.2 Rejuvenation Model and Availability

We define the downtime due to the rejuvenation of a
VMM. When the warm-VM reboot is used, the downtime
is caused by suspending all VMs, rebooting the VMM,
and resuming all VMs. The downtime Dw(n) is the sum
of the times needed for performing on-memory suspend
and resume of n VMs in parallel and for rebooting
a VMM. In the warm-VM reboot, rebooting a VMM
depends on the number of VMs because the VMM does
not need to initialize the memory area reserved for
suspended VMs during its reboot.

For comparison, we consider the rejuvenation of a
VMM by a normal reboot, which we described in Sec-
tion 2. We call this the cold-VM reboot in contrast to the
warm-VM reboot. When the cold-VM reboot is used,
the downtime is caused by shutting down all operating
systems, resetting hardware, rebooting a VMM, and
booting all operating systems. The downtime Dc(n) is
the sum of the times needed for shutting down and
booting n operating systems in parallel, for rebooting a
VMM without preserving any VMs, and for a hardware
reset.

To define the availability of both the warm-VM reboot
and the cold-VM reboot, let us consider the rejuvena-
tion model. Usually the rejuvenation of a VMM (VMM
rejuvenation) is used with the rejuvenation of operating
systems (OS rejuvenation) running on VMs. For simplic-
ity, we assume that each operating system is rejuvenated
by relying on the time elapsed since the last OS rejuvena-
tion, which is called time-based rejuvenation [7]. We define
the interval of the VMM rejuvenation as Tvmm and that
of the OS rejuvenation as Tos.

When the warm-VM reboot is used, the VMM re-
juvenation can be performed independently of the OS
rejuvenation. This is because the warm-VM reboot does
not involve the OS rejuvenation. Fig. 2 shows the rejuve-
nation timing when Tvmm > Tos and Tvmm ≤ Tos. On the
other hand, when the cold-VM reboot is used, the VMM
rejuvenation affects the timing of the OS rejuvenation
because the VMM rejuvenation involves the OS reju-
venation. Fig. 3a shows the rejuvenation timing when
Tvmm > Tos. Since the OS rejuvenation is performed at
the same time of the VMM rejuvenation, the timer for
the OS rejuvenation is reset and the OS rejuvenation is
rescheduled. When Tvmm ≤ Tos, the OS rejuvenation is
always performed together with the VMM rejuvenation
as shown in Fig. 3b. Before the timer for the OS rejuve-
nation reaches Tos, the VMM rejuvenation is performed
and the timer is reset.

Using the above rejuvenation model, we define the
availability. To focus on software rejuvenation, we ignore

OS rejuvenation

VMM rejuvenation
time

(a) Tvmm > Tos

VMM rejuvenation

OS rejuvenation

time

(b) Tvmm ≤ Tos

Fig. 2. The timing of two kinds of rejuvenation when using
the warm-VM reboot.

VMM rejuvenation

OS rejuvenation

time

(a) Tvmm > Tos

VMM rejuvenation
time

OS rejuvenation

(b) Tvmm ≤ Tos

Fig. 3. The timing of two kinds of rejuvenation when using
the cold-VM reboot.

software and hardware failures. Integrating these into
our model is not difficult. First, let us consider the total
downtime in Tvmm. In the system using the warm-VM
reboot, the total downtime is Dw(n)+NwDos, where Dos

is the time needed for rebooting one operating system
for the OS rejuvenation. Nw is the average number of
the OS rejuvenation performed in Tvmm and defined by
(Tvmm−Dw(n))/Tos. We assume that the timer for the OS
rejuvenation is stopped during the VMM rejuvenation.
Therefore, the availability Aw is defined by

Aw = 1− Dw(n) +NwDos

Tvmm
. (1)

In the system using the cold-VM reboot, on the other
hand, the total downtime in Tvmm is Dc(n) + ⌊Nc⌋Dos,
where Nc is defined by (Tvmm −Dc(n))/Tos. ⌊Nc⌋ is the
exact number of the OS rejuvenation solely performed
in Tvmm. Since the timer for the OS rejuvenation is reset
by the VMM rejuvenation in the cold-VM reboot, the
average number of the OS rejuvenation is an integer
less than Nc. For simplicity, we assume that the VMM
rejuvenation is not triggered during the OS rejuvenation.
Note that the OS rejuvenation performed together with
the VMM rejuvenation is not counted in Nc. Its down-
time is included in Dc(n). Therefore, the availability Ac

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 5

TABLE 1
The states rejuvenated by the warm-VM reboot.

state warm-VM reboot OS reboot
(VMM)
memory allocation x
heap memory x
VM memory x
VM execution state x
VM configuration x
P2M-mapping table
(privileged VM)
whole state x
(normal VM)
whole state x

is defined by

Ac = 1− Dc(n) + ⌊Nc⌋Dos

Tvmm
. (2)

3.3 Rejuvenated States

The warm-VM reboot does not rejuvenate several states
in the whole system to achieve fast rejuvenation of
VMMs. However, most of such states are rejuvenated
by rebooting operating systems running on VMs, which
is performed independently of the warm-VM reboot. In
other words, the warm-VM reboot enables separating the
OS rejuvenation from the VMM rejuvenation. Table 1
shows rejuvenated states by the warm-VM reboot and
rebooting operating systems. The VM architecture we
assume consists of a VMM, a privileged VM, and normal
VMs, as illustrated in Fig. 1. Note that the cold-VM
reboot can rejuvenate all the states by rebooting all these
components in the system.

For VMs, the warm-VM reboot rejuvenates all the
states inside the privileged VM. The operating systems
running on the privileged VMs are rebooted normally
and all services are restarted. On the other hand, all
the states inside normal VMs are not rejuvenated. The
warm-VM reboot suspends normal VMs as is and re-
sumes them after rebooting the VMM. Those states are
rejuvenated when the operating systems are rebooted.

For a VMM, the warm-VM reboot rejuvenates most of
the states. For example, the data structures for memory
allocation are initialized when the VMM is rebooted.
The heap memory allocated in the VMM is reclaimed.
However, the memory allocated to normal VMs is not
reclaimed because it is preserved through the warm-VM
reboot. The memory is reclaimed when the operating
systems are rebooted. When the operating system run-
ning on a normal VM is rebooted, the VM is destroyed
and a new VM is created, at least, in Xen. On the VM
destruction, the whole memory allocated is reclaimed.
Likewise, the execution state and configuration of VMs
are discarded when the operating systems are rebooted.

