
A Self-protection Mechanism against Stepping-stone Attacks for IaaS Clouds

Kenichi Kourai
Kyushu Institute of Technology

kourai@ci.kyutech.ac.jp

Takeshi Azumi
Tokyo Institute of Technology
azumi@csg.is.titech.ac.jp

Shigeru Chiba
The University of Tokyo

chiba@acm.org

Abstract—For Infrastructure-as-a-Service (IaaS) clouds,
stepping-stone attacks via hosted virtual machines (VMs) are
critical. This type of attack uses compromised VMs as stepping
stones for attacking the outside hosts. Not only compromised
VMs but also IaaS providers are regarded as attackers. For
self-protection, IaaS clouds should perform active response
against stepping-stone attacks. However, it is difficult to stop
only outgoing attacks at edge firewalls of clouds because edge
firewalls can use only information in network packets. In this
paper, we propose a new self-protection mechanism against
stepping-stone attacks for IaaS clouds, which is called xFilter.
xFilter is a packet filter running in the virtual machine monitor
(VMM) underlying VMs and achieves pinpoint active response
by using VM introspection. VM introspection enables xFilter in
the VMM to obtain information on packet senders directly
from the memory of VMs. When xFilter detects outgoing
attacks, it automatically generates appropriate filtering rules
with information on sender processes. Our experiments showed
that xFilter could stop only outgoing attacks as much as
possible. The performance degradation due to xFilter was less
than 13 % in usual cases.

Keywords-Virtual machines, operating systems, cloud com-
puting, packet filtering, outgoing attacks

I. INTRODUCTION

Infrastructure as a service (IaaS) such as Amazon EC2 [1]
provides virtual machines (VMs) for the users. The users
set up their own operating systems and applications in the
VMs. Unfortunately, there is no guarantee that the systems
inside VMs are well maintained. All security patches are
not always applied to all software in all VMs. If the outside
attackers compromise VMs in IaaS clouds, they can mount
attacks to the outside hosts by using the VMs, which
is known as stepping-stone attacks [2]. For example, the
attackers may perform portscans to the outside hosts to find
new victims. They may launch denial-of-service attacks.

Therefore, self-protection against such attacks is indis-
pensable for IaaS clouds. If a VM in an IaaS cloud is used
as a stepping stone for attacking the outside hosts, not only
the user of the compromised VM but also the IaaS provider
itself may be responsible for the attack. The IaaS provider
also becomes an attacker as well as a victim. If an outgoing
attack is detected, the IaaS cloud should perform active
response against the attack. One of the methods for active
response is updating firewall rules. Typically, a new rule
for preventing the detected attack is added to the firewalls
located at the edge of the IaaS cloud. The rule blocks the

packets for the attack from the compromised VM and stops
the attack against the outside hosts.

A self-protection mechanism for IaaS clouds should stop
only attacks outgoing from compromised VMs. However,
active response usually performed at edge firewalls is not
pinpoint because edge firewalls can filter packets on the
basis of only information contained in the packets. For
example, edge firewalls would have to block all the packets
from the compromised VM to stop portscans. Even when
only several applications or users have been compromised,
all the applications and users cannot send any packets to
the outside. If IaaS clouds could use personal firewalls
inside VMs, pinpoint active response could be achieved by
using information inside the guest operating systems such as
processes and users. This is not an option for IaaS providers
because it is difficult to enforce such cooperation on the
users.

To solve this dilemma, we propose a new self-protection
mechanism, named xFilter, for IaaS clouds. xFilter is a
packet filter that runs in the virtual machine monitor (VMM)
underneath VMs and achieves pinpoint active response by
using VM introspection [3]. VM introspection enables xFilter
to inspect the memory of VMs and obtain information in
guest operating systems without interacting with them. Us-
ing information on sender processes, for example, xFilter can
deny only packets sent from particular processes or users.
When xFilter detects an outgoing attack, it automatically
identifies the attack source and generates a new filtering rule
to stop the stepping-stone attack.

