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Abstract: Since Infrastructure-as-a-Service (IaaS) clouds contain many vulnerable virtual machines (VMs), intrusion
detection systems (IDSes) should be run for all the VMs. IDS offloading is promising for this purpose because it allows
IaaS providers to run IDSes outside of VMs without any cooperation of the users. However, offloaded IDSes cannot
continue to monitor their target VM when the VM is migrated to another host. In this paper, we propose VMCou-
pler for enabling co-migration of offloaded IDSes and their target VM. Our approach is running offloaded IDSes in a
special VM called a guard VM, which can monitor the internals of a target VM using VM introspection. VMCoupler
can migrate a guard VM together with its target VM and restore the state of VM introspection at the destination. The
migration processes of these two VMs are synchronized so that a target VM does not run without being monitored. We
have confirmed that the overhead of monitoring and co-migration was small.
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1. Introduction
Infrastructure as a service (IaaS) such as Amazon EC2 pro-

vides virtual machines (VMs) for users. They set up their own op-
erating systems and applications in the VMs. Unfortunately, the
systems inside VMs are not always well maintained and can be
penetrated by attackers. To protect such systems, intrusion detec-
tion systems (IDSes) are useful. They can monitor the operating
systems, networks, and storage of VMs and then alert adminis-
trators to attacks if they detect symptoms of intrusion. However,
it is difficult for IaaS providers to enforce users to install IDSes
in their VMs. Even if users install IDSes, intruders into VMs can
easily disable such IDSes running in the VMs before attacking
against the systems in them.

To solve these problems, IaaS providers can use IDS offloading
with VM introspection [1], [2], [3], [4], [5]. This technique en-
ables IDSes to run outside of their target VM and monitor the VM
securely. IDS offloading allows IaaS providers to run IDSes for
VMs without any cooperation of users. Using VM introspection,
offloaded IDSes can directly obtain detailed information inside
VMs. They are protected from intruders in VMs. However, when
the target VM of the IDSes is migrated to another host, the IDSes
cannot continue to monitor the VM because they are not migrated
together with the VM. Consequently, IaaS providers cannot use
both IDS offloading and VM migration.

In this paper, we propose VMCoupler [6], which is the sys-
tem for enabling co-migration of offloaded IDSes and their target
VM. Our idea is running offloaded IDSes in a special VM called a
guard VM and migrating a guard VM together with its target VM.
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A guard VM enables IDSes to monitor the internals of a target
VM using VM introspection. VMCoupler performs co-migration
of a guard VM and its target VM, while the guard VM continues
to monitor the target VM. To achieve this, VMCoupler preserves
the state of VM introspection in a guard VM during co-migration.
In addition, VMCoupler synchronizes the migration processes of
these two VMs for security. This guarantees that a guard VM
always monitors its target VM while the target VM is running.

We have implemented VMCoupler in Xen 4.0.1 [7]. For mem-
ory monitoring, VMCoupler allows a guard VM to map mem-
ory pages of its target VM. After the co-migration, it restores the
memory-mapping state at a destination host. For network moni-
toring, VMCoupler performs port mirroring at a virtual switch for
a guard VM to capture the packets to/from a target VM. It sets up
port mirroring again after co-migration. By using networked stor-
age, a guard VM can monitor the storage of its target VM even
after co-migration. We conducted several experiments to exam-
ine the overhead of monitoring and co-migration and confirmed
that the overhead was small.

The rest of this paper is organized as follows. Section 2 de-
scribes the issues in IDS offloading and VM migration and then
discusses the existing approaches. Section 3 proposes the sys-
tem for achieving co-migration of offloaded IDSes and their target
VM, which is called VMCoupler. Section 4 describes the imple-
mentation of VMCoupler in Xen. Section 5 reports the perfor-
mance of offloaded IDSes and co-migration. Section 6 concludes
the paper.