The P2M-mapping table, on the other hand, is not
rejuvenated by either the warm-VM reboot or the re-
boot of operating systems. It is a table for maintaining
memory pages allocated to VMs. Its detail is described

in Section 4.1. The table is preserved through both the
warm-VM reboot and the reboot of operating systems
and is not initialized after the first boot of the VMM.
However, the table is a simple one-dimensional array of
fixed size and is not allocated dynamically. Therefore, its
memory is not likely to leak and the data structure is not
likely to be corrupted.

4 IMPLEMENTATION

To achieve the warm-VM reboot, we have developed
RootHammer based on Xen 3.0.0. In Xen, a VM is called
a domain. In particular, the privileged VM that manages
VMs and handles I/O is called domain 0 and the other
VMs are called domain Us.

4.1 Memory Management of the VMM
The VMM distinguishes machine memory and pseudo-
physical memory to virtualize memory resource. Ma-
chine memory is physical memory installed in the ma-
chine and consists of a set of machine page frames.
For each machine page frame, a machine frame num-
ber (MFN) is consecutively numbered from 0. Pseudo-
physical memory is the memory allocated to domains
and gives the illusion of contiguous physical memory to
domains. For each physical page frame in each domain, a
physical frame number (PFN) is consecutively numbered
from 0.

The VMM creates the P2M-mapping table to enable
domains to reuse its memory even after the reboot. The
table is a one-dimensional array that records mapping
from PFNs to MFNs. A new mapping is created in this
table when a new machine page frame is allocated to a
domain while an existing mapping is removed when a
machine page frame is deallocated from a domain. These
mappings are preserved after domains are suspended.

For each domain, the VMM allocates a contiguous area
in the table. If the user repeats creating and destroying
domains of various sizes, memory fragmentation may
occur in the table. In this case, the user cannot create
new domains any more even if there is enough ma-
chine memory unused. To avoid this situation, the VMM
performs memory compaction when it cannot allocate
a contiguous area in the table. Although Xen originally
maintains a similar table, its format is the same as a page
table. That format is more complicated than a simple
array and error-prone.

4.2 On-memory Suspend/Resume Mechanism
When the operating system in domain 0 is shut down,
the VMM suspends all domain Us as in Fig. 4. To
suspend domain Us, the VMM sends a suspend event to
each domain U. In the original Xen, domain 0, not the
VMM, sends the event to each domain U. One advantage
of suspending by the VMM is that suspending domain
Us can be delayed until after the operating system in
domain 0 is shut down. The original suspend by domain

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 6

1. suspend
 event

3. suspend
 hypercall

domain U

kernel

0 1 2 3 4 5MFN: ...

machine memory

1 4 3

0 1 2

MFN:
PFN:

...

5. save
 domain state

4. freeze

2. suspend
 handling

VMM

domain 0

Fig. 4. On-memory suspend of a domain U.

0 has to be performed while domain 0 is shut down.
This delay reduces the downtime of services running in
a domain U. When a domain U receives the suspend
event, the operating system kernel in the domain U
executes its suspend handler and suspends all virtual
devices. We used the handler implemented in the Linux
kernel modified for Xen. In Xen, device drivers called
front-end drivers in domain Us manage virtual devices.
The front-end drivers communicate with device drivers
called back-end drivers running on domain 0. Thanks to
this splitting device-driver model, virtual devices can be
easily detached from the operating systems in domain
Us. On suspend, front-end drivers do not communicate
with back-end drivers because the back-end drivers are
stateless.

After the operating system in a domain U executes the
suspend handler, it issues the suspend hypervisor call to
the VMM, which is like a system call to the operating
system. In the hypervisor call, the VMM freezes the
memory image of the domain on memory by reserv-
ing it. The VMM does not release the memory pages
allocated to the domain but it maintains them using
the P2M-mapping table. This does not cause out-of-
memory errors because the VMM is rebooted just after
it suspends all domain Us. Next, the VMM saves the
execution state of the domain to the memory pages
that is preserved during the reboot of the VMM. The
execution state of a domain includes execution context
such as CPU registers and shared information such as
the status of event channels. In addition, the VMM saves
the configuration of the domain, such as devices. The
memory space needed for saving those is 16 KB.

After the VMM finishes suspending all domain Us, the
VMM is rebooted without losing the memory images of
domain Us by using the quick reload mechanism, which
is described in the next section. Then, after domain 0
is rebooted, it resumes all domain Us. First, domain 0
creates a new domain U, allocates the memory pages
recorded in the P2M-mapping table to the domain U,
and restores its memory image. Next, the VMM re-
stores the state of the domain U from the saved state.
The operating system kernel in the domain U executes

the resume handler to re-establish the communication
channels to the VMM and to attach the virtual devices
that were detached on suspend. This re-attachment is
to connect the front-end drivers with the corresponding
back-end drivers. Finally, the execution of the domain U
is restarted.

4.3 Quick Reload Mechanism
To preserve the memory images of domain Us during the
reboot of a VMM, we have implemented the quick reload
mechanism based on the kexec mechanism [19] provided
in the Linux kernel. The kexec mechanism enables a new
kernel to be started without a hardware reset. Like kexec,
the quick reload mechanism enables a new VMM to be
started without a hardware reset. To load a new VMM
instance into the current VMM, we have implemented
the xexec system call in the Linux kernel for domain 0
and the xexec hypervisor call in the VMM.

When the xexec system call is issued in domain 0, the
kernel issues the xexec hypervisor call to the VMM. This
hypervisor call loads a new executable image consisting
of a VMM, a kernel for domain 0, and an initial RAM
disk for domain 0 into memory. When the VMM is
rebooted, the quick reload mechanism first passes the
control to the CPU used at the boot time. Then, it copies
the executable loaded by the xexec hypervisor call to the
address where the executable image is loaded at normal
boot time. Finally, the mechanism transfers the control
to the new VMM.

When the new VMM is rebooted and initialized, it
first reserves the memory for the P2M-mapping table.
Based on the table, the VMM reserves the memory pages
that have been allocated to domain Us. Next, the VMM
reserves the memory pages where the execution state
of domains is saved. To make the VMM reserve these
memory pages, the xexec hypervisor call specifies a boot
option to the new VMM. The latest Xen also supports the
kexec mechanism for the VMM, but it does not have any
support for preserving the memory images of domain Us
while a new VMM is initialized.