We have implemented xFilter in Xen [4]. xFilter is
performance-critical because it performs VM introspection
in the middle of packet transmission. To reduce the over-
heads of VM introspection, we introduced several optimiza-
tions. Although VM introspection is often implemented in
the privileged VM called domain 0 [5], [6], we embedded
the component for introspecting VMs into the VMM. The
VMM can directly access the memory of VMs without
any overheads. In addition, xFilter has the decision cache,
which allows applying the same filtering decision for the
packets flowed in the same TCP connection. Thanks to these
optimizations, performance degradation due to xFilter was
less than 13 % in usual cases.

The rest of this paper is organized as follows. Sec-
tion II describes the issues of previous self-protection against



Figure 1. Self-protection using edge firewalls.

stepping-stone attacks. Section III presents xFilter, which is
a new self-protection mechanism using VM introspection.
Section IV explains its implementation based on Xen and
Section V shows our experimental results for the effective-
ness. Section VI examines related work and Section VII
concludes the paper.

II. SELF-PROTECTION AGAINST STEPPING-STONE

ATTACKS

A self-protection mechanism for IaaS clouds should stop
only stepping-stone attacks via VMs. In other words, VMs
should provide services continuously as much as possible.
Even if a part of the system inside a VM is compromised,
the rest is usually not compromised and does not mount
outgoing attacks. For example, when the Apache web server
is compromised through its vulnerability, only the privileges
of the user www-data are taken over at worst. The other
applications such as the Postfix mail server are still running
legitimately because the user www-data cannot interfere
with the other users’ processes. Therefore, such legitimate
applications should be able to communicate with the outside
hosts. Here we define applications that do not perform out-
going attacks as legitimate. In addition, if a self-protection
mechanism often stops the communication of legitimate
applications by false positives, the users would change their
IaaS providers. At worst, they might sue the providers.

In IaaS clouds, packet filtering at edge firewalls is often
performed for active response against stepping-stone attacks,
as illustrated in Figure 1. However, it is difficult to deny
only outgoing packets used for stepping-stone attacks at
edge firewalls because edge firewalls can use only the
information included in the network packets, such as IP
addresses and port numbers. Packet filtering based on source
IP addresses is the simplest active response. If an IaaS
cloud adds only one rule for denying all the packets from
a compromised VM, it can completely prohibit outgoing
attacks from the VM. This active response is reasonable
when the whole system is compromised. When the system
is partially compromised, legitimate applications in the VM
cannot also send any packets to the outside.

Using more information in packet headers enables more
pinpoint active response, but it is still difficult to stop only

stepping-stone attacks. Packet filtering based on destination
IP addresses can deny packets sent to a specified host while
it can allow packets to be sent to the others. Adding such
filtering rules to edge firewalls is reasonable if stepping-
stone attacks are mounted only to a small number of target
hosts. It is not realistic to add a large number of rules. For
example, the intruders may perform SMTP scans to many
hosts to find vulnerable mail servers. In such a case, packet
filtering based on destination port numbers can prohibit
sending packets to only specific services at all hosts. By
port 25 blocking, the intruders cannot perform SMTP scans
to any hosts. However, legitimate applications cannot send e-
mail as well. Even if intrusion detection systems in the VMs
detect intrusion and send alert mails to the administrators of
the VMs, those e-mails would be blocked at edge firewalls.

Using information on source port numbers is promising
for pinpoint active response. It enables edge firewalls to
prohibit only particular network connections. For exam-
ple, if edge firewalls detect illegal TCP connections, they
can add filtering rules and block only those connections.
Unfortunately, specifying source port numbers is too fine-
grained. Although such rules are effective for long-lived
network connections such as SSH, they are useless for short-
lived connections such as portscans. When filtering rules are
added to edge firewalls, those short-lived connections would
have been already closed.

On the other hand, using personal firewalls inside VMs
can achieve appropriately pinpoint active response. Personal
firewalls can use information on sender processes for packet
filtering because they reside in the operating system kernels.
For example, iptables [7] in Linux and ipfw in FreeBSD
allow process IDs and user IDs of packet senders as a part of
filtering rules. They can block outgoing packets only when
attacks are mounted by processes or users that are taken
over by the intruders. Therefore, legitimate applications and
users can communicate with the outside hosts. However,
IaaS providers usually have no privileges for adding rules
to the personal firewalls in VMs. Although they have to
cooperate with the administrators of VMs, all of them are
not always cooperative.