2. Background
2.1 IDS Offloading and VM Migration

Although IDSes play an important role in IaaS clouds as well
as in traditional systems, it is difficult that IaaS providers enforce

c⃝ 2014 Information Processing Society of Japan 45



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 45–55 (Dec. 2014)

users to install IDSes in their VMs. In IaaS clouds, providers just
provide VMs, while users determine installed software. There-
fore providers cannot install any software including IDSes with-
out users’ cooperation. They can require users to install IDSes,
but some users may not follow such a requirement for various
reasons, e.g., performance overhead or less administrative skills.
Even if users cooperatively install IDSes, such IDSes can be dis-
abled easily by intruders into VMs. Intruders with sufficient priv-
ileges can stop IDSes or make IDSes ineffective.

IDS offloading is attractive to IaaS providers in that they can
deploy IDSes without any cooperation of users. It enables modu-
lar and secure monitoring of VMs. It runs IDSes outside of their
target VM and prevents interferences from intruders in the VM.
Using VM introspection, offloaded IDSes can monitor the inter-
nals of the operating system, network packets, and the file sys-
tems of a target VM with no agent software installed. For exam-
ple, the integrity checker of the kernel memory can detect tamper-
ing with the kernel by intruders in a VM. Tripwire [8] can detect
tampering with the file systems by intruders in a compromised
VM. Snort [9] can detect malicious packets sent from outside at-
tackers and intruders in a compromised VM. In this paper, we
consider both interval-based IDSes, which are run periodically
such as integrity checkers, and real-time IDSes, which are driven
by events such as network traffic. Such offloaded IDSes are often
run in a privileged VM called the management VM, which is used
for managing VMs, e.g., in Xen.

On the other hand, IaaS clouds migrate VMs for various pur-
poses. VM migration allows a running VM to be moved from
a source to a destination host. In particular, live migration [10]
almost does not stop a VM during the migration process by trans-
ferring most of its states with the VM running. Using VM mi-
gration, IaaS providers can maintain physical hosts without inter-
rupting services provided by VMs. They can perform load bal-
ancing by migrating heavily loaded VMs to other lightly loaded
hosts. Conversely, they can save power if they consolidate lightly
loaded VMs into a fewer hosts.

When a VM is migrated, the IDSes offloaded from the VM are
not migrated together to the same destination host. Unlike IDSes
running inside a VM without offloading, offloaded IDSes are not
considered at VM migration. As a result, the target VM at a desti-
nation host would run without monitoring by offloaded IDSes, as
shown in Fig. 1. If attackers intrude into the VM, IaaS providers
cannot detect that intrusion. To avoid such an insecure situation,
IaaS clouds cannot use VM migration with IDS offloading. This
would make IaaS clouds lose various advantages of using VMs.

To use both IDS offloading and VM migration securely, it is
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Fig. 1 VM migration in IDS offloading.

important to guarantee that offloaded IDSes can always monitor
their target VM. This is obvious for real-time IDSes. For exam-
ple, network-based IDSes would fail to capture packets if they
cannot monitor a target VM for a certain period. For interval-
based IDSes, some readers may think that such a strong guarantee
is not necessary. However, there is a tradeoff between monitoring
delays and detectability in such IDSes. As a monitoring delay
is shorter, IDSes can detect malicious activities earlier and more
correctly. Then damages to their target VM can be minimized.
To support IDSes with maximum detectability, a mechanism for
continuous monitoring of a target VM is necessary.

For continuous monitoring, offloaded IDSes should be co-
migrated with their target VM at the same time, but migrating
offloaded IDSes is not so easy. One possible approach is migrat-
ing the management VM where IDSes are offloaded. However,
the management VM is a special VM and is not migratable. Since
only one management VM has to exist in one host, it cannot be
moved out or in. Another approach is offloading IDSes to a regu-
lar VM that is different from their target VM. Although a regular
VM can be migrated, IDSes in a regular VM cannot monitor the
target VM because a regular VM does not have such privileges.

2.2 Existing Approaches
We describe the existing approaches about three aspects: (1)

privileged VMs usable for offloading IDSes, (2) co-migration of
offloaded IDSes and their target VM, and (3) continuous moni-
toring of a target VM without migrating offloaded IDSes.
2.2.1 Privileged VMs for Offloading IDSes

For Xen, various privileged VMs have been proposed to di-
vide the privileges of the management VM called Dom0. Driver
domains [11] run device drivers in VMs different from Dom0.
IDSes can be run in driver domains to monitor networks and stor-
age. Stub domains [12], [13] enable running QEMU used for
device emulation. Since they are allowed to access the mem-
ory of regular VMs called DomUs, IDSes in them can monitor
the memory. In addition, they can intercept device accesses and
check the integrity. DomB [14] is used to boot DomU, instead
of Dom0. It loads a kernel image into the DomU’s memory and
sets up DomU. Xoar [15] disaggregates Dom0 into many single-
purpose VMs called service VMs. However, all of these privi-
leged VMs are not designed to be migratable because they are
helpers for Dom0.