5 EXPERIMENTS

We performed experiments to show that our technique
for fast rejuvenation is effective. For a server machine,
we used a PC with two Dual-Core Opteron processors
Model 280 (2.4 GHz), 12 GB of PC3200 DDR SDRAM
memory, a 36.7 GB of 15,000 rpm SCSI disk (Ultra 320),
and Gigabit Ethernet NICs. We used our RootHammer
VMM and, for comparison, the original VMM of Xen
3.0.0. The operating systems running on top of the
VMM were Linux 2.6.12 modified for Xen. One physical
partition of the disk was used for a virtual disk of one
VM. The size of the memory allocated to domain 0 was
512 MB. For a client machine, we used a PC with dual
Xeon 3.06 GHz processors, 2 GB of memory, and Gigabit
Ethernet NICs. The operating system was Linux 2.6.8.
These two PCs were connected with a Gigabit Ethernet

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 7

0 2 4 6 8 10
memory size of a VM (GB)

0

50

100

150

200
el

ap
se

d
tim

e
(s

ec
)

Xen suspend
OS shutdown
on-memory suspend

0 2 4 6 8 10
memory size of a VM (GB)

0

50

100

150

200

el
ap

se
d

tim
e

(s
ec

)

Xen resume
OS boot
on-memory resume

(a) (b)

Fig. 5. The time for pre- and post-reboot tasks when the
memory size of a VM is changed.

switch. We performed five runs for each experiment and
show the average.

5.1 Performance of On-memory Suspend/Resume
We measured the time needed for tasks before and after
the reboot of the VMM: suspend or shutdown, and
resume or boot. We ran the ssh server in each VM as a
service. We used OpenSSH version 4.0p1. We performed
this experiment for (1) our on-memory suspend/resume,
(2) Xen’s suspend/resume, which uses a disk to save the
memory images of VMs, and (3) simple shutdown and
boot.

First, we changed the size of memory allocated to
a single VM from 1 to 11 GB and measured the time
needed for pre- and post-reboot tasks. Fig. 5 shows
the results. Xen’s suspend/resume depended on the
memory size of a VM because this method must write
the whole memory image of a VM to a disk and read
it from the disk. On the other hand, our on-memory
suspend/resume hardly depended on the memory size
because this method does not touch the memory image
of a VM. When the memory size was 11 GB, it took 0.08
seconds for suspend and 0.8 second for resume. These
are only 0.05% and 0.6% of Xen’s suspend and resume,
respectively.

Next, we measured the time needed for pre- and
post-reboot tasks when multiple VMs were running in
parallel. We fixed the size of memory allocated to each
VM to 1 GB and changed the number of VMs from 1 to
11. Domain 0 is not included in the number. Fig. 6 shows
the results. All the three methods depended on the
number of VMs. When the number of VMs was 11, on-
memory suspend/resume needed only 0.04 seconds for
suspend and 3.6 seconds for resume. These were 0.02%
and 2.3% of Xen’s suspend and resume, respectively.
The result also shows that the time for the boot largely
increases as the number of VMs increases.

5.2 Effect of Quick Reload
To examine how fast the VMM is rebooted by using the
quick reload mechanism, we measured the time needed

0 2 4 6 8 10
number of VMs

0

50

100

150

200

250

el
ap

se
d

tim
e

(s
ec

)

Xen suspend
OS shutdown
on-memory suspend

0 2 4 6 8 10
number of VMs

0

50

100

150

200

250

el
ap

se
d

tim
e

(s
ec

)

Xen resume
OS boot
on-memory resume

(a) (b)

Fig. 6. The time for pre- and post-reboot tasks when the
number of VMs is changed.

0 2 4 6 8 10
number of VMs

0

100

200

300

400

500

av
er

ag
e

do
w

nt
im

e
(s

ec
)

saved-VM reboot
cold-VM reboot
warm-VM reboot

0 2 4 6 8 10
number of VMs

0

100

200

300

400

500

av
er

ag
e

do
w

nt
im

e
(s

ec
)

saved-VM reboot
cold-VM reboot
warm-VM reboot

(a) (b)

Fig. 7. The downtime of ssh and JBoss when the number
of VMs is changed.

for rebooting the VMM. We recorded the time when the
execution of a shutdown script completed and when the
reboot of the VMM completed. The time between them
was 11 seconds when we used quick reload whereas it
was 59 seconds when we used a hardware reset. Thus,
the quick reload mechanism speeded up the reboot of
the VMM by 48 seconds.

5.3 Downtime of Networked Services
We measured the downtime of networked services when
we rejuvenated the VMM. We rebooted the VMM while
we periodically sent requests from a client host to the
VMs on a server host. We measured the time from when
a networked service in each VM was down until it was
up again after the VMM was rebooted. We performed
this experiment for (1) the warm-VM reboot, (2) the cold-
VM reboot using a normal reboot, and (3) the reboot
with Xen’s suspend/resume (saved-VM reboot). We fixed
the size of memory allocated to each VM to 1 GB and
changed the number of VMs from 1 to 11.

First, we ran only the ssh server in each VM and
measured its downtime during the reboot of the VMM.
Fig. 7a shows the downtime. The downtime due to the
saved-VM reboot highly depended on the number of

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 8

VMs. When the number was 11, the average downtime
was 436 seconds and the 95% confidence interval was
(433, 440). At the same number of VMs, the downtime
due to the warm-VM reboot was 41.7 seconds and
only 9.7% of the saved-VM reboot. The 95% confidence
interval was (41.2, 42.1). In addition, the downtime due
to the warm-VM reboot hardly depended on the number
of VMs. On the other hand, the downtime due to the
cold-VM reboot was 162 seconds and the 95% confidence
interval was (160, 163) when the number of VMs was 11.
This was 3.9 times longer than the downtime due to the
warm-VM reboot.

After we rebooted the VMM using the warm-VM
reboot or the saved-VM reboot, we could continue the
session of ssh thanks to the TCP retransmission mech-
anism, even if a timeout was set in the ssh server.
However, if a timeout was set to 60 seconds in the ssh
client, the session was timed out during the saved-VM
reboot. From this point of view, the downtime for one
reboot should be short enough. When we used the cold-
VM reboot, we could not continue the session because
the ssh server was shut down.

Next, we ran the JBoss application server [17] and
measured its downtime during the reboot of a VMM.
JBoss is a large server and it takes a longer time to start
than a ssh server. We used JBoss version 4.0.5.GA with
the default configuration and Sun JDK version 1.5.0 09.
Fig. 7b shows the downtime. The downtime due to the
warm-VM reboot and the saved-VM reboot was almost
the same as that of a ssh server because these reboot
mechanisms resumed VMs and did not need to restart
the JBoss server. On the other hand, the downtime due to
the cold-VM reboot was larger than that of a ssh server
because the cold-VM reboot needed to restart the JBoss
server. When the number of VMs was 11, the downtime
was 243 seconds and the 95% confidence interval was
(240, 247). This was 1.5 times longer than that of a ssh
server. This means that the cold-VM reboot increases the
service downtime according to running services.