III. XFILTER

For appropriately pinpoint active response against
stepping-stone attacks, we propose a new self-protection
mechanism for IaaS clouds, named xFilter. xFilter automat-
ically detects outgoing attacks and stops only them on the
basis of information on packet senders. In this paper, we
do not assume that the attackers alter the operating system
kernels in VMs. This type of attack can be detected by the
VMM [3], [8].

A. VMM-level Packet Filtering

xFilter is a packet filter running in the VMM as in
Figure 2. The VMM is underlying software that runs VMs



process

guest OS

introspectpacket

discard

transmit

VMM

VM

xFilter

Figure 2. xFilter running in the VMM.

on top of it. xFilter can intercept all network packets from
VMs because all packets are transmitted to the outside via
the VMM. Unlike edge firewalls, xFilter can also intercept
packets between VMs even in the same host. This prevents
stepping-stone attacks via one VM to another in a host.
Moreover, xFilter is isolated and protected from all the VMs.
It is difficult for the intruders in VMs to compromise xFilter
in the VMM.

To stop only outgoing attacks from VMs, xFilter uses
information inside guest operating systems by using VM
introspection [3]. In principle, the VMM cannot know such
information because it is unaware of the internals of VMs. In
this sense, the VMM is similar to edge firewalls. One of the
differences is that the VMM can directly access the memory
of VMs. VM introspection is a technique for enabling the
VMM to inspect data used by guest operating systems. It
analyzes the memory of VMs on the basis of the information
on the internal structures of guest operating systems.

Using VM introspection, xFilter obtains information on
packet senders, such as process IDs and user IDs, from
guest operating systems. For each packet, it searches a
network socket used for sending the packet on the basis
of IP addresses and port numbers. A process that opens the
found socket is the sender process of the packet. The owner
of the process is the user sent the packet. As such, xFilter in
the VMM can achieve appropriately pinpoint active response
as personal firewalls in VMs can. For example, xFilter can
block only the packets from processes used for stepping-
stone attacks by specifying their process IDs or user IDs.

The packet filtering in xFilter is performed as follows.
When a process sends a packet, the guest operating system
writes it to a virtual network interface card (NIC). The VMM
traps that event and passes the packet to xFilter. xFilter
obtains the process ID and user ID of the packet sender
through VM introspection. If the destination and the sender
of the packet match one of the filtering rules, xFilter discards
the packet. Otherwise, it transmits the packet to the network.

deny ip * port * vm 1 pid 1234 uid 501
deny ip * port * vm 1 pid * uid 501

Figure 3. The rules added by xFilter for preventing portscans.

B. Automatic Rule Generation

To achieve self-protection of IaaS clouds, xFilter auto-
matically generates filtering rules when it detects outgoing
attacks from VMs. The detector of xFilter has two phases:
detection and inspection. In the detection phase, xFilter
examines outgoing packets with only information included
in packet headers. Since the detector of xFilter in this phase
is the same as the ones for edge firewalls, the overhead of
the attack detection is minimum.

Once xFilter detects an attack, it changes into the inspec-
tion phase. In this phase, whenever xFilter receives a packet,
it identifies the sender process from the packet information
by using VM introspection. When xFilter detects an attack
again, it generates a deny rule that consists of the IP address
and port number of the destination host, the ID of the source
VM, and the process ID and user ID of the attack source.
For example, when a process whose ID is 1234 and owner’s
user ID is 501 performs portscans against various hosts,
xFilter generates the first rule in Figure 3. Since this rule
is process-level, the other processes can send packets. The
rule is effective as long as the specified process continues
portscans.

To increase the effectiveness of the generated rules, xFilter
merges a generated rule with the existing ones as necessary.
If the attack source changes frequently, process-level rules
become ineffective soon. When there are many rules in
which only process IDs are different, xFilter merges them
into one new rule in which the process ID is a wildcard,
as shown in the second rule in Figure 3. This rule is user-
level and effective as long as the specified user continues
portscans. However, this is coarser-grained than process-
level rules, so that the specified user cannot send any
packets. If the root privileges are taken, the attackers can
change even user IDs frequently as well. In this worst case,
xFilter generates one new rule in which the user ID is also a
wildcard. Since this rule specifies neither process ID nor user
ID, it becomes the same rule as one used at edge firewalls.