A self-service cloud (SSC) computing platform [16] provides
users with privileged VMs called service domains (SDs) to mon-
itor their own VMs. SDs can monitor the memory of target VMs,
disk blocks accessed by VMs, and system calls issued by them.
In SSC, user’s meta-domain consists of DomUs, SDs, and other
related VMs. These VMs should be migrated together because
of their strong association, but SSC does not support such co-
migration.
2.2.2 Co-migration of Offloaded IDSes

Instead of migrating a VM that runs offloaded IDSes, migrating
only IDS processes is possible. Even if the management VM can-
not be migrated, its processes can be migrated. Process migration
has been well studied [17], but it cannot preserve the monitor-
ing states of a target VM during the migration of IDS processes.
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Although offloaded IDS processes map the memory of another
VM, the operating system in the management VM cannot pre-
serve the mapping state across VM migration. In addition, most
of the systems supporting process migration such as libckpt [18]
and BLCR [19] do not preserve process states completely. For
example, open files and sockets are usually closed. Distributed
operating systems such as Amoeba [20] and MOSIX [21] can
migrate processes with their states preserved, but I/O requests are
simply forwarded to a source host. Therefore the source host can-
not be stopped.

Compute capsules [22] and the pod abstraction in Zap [23] en-
able a group of processes to be migrated as a unit. They pro-
vide a thin virtualization layer on top of the operating system and
group processes with a private namespace. In Zap, particularly,
migrated processes can preserve network connections and inter-
process communication between them, including shared mem-
ory. However, like the other systems supporting process migra-
tion, it cannot migrate offloaded IDS processes with the memory-
mapping state of a target VM.

For concurrent migration of multiple co-located VMs, live
gang migration [24] has been proposed. It transfers memory con-
tents that are identical across VMs only once to reduce the migra-
tion overhead. It tracks identical memory contents across VMs
and performs memory de-duplication for all the migrated VMs.
It also applies differential compression to nearly identical mem-
ory pages. Unlike VMCoupler, live gang migration does not syn-
chronize between the migration processes of multiple VMs. This
approach can be incorporated into our VMCoupler to reduce the
co-migration time.
2.2.3 Continuous Monitoring

An approach different from co-migrating offloaded IDSes is re-
executing offloaded IDSes at the destination host where their tar-
get VM is migrated. If IDSes are short-lived, this approach works
well. However, re-execution is not feasible for long-running
IDSes such as Tripwire. When a target VM is migrated, the exe-
cution of such IDSes is aborted at the source host and is restarted
from the beginning at the destination host. At this time, for exam-
ple, Tripwire has to examine many files again. Similarly, memory
forensic tools may have to analyze the whole kernel data again.
Such wasteful resource consumption should be avoided.

Trend Micro Deep Security [25] can continue to apply its poli-
cies after a target VM is migrated. It works with VMware vShield
Endpoint [26], which provides security virtual appliances (VMs)
for offloading IDSes. Although virtual appliances cannot be mi-
grated, Deep Security hands over its policies between virtual ap-
pliances of source and destination hosts when a target VM is mi-
grated. Deep Security can migrate its policies for long-running
IDSes, but it cannot migrate the monitoring state of a target VM.
In addition, IDSes have to be re-designed for the handover of
policies in this approach.

3. VMCoupler
We propose VMCoupler [6] for enabling co-migration of off-

loaded IDSes and their target VM. VMCoupler provides a special
VM called a guard VM to run offloaded IDSes. It migrates a guard
VM and its target VM together.