5.4 Downtime Analysis

To examine which factors reduce the downtime in the
warm-VM reboot, we measured the time needed for
each operation when we rebooted the VMM. At the
same time, we measured the throughput of a web server
running on a VM. We repeated sending requests from a
client host to the Apache web server [20] running on
a VM in a server host by using the httperf benchmark
tool [21]. We used Apache version 2.0.54 and httperf
version 0.8. We created 11 VMs and allocated 1 GB
of memory to each VM. We rebooted the VMM and
recorded the changes of the throughput. We performed
this experiment for the warm-VM reboot and the cold-
VM reboot five times and made sure that the results
were almost the same. Fig. 8 shows the results at one
of the runs. We superimposed the time needed for each
operation during the reboot onto Fig. 8. We executed the

0

100

200

300

re
qu

es
ts

/s
ec

0 20 40 60 80 100 120 140 160 180 200 220
elapsed time (sec)

0

100

200

300

re
qu

es
ts

/s
ec

(a) warm-VM reboot

(b) cold-VM reboot

dom0 shutdown

dom0 boot

dom0 shutdown

domU suspend VMM boot
domU resume

domU shutdown

hardware reset

VMM boot

dom0 boot domU boot

Fig. 8. The breakdown of the downtime due to the VMM
rejuvenation.

reboot command in domain 0 at time 20 seconds in this
figure.

As shown in the previous section, the on-memory
suspend/resume mechanism provided by the warm-VM
reboot reduced the downtime largely. The total time for
on-memory suspend/resume was 4 seconds, but that
for shutdown and boot in the cold-VM reboot was 63
seconds. In addition, the warm-VM reboot reduced the
time for a hardware reset from 43 to 0 second. Also,
the fact that the warm-VM reboot can continue to run
a web server until just before the VMM is rebooted
was effective for reducing downtime. A web server was
stopped at time 34 seconds in the warm-VM reboot while
it was stopped at time 27 seconds in the cold-VM reboot.
This reduced downtime by 7 seconds. For the warm-VM
reboot, the VMM is responsible for suspending VMs and
it can do that task after domain 0 is shut down.

In both cases, the throughput was restored after the re-
boot of the VMM. However, the throughput in the cold-
VM reboot was degraded during 8 seconds. This was
most likely due to misses of the file cache. We examine
this performance degradation in detail in Section 5.6. The
throughput in the warm-VM reboot was also degraded
during 25 seconds after the reboot. This is not due to
cache misses but most likely due to resource contention
between VMs. As described in Section 4, when a VM
is resumed, the resume handler of the operating system
is executed. It is highly possible that the execution of
the resume handlers in resuming VMs interferes with
handling network packets in already resumed VMs. In
fact, there was no performance degradation when we
used only one VM.

5.5 Availability

Let us consider the availability of the JBoss server when
the number of VMs is 11. As well as Aw and Ac, we
consider the availability As of the saved-VM reboot. It is
1−(Ds(n)+NsDos)/Tvmm, where Ds(n) is the downtime
due to the reboot with Xen’s suspend/resume and Ns

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 9

0 7 14 21 28
Tos (day)

0.9995

0.9996

0.9997

0.9998

0.9999

1.0000

A
va

ila
bi

lit
y

warm-VM reboot
cold-VM reboot
saved-VM reboot

Fig. 9. The availabilities when Tvmm is 28 days.

0 7 14 21 28
Tvmm (day)

0.9980

0.9982

0.9984

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

A
va

ila
bi

lit
y

warm-VM reboot
cold-VM reboot
saved-VM reboot

Fig. 10. The availabilities when Tos is 7 days.

is the average number of the OS rejuvenation in Tvmm.
According to our experiment, Dw(11) = 43, Dc(11) =
243, Ds(11) = 434, and Dos = 34 for the system using
JBoss.

Fig. 9 and Fig. 10 plot these availabilities for fixed
Tvmm and Tos, respectively. Fig. 9 fixes Tvmm to 28 days
and changes Tos from 0 to 28 days. The availability of
the warm-VM reboot is always the highest and that of
the saved-VM reboot is the lowest. On the other hand,
Fig. 10 fixes Tos to 7 days and changes Tvmm from 0
to 28 days. The availability of the warm-VM reboot is
the highest. Unlike Fig. 9, the differences between the
availabilities are shrinking as Tvmm becomes large.

As an example, we consider that the OS rejuvenation
is performed every week and the VMM rejuvenation is
performed once per four weeks. The availabilities for the
warm-VM reboot, the cold-VM reboot, and the saved-
VM reboot are 0.99993, 0.99986, and 0.99977, respectively.
The warm-VM reboot achieves four 9s although the
others achieve three 9s. This improvement of availability
is important for critical servers.

5.6 Performance Degradation
To examine performance degradation due to cache
misses, we measured the throughput of operations with
file accesses in a VM before and after the reboot of
a VMM. To examine the effect of the file cache, we

1st 2nd 1st 2nd
0

200

400

600

800

1000

1200

re
ad

 th
ro

ug
hp

ut
 (

M
B

/s
)

warm-VM reboot
cold-VM reboot

1st 2nd 1st 2nd
0

50

100

150

200

th
ro

ug
hp

ut
 (

re
qu

es
ts

/s
ec

)

warm-VM reboot
cold-VM reboot

before reboot after reboot before reboot after reboot

(a) (b)

Fig. 11. The throughput of file reads and web accesses
before and after the VMM rejuvenation.

measured the throughput of the first- and second-time
accesses. We allocated 11 GB of memory to one VM. First,
we measured the time needed to read a file of 512 MB
and the number of file cache misses. In this experiment,
all the file blocks were cached on memory. We performed
this experiment for the warm-VM reboot and the cold-
VM reboot. Fig. 11a shows the read throughput. When
we used the warm-VM reboot, the throughput just after
the reboot was not degraded. On the other hand, when
we used the cold-VM reboot, the throughput just after
the reboot was degraded by 91%, compared with that
just before the reboot. This improvement was most likely
achieved by no miss in the file cache. In fact, the number
of file cache misses was zero.

Next, we measured the throughput of a web server
before and after the reboot of a VMM. The Apache
web server served 10,000 files of 512 KB, all of which
were cached on memory. In this experiment, 10 httperf
processes in a client host sent requests to the server
in parallel. All files were requested only once. Fig. 11b
shows the results. When we used the warm-VM reboot,
the performance just after the reboot was not degraded,
compared with that just before the reboot. When we used
the cold-VM reboot, the throughput just after the reboot
was degraded by 52%.