C. Limitation

xFilter can prevent only outgoing attacks such as
portscans, SMTP scans, brute force attacks against SSH,
DoS attacks, worms, and so on. Filtering rules are different
only in how to specify the destination IP address and port
number. However, xFilter cannot perform pinpoint active
response when the attackers and legitimate applications use
server processes shared in a VM to send packets. For
example, the attackers can use a local SMTP server to mount
SPAM attacks whereas the other applications use the same



real
driver

netback

VMM

domain 0 domain U

netfront

process

guest OS

introspect

host OS

inspector

coredetector

xFilter

Figure 4. The architecture of xFilter in Xen.

server. When xFilter detects the SPAM attacks, it adds a
rule for denying all the packets from the SMTP server,
which is regarded as the process of an attack source. This
rule blocks e-mails from not only the attackers but also
legitimate applications. To achieve pinpoint active response,
applications should use external SMTP servers to send e-
mails. Specifically, Perl and PHP scripts in web servers
should use Net::SMTP and PEAR::Mail, respectively. If
applications do not use a local SMTP server, xFilter could
block e-mails on the basis of the sender processes.

IV. IMPLEMENTATION

We have implemented xFilter in Xen 3.4.2 [4]. Xen
provides a privileged VM called domain 0 and regular VMs
called domain Us. Domain 0 is often regarded as a part of
the VMM because it handles I/O for domain Us. We targeted
para-virtualized Linux 2.6.18 for the x86-64 architecture as
guest operating systems running in domain Us.

A. System Architecture

As illustrated in Figure 4, xFilter consists of three com-
ponents: the core, the detector, and the inspector. When a
process issues system calls such as send in domain U, the
operating system kernel in domain U transmits a packet with
the front-end network driver called netfront. The netfront
driver passes the packet to the back-end driver called netback
in the kernel of domain 0. Then the netback driver invokes
the xFilter core, instead of invoking a real network driver.
If the core decides to deny sending that packet, it discards
the packet. Otherwise, it passes the packet to the xFilter
detector. If the detector judges that the packet is used for
attacks, it generates a new filtering rule and discards the
packet. If the packet is not for attacks, the detector passes
the packet to the real driver and the driver transmits it to the
network.

When the xFilter core needs information on packet
senders to decide whether packets are permitted for transmis-
sion, it invokes the xFilter inspector in the VMM. It issues

a hypervisor call to the VMM and the hypervisor call takes
the ID of the source domain U and the packet header as its
parameters. The inspector introspects domain U to identify
the packet sender and makes a decision on packet filtering
with sender information. Then the hypervisor call returns
the decision to the core. Also, the xFilter detector invokes
the inspector to identify the attack source in the inspection
phase.

The reason for running only the xFilter inspector in the
VMM is efficiency. Although the xFilter core and detector in
domain 0 could introspect domain U by mapping its memory
pages, the overhead is larger. The VMM can directly access
the memory of domain U because it manages the whole
memory in the system. In addition, xFilter can handle
all packets only in domain 0 until stepping-stone attacks
are detected. While it has no filtering rules, the core can
immediately pass packets to the detector without invoking
the inspector in the VMM. If the all components of xFilter
ran in the VMM, the netback driver would have to always
issue the hypervisor call to the VMM.

B. VM Introspection

To access an object in the guest operating system from the
outside of domain U, the xFilter inspector has to translate
virtual addresses in domain U to machine addresses. In Xen,
the VMM uses the machine address to access the whole
memory. Domain U is given pseudo-physical memory for
the illusion of its own physical memory. First, the inspector
looks up the page tables in domain U and translates a virtual
address to a pseudo-physical address in the domain U. Next,
it looks up the P2M table in the VMM and translates the
pseudo-physical address to a machine address. The P2M
table maintains the mapping from pseudo-physical frame
numbers to machine frame numbers, which are consecutively
allocated for memory pages.

The xFilter inspector uses the debug information of the
operating system kernels to obtain information on the data
structures and the addresses allocated to global symbols
in guest operating systems. For example, in Linux, the
task struct structure contains process information such as
its ID and owner’s user ID. The init task symbol points
to the task struct object for the init process. xFilter can
obtain such information from its kernel image compiled
with the debug option. Such a kernel image contains debug
information in the DWARF [9] format.