3.1 Guard VM
A guard VM possesses monitoring capabilities for running off-

loaded IDSes, as illustrated in Fig. 2. For memory monitoring, it
allows IDSes to map memory pages of their target VM. IDSes in
a guard VM can read the contents of the mapped memory pages
and monitor the state of the target VM. Traditionally, only the
management VM was allowed this kind of monitoring. For net-
work monitoring, a guard VM allows IDSes to capture the packets
from/to their target VM. To achieve this, VMCoupler performs
port mirroring at a virtual switch. Port mirroring duplicates the
packets of a target VM to its guard VM. A guard VM provides
a dedicated network interface for receiving the duplicated pack-
ets. For storage monitoring, a guard VM allows IDSes to read the
networked storage used by its target VM. To enable a target VM
to be migrated, networked storage is usually used so that the VM
can access its storage at both source and destination hosts.

VMCoupler gives least privilege to a guard VM so that the VM
can monitor only one target VM. The management VM binds a
guard VM to its target VM and allows the guard VM to map only
memory pages of the target VM. It configures port mirroring at a
virtual switch so that only the packets of a target VM are deliv-
ered to its guard VM. By the access control of networked storage,
a guard VM can access only the storage of its target VM. Even if
attackers penetrate a guard VM, they can steal information only
from its target VM. In this sense, IDS offloading to a guard VM is
more secure than that to the management VM. Since the manage-
ment VM has full privileges for all the VMs, the whole system is
compromised if the management VM is compromised.

3.2 Co-migration with Continuous Monitoring
For the continuity of the monitoring, VMCoupler co-migrates

a guard VM and its target VM. It groups these two VMs and mi-
grates them in parallel. If we migrate a guard VM just like a
regular VM, most of the monitoring states that the guard VM has
would be lost. The mapping state of the target VM’s memory
is not migrated because the traditional migration mechanism as-
sumes that a VM is self-contained. In other words, it is assumed
that a VM maps only its own memory pages. The state of port
mirroring is also not migrated because the configuration is done
in a virtual switch, which is located outside of the VM, at the
source host.

VMCoupler restores all the monitoring states at a destination
host so that a guard VM continues to monitor its target VM. If
a guard VM maps memory pages of the target VM at a source

guard VM target VM

source host
destination host

memory

map

IDS...
...

virtual switch
port

mirror

virtual switch

migration

networked
storage

Fig. 2 Co-migration of a guard VM and its target VM in VMCoupler.
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host, VMCoupler transfers the mapping state to a destination
host. Then it remaps memory pages of the target VM to the ad-
dress spaces of offloaded IDS processes. In addition, VMCoupler
reconfigures port mirroring for the packets to/from the target VM
at the virtual switch of the destination host. For storage monitor-
ing, a guard VM can continue to monitor the networked storage
used by the target VM after the migration. Since the network con-
nection to the networked storage is preserved, VMCoupler does
not need to provide any special mechanism for restoring the mon-
itoring state of storage.

3.3 Synchronized Co-migration
To migrate a single VM, a migration manager in the manage-

ment VM transfers all the VM state from a source to a destination
host. First, it creates a new empty VM at a destination host to
store the transferred state. Then it transfers the memory of the
original VM to a destination host. In live migration, particularly,
the migration manager repeats to transfer dirty pages modified in-
side the original VM because the original VM at a source host is
running during migration. When the number of dirty pages to be
transferred becomes small enough, the migration process enters
the final stage of live migration. The migration manager stops
the original VM at a source host and transfers the remaining dirty
pages and the other states. Finally, it restarts the new VM at a
destination host and terminates the original VM at a source host.

To achieve secure and safe co-migration of a guard VM and its
target VM, there are two requirements. One is that a guard VM
can always monitor its target VM while its target VM is running.
If either a guard VM or a target VM has been migrated earlier, the
guard VM could not monitor the target VM running at a different
host. Since we assume that the memory size of a guard VM is
usually smaller than that of a target VM, a guard VM would have
been migrated earlier. A guard VM requires a small amount of
memory to run only offloaded IDSes, while a target VM requires
a larger amount of memory to run various services. The migration
time strongly depends on the memory size of a VM. For example,
when a target VM is an r3.8xlarge instance with 244 GiB in Ama-
zon EC2, it would take a very long time to migrate the VM. Even
for interval-based IDSes, it is too dangerous if offloaded IDSes
cannot monitor their target VM for such a long time.