6 CLUSTER ENVIRONMENT

6.1 Total Throughput
Software rejuvenation is naturally fit with a cluster en-
vironment as described in the literature [22], [23]. In a
cluster environment, multiple hosts provide the same
service and a load balancer dispatches requests to one of
these hosts. Even if some of the hosts are rebooted for the
rejuvenation of the VMM, the service downtime is zero.
However, the total throughput of a cluster is degraded
while some hosts are rebooted. The warm-VM reboot
can mitigate the performance degradation by reducing
the downtime of rebooted hosts.

Let us consider a cluster environment that consists of
m hosts to estimate the total throughput of a cluster.
We let p denote the sum of the throughputs of all VMs

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 10

on one host, which we call per-host throughput. When all
hosts are running in a cluster, the total throughput is
mp, the sum of the per-host throughputs. During the re-
juvenation of a VMM on one host, the total throughput is
degraded to (m−1)p because the host being rejuvenated
cannot provide any services. When we use the warm-VM
reboot, the degradation of the total throughput lasts only
for short duration. The total throughput is restored to mp
soon after the rejuvenation. However, when we use the
cold-VM reboot, which is a normal reboot of a VMM,
the degradation of the total throughput lasts for longer
duration. In addition, the total throughput is degraded
due to resource contention and cache misses.

6.1.1 Warm-VM Reboot
To calculate the total throughput, we need the availabil-
ity and the performance degradation for each VM. The
total throughput is the sum of the average throughput
for each VM in all hosts providing services. We let ω
denote the rate of the performance degradation after the
warm-VM reboot (0 ≤ ω ≤ 1) and Rvmm its duration.
When suspended VMs are resumed at the warm-VM
reboot, their performance is degraded most likely due
to resource contention between VMs as described in
Section 5.4. The average performance degradation due
to the VMM rejuvenation is ωRvmm/Tvmm.

On the other hand, the OS rejuvenation can cause
performance degradation both due to cache misses just
after rebooting an operating system and due to resource
contention while the other operating systems are being
rebooted. We let Ros denote the sum of the duration
of these two kinds of performance degradation and δ
the average rate of the performance degradation for
the duration (0 ≤ δ ≤ 1). Since the OS rejuvena-
tion is performed Nw times in Tvmm, the average per-
formance degradation due to the OS rejuvenation is
NwδRos/Tvmm.

Therefore, the total throughput in the system using the
warm-VM reboot is defined by

Pw =

(
Aw − ωRvmm +NwδRos

Tvmm

)
mp. (3)

6.1.2 Cold-VM Reboot
Like the warm-VM reboot, the performance degradation
is also caused by the VMM rejuvenation and the OS re-
juvenation. We let ω′ denote the rate of the performance
degradation due to the cold-VM reboot (0 ≤ ω′ ≤ 1) and
R′

vmm its duration. ω′ and R′
vmm are different from ω

and Rvmm, respectively. Unlike the warm-VM reboot, the
cold-VM reboot needs to reboot the operating systems
as well as the VMM. At that time, all the operating
systems in the VMs are rebooted in parallel and access
a disk heavily due to cache misses after the reboots.
This factor increases the rate and the duration of the
performance degradation. Using these parameters, the
average performance degradation due to the VMM re-
juvenation is ω′R′

vmm/Tvmm. On the other hand, the

0

200

400

600

800

0 100 200 300 400 500 600 700 800
elapsed time (sec)

0

200

400

600

800

(b) cold-VM reboot

pe
r-

ho
st

 th
ro

ug
hp

ut
 (

re
qs

/s
ec

)

(a) warm-VM reboot

11 VMs

1 VM

Rvmm

ω’

ω

R’vmm

Fig. 12. The changes of the per-host throughputs during
the VMM rejuvenation.

0 20 40 60 80 100 120
elapsed time (sec)

0

200

400

600

800

(r
eq

s/
se

c)
pe

r-
ho

st
 th

ro
ug

hp
ut 11 VMs

rejuvenated VM

Fig. 13. The change of the per-host throughput during the
OS rejuvenation.

average performance degradation due to the OS reju-
venation is ⌊Nc⌋δRos/Tvmm. For simplicity, we assume
that the VMM rejuvenation is not triggered while the
performance is degraded just after the OS rejuvenation.

Therefore, the total throughput in the system using the
cold-VM reboot is defined by

Pc =

(
Ac −

ω′R′
vmm + ⌊Nc⌋δRos

Tvmm

)
mp. (4)

6.1.3 Experimental Results

To estimate Pw and Pc, we examined the per-host
throughput while we performed the VMM rejuvenation
and the OS rejuvenation. We used the same experimental
setup as that in Section 5, except that we changed the
disk of the server machine with a 147 GB of SCSI disk.
We created 11 VMs and allocated 1 GB of memory to
each VM. The Apache web server ran in each VM and
served 5,000 files of 128 KB, all of which were cached on
memory of each VM. Note that this workload is different
from that in Section 5.6 because the VM configuration is
different. We repeated sending requests to each server
by using 11 httperf processes. The request rate of each
httperf was 50 requests/sec.

Fig. 12 shows the changes of the per-host throughputs
when the warm-VM reboot and the cold-VM reboot
were performed for the VMM rejuvenation. The per-host
throughput p at a normal time was 560 requests/sec.
This figure also shows the changes of the throughput
of one VM. Fig. 13 shows the change of the per-host
throughput when an operating system in a VM is re-
booted for the OS rejuvenation.

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 11

For the warm-VM reboot, the average downtime
Dw(11) was 59 seconds. The per-host throughput was
degraded until all the VMs were resumed. It took time
for resuming all the VMs most likely due to resource
contention between VMs. The rate of the performance
degradation ω was 0.61 and its duration Rvmm was 25
seconds. For the cold-VM reboot, the average downtime
Dc(11) was 219 seconds. After all the operating systems
were booted again, the per-host throughput was largely
degraded for a long time because of cache misses in
all the operating systems. The rate of the performance
degradation ω′ was 0.72 and its duration R′

vmm was 397
seconds.

For the OS rejuvenation, the downtime Dos was 41
seconds. The throughput of an operating system was
largely degraded while the other operating systems were
rebooted. The sum of the duration is (n− 1)Dos. On the
other hand, the throughput was not degraded after the
reboot of an operating system because the request rate
was not too large to degrade the throughput. From these
results, the rate of the performance degradation δ was
0.35 and its duration Ros was 410 seconds.