Figure 5 illustrates how the xFilter inspector traverses
kernel data structures to find a process sending a particular
packet. The inspector first traverses the process list in
domain U, which consists of all task struct objects. Since
the process list is circular, the inspector can examine all the
processes. While traversing the process list, the inspector
deeply inspects the socket list that each process owns.
If the inspector finds the inet sock object whose source
and destination IP addresses and port numbers match the



init_task

task_struct task_struct...task_struct

pid, uid

files_struct

fdtable

file

inet_sock

saddr, daddr
sport, dport

pid, uid

file

socket

pid, uid

...

files_struct

fdtable

files_struct

fdtable

Figure 5. The traversal of kernel data structures.

target packet, it regards the process owning that object as
the sender. When one socket is shared between multiple
processes by spawning the process that created the socket,
the inspector regards the original process as the sender. This
approach is the same as that in iptables [7]. Since spawned
processes are appended to the tail of the process list, the
inspector can easily find such a process by traversing the
list from the head.

If an appropriate inet sock object is not found, a raw
socket is probably used for sending the packet. Raw sockets
enable the user to assemble packets with protocol headers.
Therefore, the inet sock objects for raw sockets do not have
correct information on IP addresses and port numbers. In this
case, the xFilter inspector regards all the processes that open
any raw sockets as the senders.

The xFilter inspector can optimize this traversal when it
decides whether a packet matches one of the filtering rules or
not. While the inspector traverses the process list, it checks
whether the ID or owner of each process matches one of the
filtering rules. If both do not match any rules, the inspector
can skip the deep traversal of the socket list opened by the
process. Only for a process whose ID or owner matches at
least one of the rules, the inspector inspects sockets that the
process opens.

To introspect the guest operating system consistently, the
xFilter inspector checks whether the guest operating system
acquires locks for manipulating data structures. For the
process list, the inspector examines the spin lock used for
atomically adding and removing a process. If the spin lock is
not acquired by the guest operating system, the inspector can
traverse the process list safely. It does not need to acquire
that spin lock for exclusive access because domain U is
paused during VM introspection and it does not compete
for the lock. If the guest operating system acquires that lock,
the inspector aborts VM introspection and attempts to handle
that packet after a while.

C. Decision Cache

The xFilter core has decision cache for reducing the
overhead of VM introspection. The decision cache stores the
decisions made by the xFilter inspector. Packets flowed in
the same connection hit on the decision cache. In this case,
the core reuses the decision obtained from the decision cache
instead of invoking the inspector. Even if the core invokes
the inspector, it would obtain the same decision as the cached
one in most cases. When a sender process changes its owner,
the latest decision by the inspector may be different from
the cached one. However, xFilter applies the cached decision
because packets in the same connection should be related to
the original process and owner.

For TCP connections, the xFilter core manages the deci-
sion cache based on the TCP control bits in packet headers.
When the core receives a packet with the SYN flag set,
it invokes the xFilter inspector and then adds a new entry
to the decision cache. The SYN flag is set when a new
connection is being established. The entry includes source
and destination IP addresses and port numbers as a packet
information and allow or deny as a decision. When the core
receives a packet with the FIN or RST flag set, it removes
the corresponding entry. The FIN flag is set when an existing
connection is terminated while the RST flag is set when a
connection is reset. For the other packets in which the above
flags are not set, the core looks up the decision cache. The
decision cache manages its cache entries in a least-recently-
used (LRU) manner. If there is no matching entry, the core
simply invokes the inspector.

V. EXPERIMENTS

We performed experiments for demonstrating the effec-
tiveness of xFilter and examining its overheads. Since VM
introspection used by xFilter is time-consuming, it can affect
the network performance largely. For a server machine, we
used a PC with one Intel Core i7 processor 860, 8 GB
of memory, and a Gigabit Ethernet NIC. The VMM was
Xen 3.4.2 and the guest operating systems in domain 0 and
domain U were Linux 2.6.18. We allocated 7 GB of memory
to domain 0 and 1 GB to domain U. For a client machine,
we used a PC with one Athlon 64 processor 3500+, 2 GB of
memory, and a Gigabit Ethernet NIC. These two machines
were connected with a Gigabit Ethernet switch.