The other requirement is that the migration manager for a guard
VM can always obtain the necessary information on a target VM.
If a target VM has been migrated and been terminated earlier than
a guard VM, the migration manager for the guard VM at a source
host could not examine information on the target VM after that.

To satisfy these two requirements, VMCoupler synchronizes
the migration processes of both a guard VM and a target VM, as
illustrated in Fig. 3. For security, there are two synchronization
points S 1 and S 4 at source and destination hosts, respectively. S 1

is the point to wait for target VM’s stop before stopping a guard
VM. A migration manager reaches this point when it has trans-
ferred most of the memory of a VM and is ready for the final
stage of live migration. The synchronization at this point guaran-
tees that a guard VM stops after a target VM and that it can mon-
itor a target VM as long as the target VM is running. In contrast,
S 4 is the point to wait for guard VM’s restart before restarting a

source host

destination host

guard VM

guard VM

target VM

target VM

S1 S2

S3 S4

stop

terminate

restart

create
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migration
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restart
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Fig. 3 Four synchronization points S 1 to S 4 during co-migration. A dashed
line stands for a period waiting for synchronization. A gray period is
the downtime of both a guard VM and a target VM.

target VM. A migration manager reaches this point when it com-
pletes reconstructing a migrated VM and is ready for the restart.
The synchronization at this point guarantees that a target VM is
restarted after a guard VM and that it is monitored by a guard VM
just after its restart.

For safety, there are also two synchronization points S 3 and
S 2 at destination and source hosts, respectively. S 3 is the point
to wait for target VM’s creation before creating a guard VM. To
restore the mapping of the target VM’s memory in a guard VM,
a target VM has to have been created. The synchronization at
this point guarantees that. In contrast, S 2 is the synchronization
point to wait for guard VM’s termination before terminating a tar-
get VM. A migration manager reaches this point when all states
have been transferred. The synchronization at this point guaran-
tees that the migration manager for a guard VM can continue to
obtain information on a target VM until the migration of a guard
VM completes.

4. Implementation
We have implemented VMCoupler in Xen 4.0.1 [7]. In Xen,

the virtual machine monitor (VMM) runs on top of hardware and
executes VMs. As described in Section 2.2.1, the management
VM is called Dom0 and a regular VM including a target VM is
called DomU in Xen. We have developed a guard VM by extend-
ing DomU and we call it DomM. DomM runs para-virtualized
Linux for monitoring the memory of DomU. In the current im-
plementation, VMCoupler supports para-virtualized Linux run-
ning in DomU and targets the x86-64 architecture.

4.1 Memory Monitoring
In Xen, the VMM distinguishes machine memory and pseudo-

physical memory to virtualize memory resources. Machine mem-
ory is physical memory installed in a host and consists of a set
of machine page frames. For each machine page frame, a ma-
chine frame number (MFN) is consecutively numbered from 0.
Pseudo-physical memory is the memory allocated to VMs and
gives the illusion of contiguous physical memory to VMs. For
each physical page frame in each VM, a physical frame num-
ber (PFN) is consecutively numbered from 0. The VMM main-
tains the machine-to-physical (M2P) table for the translation from
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MFNs to PFNs. Para-virtualized Linux maintains the physical-to-
machine (P2M) table for translating PFNs to MFNs.

Traditionally, Dom0 maps memory pages of DomU by issuing
the update va mapping hypercall to the VMM. A hypercall is a
mechanism to invoke the function of the VMM. The VMM modi-
fies the page table in Dom0 to map the page specified by an MFN.
To obtain such an MFN, Dom0 usually translates a DomU’s vir-
tual address by traversing the page tables in DomU. The page di-
rectory entry in DomU is obtained by the domctl hypercall. How-
ever, VMs except Dom0 could not map memory pages of DomU
because only Dom0 could issue these hypercalls.