6.2 VM Migration

Instead of suspending or shutting down VMs when the
VMM rejuvenation is performed, we can migrate them
to another host. Using this technique, we can move all
the VMs on a source host to a destination host before the
VMM rejuvenation is started and then reboot the VMM
on the source host. The migrated VMs can continue to
run on the destination host while the VMM is rebooted
on the source host. The migration mechanism suspends
a VM, transfers its memory image and execution state
through the network, and resumes it on the destination
host. The storage used by the VM is shared between
these two hosts. These two hosts are located in the same
network segment to deliver network packets after migra-
tion. Although one extra host is needed for a destination
host, the host can be shared among the remaining hosts
in a cluster.

In particular, live migration [24] in Xen and VMotion
in VMware [11] achieve negligible downtime of services
provided by a migrated VM. Non-live migration stops
a VM when starting migration whereas live migration
transfers the memory image of a VM without stopping
the VM. After the VMM transfers the whole memory
image, it repeats transferring the changes in the memory
image from the previous transmission until the changes
become small. Finally, the VMM stops the VM and
transfers the remaining changes and the execution state
of the VM. To minimize the impact on services using
the network in the other VMs, live migration can also
control the transmission rate adaptively.

However, when we use migration, the total through-
put is (m− 1)p even when no hosts are being migrated
because one host is reserved as a destination host for
migration. This is (m − 1)/m of the total throughput in

a cluster environment where migration is not used. This
is critical if m is not large enough.

6.2.1 Non-live Migration

To define the total throughput in the system using
non-live migration, we first define the availability. The
availability is defined by

Am = 1− Dm +NmDos

Tvmm

where Dm is the downtime due to non-live migration.
Nm is the average number of the OS rejuvenation per-
formed in Tvmm and defined by (Tvmm −Dm)/Tos.

The performance of a VM is degraded by the migra-
tion of the other n−1 VMs because transferring the large
memory image consumes CPU time and the network
bandwidth and disturbs services in the other VMs. We
let γ denote the rate of the performance degradation
(0 ≤ γ ≤ 1). Its duration is (n − 1)Dm because the time
needed to migrate one VM is Dm. Therefore, the average
performance degradation due to non-live migration is
γ(n−1)Dm/Tvmm. We assume that VMs are migrated one
by one because migrating them in parallel increases the
downtime of each VM. On the other hand, the average
performance degradation due to the OS rejuvenation is
NmδRos/Tvmm, which is similar to that in the warm-VM
reboot.

Therefore, the total throughput is defined by

Pm =

(
Am − γ(n− 1)Dm +NmδRos

Tvmm

)
(m− 1)p. (5)

Note that we can simultaneously use only m − 1 hosts
for providing services when we use migration.

6.2.2 Live Migration

In the system using live migration, the availability is
defined by

Al = 1− NlDos

Tvmm

where Nl is the average number of the OS rejuvenation
and defined by Tvmm/Tos. When using live migration,
the downtime is caused only by the OS rejuvenation.

The average performance degradation due to live
migration is γ′Ml/Tvmm. γ′ is the rate of the performance
degradation (0 ≤ γ′ ≤ 1) and Ml is the whole migration
time. The duration of the performance degradation is
equal to Ml. On the other hand, the average performance
degradation due to the OS rejuvenation is NlδRos/Tvmm.

Therefore, the total throughput is defined by

Pl =

(
Al −

γ′Ml +NlδRos

Tvmm

)
(m− 1)p. (6)

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 12

0

200

400

600

800

0 50 100 150 200 250
elapsed time (sec)

0

200

400

600

800

(a) non-live migration

(b) live migration

11 VMs

1 VM

to
ta

l t
hr

ou
gh

pu
t (

re
qs

/s
ec

)

γ’

Ml

Fig. 14. The changes of the total throughputs during non-
live and live migration.

0 200 400 600 800 1000 1200
elapsed time (sec)

0

200

400

600

800

(r
eq

s/
se

c)
to

ta
l t

hr
ou

gh
pu

t

11 VMs

1 VM

Fig. 15. The change of the total throughput during live
migration with adaptive rate control.

6.2.3 Experimental Results
To estimate Pm and Pl, we examined the sum of the
per-host throughputs of both the source and destination
hosts while we performed Xen’s migration. This means
the total throughput when m = 2. For the source host,
we used the same PC as used in Section 6.1. For the
destination host, we used a PC with two Dual-Core Xeon
3.0 GHz processors, 12 GB of PC2-5300 DDR2 SDRAM
memory, a 147 GB of 15,000 rpm SAS disk, and Gigabit
Ethernet NICs. Since we could not install Xen 3.0.0,
which we have modified to develop RootHammer, into
this machine, we used Xen 3.1.0. To successfully migrate
VMs, we also used the same version of Xen on the
source host. We used the NFS server as a storage shared
between these two hosts. For the NFS server machine,
we used a PC with a Core 2 Duo E6700 processor, 2 GB
of PC2-6400 DDR2 SDRAM memory, a 250 GB of SATA
disk, and a Gigabit Ethernet NIC. These three PCs were
connected with a Gigabit Ethernet switch.

Fig. 14 shows the changes of the total throughputs for
non-live migration and live migration. Fig. 15 shows that
for live migration with adaptive rate control. In Xen’s
adaptive rate control, the transmission rate starts from
100 Mbps and increases up to 500 Mbps according to
the rate at which the memory contents of the VM being
migrated are changed.

For non-live migration, the total throughput was
largely degraded while each VM was being migrated.
It was restored at the end of the migration of each VM
because the system finished to transfer the large memory
image and resumed the migrated VM. However, the
throughput of the migrated VM became zero in most
of the period. One of the possible reasons is that the

0 2000 4000 6000 8000 10000 12000 14000
number of hosts (m)

0.9980

0.9982

0.9984

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

pe
rf

or
m

an
ce

 in
de

x

warm-VM reboot
cold-VM reboot
non-live migration
live migration
live migration (adaptive)

Fig. 16. The comparison of the total throughputs of five
techniques.

destination host uses most of CPU time for handling
the successive migration. In fact, the CPU utilization of
the destination host was very high. Consequently, as
the number of VMs running on the source host was
decreasing by migration, the total throughput was also
decreasing. The average downtime Dm of each VM was
15 seconds.

The change of the total throughput in live migration
without adaptive rate control is very similar to that
in non-live migration. The difference is that a VM is
running during its migration. Due to this overhead,
it took slightly longer time than non-live migration.
The whole migration time Ml was 181 seconds. On the
other hand, when adaptive rate control was used in live
migration, the change of the total throughput was largely
different. The whole migration time was much longer.
There was no performance degradation due to migration
during 350 seconds after starting migration. After that,
the performance was largely degraded. Due to the rate
control, the whole migration time Ml increased to 950
seconds.