A. Self-protection against Portscans

To demonstrate that xFilter enables self-protection against
portscans, we have implemented a portscan detector as the
xFilter detector. The detector records the packet headers
and timestamps and detects portscans if packets were sent
to many ports at an excessive rate. Then we performed
portscans from a victim VM to the outside hosts using nmap.
We attempted both normal TCP scans using regular sockets
and TCP SYN scans using raw sockets. First, we ran one
nmap process in the VM. As a result, xFilter could detect



0 200 400 600 800 1000
number of sockets

0

20

40

60

80

0 200 400 600 800 1000
number of processes

0

20

40

60

80

in
tr

os
pe

ct
io

n 
tim

e 
(u

s)

(a) process (b) socket

Figure 6. The introspection time for the various numbers of processes and
sockets.

the both types of portscans and stop the successive attacks
by automatically generating a filtering rule like the first rule
in Figure 3. We confirmed that the other processes such as
SSH could communicate with the outside hosts under this
rule.

Next, we ran many nmap processes in the VM by starting
another nmap process after one nmap process finished a
sequence of portscans. In this case, xFilter also detected the
portscans and generated filtering rules like the first rule in
Figure 3 for each process. After we continued the portscans,
xFilter automatically merged these rules into one rule like
the second rule in Figure 3 to stop any portscans from the
same user. The user could not communicate with any outside
hosts due to this rule, but the other users could still use the
network.

B. Overheads of VM Introspection

To examine the overhead of VM introspection, we mea-
sured the time needed for executing the xFilter inspector.
First, we changed the number of processes that xFilter
inspected and measured the execution time. We specified a
non-existent process ID in a filtering rule so that the xFilter
inspector traversed the entire process list and checked the
process IDs of all the processes. In this experiment, the
inspector did not deeply inspect kernel data structures for
sockets. Figure 6 (a) shows the execution time, which is
proportional to the number of processes and takes 31 ns per
process.

Second, we changed the number of sockets that xFilter
inspected and measured the execution time of the xFilter
inspector. We specified an existent user ID in a filtering rule
so that the inspector deeply inspected sockets. Figure 6 (b)
shows the result. The time is approximately proportional to
the number of sockets and takes 83 ns per socket. This means
that the overhead of inspecting sockets is larger than that of
inspecting processes.

Third, we change the number of filtering rules for xFilter
and measured the execution time of the xFilter inspector. We

0 20 40 60 80 100
number of rules

0

20

40

60

80

in
tr

os
pe

ct
io

n 
tim

e 
(u

s)

Figure 7. The introspection time for the various numbers of rules.

0 200 400 600 800 1000
number of processes

0

200

400

600

800

1000

th
ro

ug
hp

ut
 (

re
q/

s)

no xFilter
w/ cache
w/o cache

0 200 400 600 800 1000
number of processes

0

0.5

1

1.5

2

2.5

3

re
sp

on
se

 ti
m

e 
(m

s)

w/o cache
w/ cache
no xFilter

Figure 8. The web performance for the various numbers of processes.

specified a non-existent process ID in all the rules. Figure 7
shows the result. The time is proportional to the number
of rules and takes 160 ns per rule. The number of rules is
usually not so large because xFilter merges rules.

C. Filtering Performance

To examine performance degradation in a real application,
we measured the throughput and the response time of the
Apache web server [10]. We used the ApacheBench bench-
marking tool, which ran in the client machine. ApacheBench
sent HTTP requests to the web server running in the VM
of the server machine. The size of the requested HTML file
was 50 KB. We conducted three experiments for various
numbers of processes, sockets, and rules. For each, we used
the same filtering rules as in the above experiments. We
measured the performance when the decision cache was
disabled and enabled to show its effectiveness. When we
did not use xFilter, the throughput was 966 requests/s and
the response time was 1.04 ms.

First, we measured the web performance when we
changed the number of processes. Figure 8 shows the
throughput and response time, which degrade in proportion
to the number of processes. When the decision cache was
enabled, the throughput and response time degraded by 7 %



0 200 400 600 800 1000
number of sockets

0

200

400

600

800

1000

th
ro

ug
hp

ut
 (

re
q/

s)

no xFilter
w/ cache
w/o cache

0 200 400 600 800 1000
number of sockets

0

0.5

1

1.5

2

2.5

3

re
sp

on
se

 ti
m

e 
(m

s)

w/o cache
w/ cache
no xFilter

Figure 9. The web performance for the various numbers of sockets.

0 20 40 60 80 100
number of rules

0

200

400

600

800

1000

th
ro

ug
hp

ut
 (

re
q/

s)

no xFilter
w/ cache
w/o cache

0 20 40 60 80 100
number of rules

0

0.5

1

1.5

2

2.5

3

re
sp

on
se

 ti
m

e 
(m

s)

w/o cache
w/ cache
no xFilter

Figure 10. The web performance for the various numbers of rules.

for realistic 300 processes. On the other hand, with the
decision cache disabled, the throughput was degraded by
13 % and the response time increased by 15 %. From
these results, the decision cache is effective for reducing
the overheads.

Next, we measured the web performance for various
numbers of sockets. The throughput and response time
are shown in Figure 9. The performance degradation is
proportional to the number of sockets. With the decision
cache enabled, the throughput and response time degraded
by 11 % for realistic 300 sockets. When the decision cache
was disabled, however, the throughput degradation was 28 %
and the response time was 39 % longer. This shows that the
number of sockets affects the web performance more largely.

Third, we changed the number of filtering rules and
measured the web performance. As shown in Figure 10, with
the decision cache enabled, the throughput degradation was
11 % and the response time increased by 9 % even for 100
rules. In reality, if 100 rules are needed, the system would
be completely compromised.

D. Overheads of Attack Detection

To examine the overheads of only attack detection by the
xFilter detector, we measured the performance of the web

0 200 400 600 800 1000
number of processes

0

200

400

600

800

1000

th
ro

ug
hp

ut
 (

re
q/

s)

no xFilter
detection phase
inspection phase

0 200 400 600 800 1000
number of processes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

re
sp

on
se

 ti
m

e 
(m

s)

inspection phase
detection phase
no xFilter

Figure 11. The performance for the various numbers of target processes.

0 200 400 600 800 1000
number of sockets

0

200

400

600

800

1000

th
ro

ug
hp

ut
 (

re
q/

s)

no xFilter
detection phase
inspection phase

0 200 400 600 800 1000
number of sockets

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

re
sp

on
se

 ti
m

e 
(m

s)

inspection phase
detection phase
no xFilter

Figure 12. The performance for the various numbers of target sockets.

server when xFilter had no filtering rules yet. Figure 11
and Figure 12 show the web performance when we changed
the number of processes and sockets, respectively. In the
detection phase, the performance degradation was only 1 %
because xFilter did not need VM introspection. This means
that the overhead of the xFilter detector is small enough until
outgoing attacks are detected. In the inspection phase, on
the other hand, the performance degraded as the numbers of
processes and sockets increased. The performance degraded
by about 11 % for 300 processes while it degraded by about
13 % for 300 sockets.

VI. RELATED WORK

The most similar system to xFilter is VMwall [11], which
is an application-level firewall using VM introspection. It
uses information on processes sending or receiving packets
for fine-grained packet filtering. One of the important dif-
ferences is that VMwall performs VM introspection using a
process in domain 0. According to our experience, this de-
grades the network performance severely, particularly, when
large numbers of processes and sockets are to be inspected
in domain U. Since xFilter performs VM introspection in
the VMM, the performance degradation is minimized even
in such a situation.



Intrusion detection systems using VM introspection have
been proposed [3], [12]. They examine the internal state of
the operating system kernel in a VM from the outside and
detect attacks. One of the primary differences from xFilter is
that they are not performance-critical so much. Livewire [3]
is an offline detection tool while IntroVirt [12] is applied
to intrusion detection in infrequent execution paths. Since
xFilter is invoked during network packet transmission, its
performance directly affects the network performance.

XenAccess [5] and LibVMI [13] are libraries for intro-
specting guest operating systems. They support translating
virtual addresses used inside VMs and mapping the memory
pages of VMs. xFilter did not use them because they intend
to be used by user-level applications on domain 0 or the
host operating system. The xFilter inspector that performs
VM introspection runs in the VMM. Therefore, we have
developed the mechanism for inspecting guest operating
systems from the VMM.