The rate of the performance degradation due to non-
live migration γ was 0.60. For live migration, γ′ was 0.57
when we did not use adaptive rate control. The value
was 0.23 for live migration with adaptive rate control.

6.3 Comparison

We compare the total throughputs of the systems us-
ing various techniques described above, in terms of
the number of hosts m in a cluster. As a performance
index, we divide the total throughput estimated from
our measurement by the maximum total throughput of
m hosts. The maximum total throughput is the total
throughput of a cluster under the assumption that there
is no rejuvenation and all the hosts in a cluster are
simultaneously used for providing services. In our case,
that is mp. Fig. 16 plots the performance indexes for Pw,
Pc, Pm, and Pl (non-adaptive and adaptive), which were
obtained in the previous sections. We assumed that Tvmm

was 28 days and Tos was 7 days.

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 13

The performance index in the system using the warm-
VM reboot is always the highest and independent of the
number of hosts. On the other hand, the indexes in the
systems using migration depend on the number of hosts.
When the number of hosts is larger than about 11000,
the systems using non-live migration and live migration
without adaptive rate control excel the system using the
cold-VM reboot. In usual number of hosts (m < 1000),
however, the total throughput of the system using the
warm-VM reboot or the cold-VM reboot is much higher
than that using VM migration.

According to this analysis, the warm-VM reboot is also
useful in a cluster environment. It can keep high total
throughput by reducing the downtime of rejuvenated
hosts. On the other hand, for services that cannot be
replicated to multiple hosts, live migration is still useful.
It can prevent downtime by using an alternative host as
a spare.

7 RELATED WORK

Microreboot [25] enables rebooting fine-grained appli-
cation components to recover from software failure.
If rebooting a fine-grained component cannot solve
problems, microreboot recursively attempts to reboot a
coarser-grained component including that fine-grained
component. If rebooting a finer-grained component can
solve problems, the downtime of the application in-
cluding that component can be reduced. Microreboot
is a reactive technique, but proactively using it allows
micro-rejuvenation. Likewise, microkernel operating sys-
tems [26] allow rebooting only its subsystems imple-
mented as user processes. Nooks [27] enables restart-
ing only device drivers in the operating system. Thus,
microreboot and other previous proposals are fast re-
boot techniques for subcomponents. On the other hand,
the warm-VM reboot is a fast reboot technique for a
parent component while the state of subcomponents is
preserved during the reboot.

In this paper, we have developed mechanisms to
rejuvenate only a parent component when the parent
component is a VMM and the subcomponents are VMs.
Checkpointing and restart [28] of processes can be used
to rejuvenate only an operating system. In this case,
the parent component is an operating system and the
subcomponents are its processes. This mechanism saves
the state of processes to a disk before the reboot of
the operating system and restores the state from the
disk after the reboot. This is similar to suspend and
resume of VMs, but suspending and resuming VMs are
more challenging because they have to deal with a large
amount of memory. As we showed in our experiments,
simply saving and restoring the memory images of VMs
to and from a disk are not realistic. The warm-VM reboot
is a novel technique that hardly depends on the memory
size by preserving the memory images.

To speed up suspend and resume using slow disks,
several techniques are used. On suspend, VMware [11]

incrementally saves only the modification of the memory
image of a VM to a disk. This can reduce accesses to
a slow disk although disk accesses on resume are not
reduced. Windows XP saves compressed memory image
to a disk on hibernation. This can reduce disk accesses
not only on hibernation but also on resume. These tech-
niques are similar to incremental checkpointing [29] and
fast compression of checkpoints [30]. On the other hand,
the warm-VM reboot does not need any disk accesses.

Instead of using slow hard disks for suspend and re-
sume, it is possible to use faster disks such as solid state
drives (SSDs) and non-volatile RAM disks [31]. Since
most of the time for suspend and resume is spent to
access slow disks, faster disks can speed up suspend and
resume. However, such disks are much more expensive
than hard disks. Moreover, it takes time to copy the
memory images from main memory to disks on suspend
and copy them from disks to main memory on resume.
The warm-VM reboot needs neither such a special device
nor extra memory copy.

Recovery Box [32] preserves only the state of an oper-
ating system and applications on non-volatile memory
and restores them quickly after the operating system is
rebooted. Recovery Box restores the partial state of a
machine lost by a reboot while the warm-VM reboot
restores the whole state of VMs lost by a reboot. In
addition, Recovery Box speeds up a reboot by reusing
the kernel text segment left on memory. This is different
from our quick reload mechanism in that Recovery Box
needs hardware support to preserve memory contents
during a reboot.

For the file cache in operating systems, the Rio file
cache [33] can preserve dirty file caches through the
reboot of operating systems. Rio saves dirty file caches
to disks when an operating system is rebooted and
prevents any modification to files from being lost. Rio
also improves the performance of file systems because it
does not need to write back dirty file caches to disks pe-
riodically to prepare crashes. However, the performance
is degraded after operating systems are rebooted because
the file cache on memory is lost.

To mitigate software aging of domain 0, Xen provides
driver domains, which are privileged VMs for running
only device drivers for physical devices. Device drivers
are one of the most error-prone components [34], [35].
In a normal configuration of Xen, device drivers are
run in domain 0 and the rejuvenation of device drivers
needs to reboot domain 0 and the VMM. Driver domains
enable localizing the errors of device drivers inside
them and rebooting them without rebooting the VMM.
Thus, using driver domains reduces the frequency of the
rejuvenation of the VMM. However, when the VMM
is rebooted, driver domains as well as domain 0 are
rebooted because driver domains deal with physical
devices directly and cannot be suspended. Therefore,
the existence of driver domains increases the number of
domains to be rebooted and then increases the downtime
due to the VMM rejuvenation.

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 14

8 CONCLUSION

In this paper, we proposed a new technique for fast
rejuvenation of VMMs called the warm-VM reboot.
This technique enables only a VMM to be rebooted
by using the on-memory suspend/resume mechanism
and the quick reload mechanism. The on-memory sus-
pend/resume mechanism performs suspend and resume
of VMs without saving the memory images to any per-
sistent storage. The quick reload mechanism preserves
the memory images during the reboot of a VMM. The
warm-VM reboot can reduce the downtime and prevent
the performance degradation just after the reboot. We
have implemented this technique based on Xen and
performed several experiments to show the effective-
ness. The warm-VM reboot reduced the downtime by
74% at maximum and kept the same throughput after
the reboot. Also, we showed that the warm-VM reboot
also achieved the highest total throughput in a cluster
environment.

ACKNOWLEDGMENTS

This research was supported in part by JST, CREST.

REFERENCES
[1] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software

Rejuvenation: Analysis, Module and Applications,” in Proc. Int’l
Symp. Fault-Tolerant Computing, 1995, pp. 381–391.