Amazon EC2 provides firewalls called security
groups [14] for VMs. Security groups are probably
implemented in domain 0 of Xen. They are located in
the outside of VMs, but they are provided to the IaaS
users. It is uncertain whether the cloud provider adds
filtering rules to security groups. In addition, security
groups cannot prevent stepping-stone attacks because they
are inbound-only firewalls against attacks from the outside.
They cannot filter any packets from the inside. Also, they
cannot use information on guest operating systems inside
VMs.

The ident protocol [15] is defined for querying the user
who sends a packet. When one host sends a pair of source
and destination port numbers to the ident server running in
the other host, the server returns the owner of a process
that uses the specified network connection. However, edge
firewalls in clouds cannot use this protocol to obtain infor-
mation on packet senders because this protocol is designed
to be used by end hosts. Moreover, the ident server may not
be trustworthy when the host is compromised by stepping-
stone attacks.

VII. CONCLUSION

In this paper, we proposed a new self-protection mecha-
nism against stepping-stone attacks for IaaS clouds, which
is called xFilter. For pinpoint active response, xFilter runs
in the VMM and uses information on sender processes in
compromised VMs for packet filtering. Using VM intro-
spection, it directly obtains the process IDs and user IDs
of sender processes in the VMs. Our experiments showed
that the overhead of xFilter were only 1 % until stepping-
stone attacks were detected. Even after the attack detection,
the performance degradation of the web server was less than
13 % for usual numbers of processes and sockets.

One of our future work is supporting UDP in the decision
cache. Like stateful packet inspection, the decision cache

can manage UDP sessions as virtual connections. Another
direction is using other information on sender processes
for packet filtering. For example, grouping processes with
information on their ancestors may be helpful for finer-
grained filtering.

ACKNOWLEDGMENT

This research was supported in part by JST, CREST.

REFERENCES

[1] Amazon, Inc., “Amazon Elastic Compute Cloud,” http://aws.
amazon.com/ec2/.

[2] S. Staniford-Chen and L. Heberlein, “Holding Intruders Ac-
countable on the Internet,” in Proc. Symp. Security and
Privacy, 1995, pp. 39–49.

[3] T. Garfinkel and M. Rosenblum, “A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection,” in Proc.
Network and Distributed Systems Security Symp., 2003, pp.
191–206.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. Symp. Operating Systems Principles,
2003, pp. 164–177.

[5] B. Payne, M. Carbone, and W. Lee, “Secure and Flexible
Monitoring of Virtual Machines,” in Proc. Annual Conf.
Computer Security Applications, 2007, pp. 385–397.

[6] B. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An
Architecture for Secure Active Monitoring Using Virtualiza-
tion,” in Proc. Symp. Security and Privacy, 2008, pp. 233–
247.

[7] Netfilter Core Team, “The netfilter.org Project,”
http://www.netfilter.org/.

[8] J. N. Petroni and M. Hicks, “Automated Detection of Persis-
tent Kernel Control-flow Attacks,” in Proc. Conf. Computer
and Communications Security, 2007.

[9] DWARF Standards Committee, “The DWARF Debugging
Standard,” http://dwarfstd.org/.

[10] Apache Software Foundation, “Apache HTTP Server Project,”
http://httpd.apache.org/.

[11] A. Srivastava, , and J. Giffin, “Tamper-resistant, Application-
aware Blocking of Malicious Network Connections,” in Proc.
Int. Symp. Recent Advances in Intrusion Detection, 2008, pp.
39–58.

[12] A. Joshi, S. King, G. Dunlap, and P. Chen, “Detecting Past
and Present Intrusions through Vulnerability-specific Predi-
cates,” in Proc. Symp. Operating Systems Principles, 2005,
pp. 91–104.

[13] B. Payne, “LibVMI,” http://code.google.com/p/vmitools/.

[14] Amazon, Inc., “Amazon Web Services: Overview of Security
Processes,” http://aws.amazon.com/security/, 2009.

[15] M. Johns, “Identification Protocol,” RFC 1413, 1993.