[2] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi, “A
Methodology for Detection and Estimation of Software Aging,”
in Proc. Int’l Symp. Software Reliability Engineering, 1998, pp. 283–
292.

[3] L. Li, K. Vaidyanathan, and K. Trivedi, “An Approach for Esti-
mation of Software Aging in a Web Server,” in Proc. Intl. Symp.
Empirical Software Engineering, 2002, pp. 91–100.

[4] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Analysis of
Software Aging in a Web Server,” IEEE Trans. Reliability, vol. 55,
no. 3, pp. 411–420, 2006.

[5] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis of
Preventive Maintenance in Transactions Based Software Systems,”
IEEE Trans. Computers, 1998.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. Symp. Operating Systems Principles, 2003,
pp. 164–177.

[7] S. Garg, Y. Huang, C. Kintala, and K. Trivedi, “Time and Load
Based Software Rejuvenation: Policy, Evaluation and Optimality,”
in Proc. Fault Tolerance Symposium, 1995, pp. 22–25.

[8] K. Kourai and S. Chiba, “A Fast Rejuvenation Technique for
Server Consolidation with Virtual Machines,” in Proc. Int’l Conf.
Dependable Systems and Networks, 2007, pp. 245–254.

[9] M. Kanno, “Xen changeset 9392,” Xen Mercurial repositories.
[10] K. Fraser, “Xen changeset 11752,” Xen Mercurial repositories.
[11] VMware Inc., “VMware,” http://www.vmware.com/.
[12] K. Vaidyanathan and K. Trivedi, “A Measurement-Based Model

for Estimation of Software Aging in Operational Software Sys-
tems,” in Proc. Int’l. Symp. Software Reliability Engineering, 1999,
pp. 84–93.

[13] ——, “A Comprehensive Model for Software Rejuvenation,” IEEE
Trans. Dependable and Secure Computing, vol. 2, no. 2, pp. 124–137,
2005.

[14] V. Hanquez, “Xen changeset 8640,” Xen Mercurial repositories.
[15] Intel Corporation, Intel Virtualization Technology Specification for the

IA-32 Intel Architecture, 2005.
[16] AMD, AMD64 Virtualization Codenamed ”Pacifica” Technology: Se-

cure Virtual Machine Architecture Reference Manual, 2005.
[17] JBoss Group, “JBoss Application Server,” http://www.jboss.

com/.

[18] Hewlett-Packard, Intel, Microsoft, Phoenix Technologies, and
Toshiba, “Advanced Configuration and Power Interface Specifi-
cation, Revision 3.0b,” http://www.acpi.info/, 2006.

[19] A. Pfiffer, “Reducing System Reboot Time with kexec,” http://
www.osdl.org/.

[20] Apache Software Foundation, “Apache HTTP Server Project,”
http://httpd.apache.org/.

[21] D. Mosberger and T. Jin, “httperf: A Tool for Measuring Web
Server Performance,” Performance Evaluation Review, vol. 26, no. 3,
pp. 31–37, 1998.

[22] V. Castelli, R. Harper, P. Heidelberger, S. Hunter, K. Trivedi,
K. Vaidyanathan, and W. Zeggert, “Proactive Management of
Software Aging,” IBM J. Research & Development, vol. 45, no. 2,
pp. 311–332, 2001.

[23] K. Vaidyanathan, R. Harper, S. Hunter, and K. Trivedi, “Analysis
and Implementation of Software Rejuvenation in Cluster Sys-
tems,” in Proc. ACM SIGMETRICS Int’l Conf. Measurement and
Modeling of Computer Systems, 2001, pp. 62–71.

[24] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” in Proc.
Symp. Networked Systems Design and Implementation, 2005, pp. 1–11.

[25] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot – A Technique for Cheap Recovery,” in Proc. Symp.
Operating Systems Design and Implementation, 2004, pp. 31–44.

[26] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Teva-
nian, and M. Young, “Mach: A New Kernel Foundation for UNIX
Development,” in Proc. USENIX Summer Conference, 1986, pp. 93–
112.

[27] M. Swift, B. Bershad, and H. Levy, “Improving the Reliability of
Commodity Operating Systems,” in Proc. Symp. Operating Systems
Principles, 2003, pp. 207–222.

[28] B. Randell, “System Structure for Software Fault Tolerance,” IEEE
Trans. on Softw. Eng., vol. SE-1, no. 2, pp. 220–232, 1975.

[29] S. Feldman and C. Brown, “IGOR: A System for Program Debug-
ging via Reversible Execution,” in Proc. Workshop on Parallel and
Distributed Debugging, 1989, pp. 112–123.

[30] J. Plank, J. Xu, and R. Netzer, “Compressed Differences: An
Algorithm for Fast Incremental Checkpointing,” University of
Tennessee, Tech. Rep. CS–95–302, 1995.

[31] GIGABYTE Technology, “i-RAM,” http://www.gigabyte.com.
tw/.

[32] M. Baker and M. Sullivan, “The Recovery Box: Using Fast Recov-
ery to Provide High Availability in the UNIX Environment,” in
Proc. USENIX Summer Conf., 1992, pp. 31–44.

[33] P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Low-
ell, “The Rio File Cache: Surviving Operating System Crashes,”
in Proc. Int’l Conf. Architectural Support for Programming Languages
and Operating Systems, 1996, pp. 74–83.

[34] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An
Empirical Study of Operating Systems Errors,” in Proc. Symp.
Operating Systems Principles, 2001, pp. 73–88.

[35] A. Ganapathi, V. Ganapathi, and D. Patterson, “Windows XP
Kernel Crash Analysis,” in Proc. Large Installation System Admin-
istration Conf., 2006, pp. 149–159.

Kenichi Kourai received his PhD degree from
the University of Tokyo in 2002. Since 2008,
he is an associate professor in Department of
Creative Informatics at Kyushu Institute of Tech-
nology, Japan. He has been working on oper-
ating systems. His current research interest is
in dependable and secure systems using virtual
machines. He is a member of the IEEE Com-
puter Society and the ACM.

TRANSACTION ON DEPENDABLE AND SECURE COMPUTING 15

Shigeru Chiba received his PhD degree from
the University of Tokyo in 1996. Since 2008,
he is a professor in Department of Mathemati-
cal and Computing Sciences at Tokyo Institute
of Technology, Japan. He has been working
on programming language design and middle-
ware/operating systems. His current research
interest is in software composition from various
aspects. Dr. Chiba has been also active as a
program committee member of a number of con-
ferences and journals, including ACM OOPSLA

and ACM/IEEE MODELS.