We modified the VMM so that it allows not only Dom0 but
also DomM to issue these hypercalls. In VMCoupler, Dom0
registers a pair of DomM and its target DomU to the VMM by
the domctl hypercall. Thereby DomM can issue these hyper-
calls only to the specified DomU. In addition, we modified the
Linux kernel in DomM so that IDS processes can map the mem-
ory of DomU (Fig. 4). IDS processes execute such memory map-
ping through the privcmd interface provided by the Linux kernel
para-virtualized for Xen. Since the original implementation of
privcmd allowed only Dom0 to use its functions, we modified it
so that DomM can also use it.

4.2 Network Monitoring
When DomU is created, a pair of virtual network interfaces

(e.g., vif1.0 and eth0) is created. These are assigned to Dom0
and DomU, respectively, as illustrated in Fig. 5. In the bridge-
networking mode, vif1.0 is connected to a network bridge in
Dom0, which is also connected to physical network interfaces
(e.g., peth0). When a packet is sent from DomU, it is deliv-
ered to vif1.0 and is transmitted to the outside via the network
bridge. When a packet to DomU is sent from the outside, it is de-
livered to vif1.0 via the network bridge. When a packet is sent
to another DomU at the same host, it is delivered from vif1.0 to

DomM

privcmd

kernel

VMM

map request

DomU

page
tables

hypercall modify

read
map

memory

Fig. 4 Memory monitoring via the privcmd interface.

Dom0

vif1.0 eth0

DomU

peth0

network bridge

IDS

Fig. 5 Traditional network monitoring in Dom0.

another virtual network interface via the network bridge. There-
fore, Dom0 can easily capture all the packets from/to DomU via
vif1.0. However, it is not easy for VMs except Dom0 to capture
packets because any packets are not delivered via these VMs.

To enable DomM to capture the packets from/to DomU, Dom0
duplicates the packets by achieving port mirroring with traffic
control [27]. This idea comes from port mirroring in KVM [28].
Figure 6 depicts port mirroring in Dom0. The traffic shaping in
Linux is performed in queuing disciplines (qdisc), which is at-
tached to a network device. A qdisc enqueues all the packets and
dequeues them according to registered filters. For port mirroring,
Dom0 first creates an additional virtual network interface (e.g.,
vif2.1) as a mirror port for DomM. Then it attaches a qdisc to
the virtual network interface for DomU (e.g., vif1.0). The qdisc
receives all the packets via the virtual network interface from/to
DomU. It duplicates these packets to the mirror port and DomM
can receive them via its additional network interface for port mir-
roring (e.g, eth1).

More specifically, Dom0 issues traffic control commands as in
Fig. 7. Commands (1) and (2) are used for duplicating outgoing
packets from DomU, whereas commands (3) and (4) are used for
incoming packets to DomU. By command (1), Dom0 attaches a
new qdisc of type ingress for inbound packets to vif1.0. By
command (2), Dom0 creates a new filter matching all IP packets
and attaches it to the ingress qdisc, which is specified by the ID
ffff:. When the filter matches, the action mirred is executed
and all inbound packets are copied to vif2.1. By command (3),
Dom0 replaces the top-level qdisc with a new qdisc of type prio
so that a filter can be attached. By command (4), Dom0 creates
a new filter matching all IP packets and attaches it to the prio
qdisc whose ID is, for example, 8002:. When the filter matches,
all outbound packets are copied to vif2.1.

4.3 Storage Monitoring
Since DomU has to be migrated, its virtual disks are usually

located in networked storage such as an NFS server. The sim-

Dom0

eth1 eth0

DomM

vif1.0 eth0vif2.0 vif2.1

DomU

peth0

IDS

mirroring packets

qdisc

network bridge

duplicate

Fig. 6 Network monitoring in DomM with port mirroring.

(1) tc qdisc add dev vif1.0 ingress

(2) tc filter add dev vif1.0 parent ffff: \

protocol ip u32 match u8 0 0 \

action mirred egress mirror dev vif2.1

(3) tc qdisc replace dev vif1.0 parent root prio

(4) tc filter add dev vif1.0 parent 8002: \

protocol ip u32 match u32 0 0 \

action mirred egress mirror dev vif2.1

Fig. 7 Traffic control commands for port mirroring.
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plest storage configuration for monitoring such virtual disks is
that both DomU and DomM mount the NFS root file system for
DomU, as shown in Fig. 8(a). One disadvantage of this config-
uration is that DomU has to be configured so that it uses NFS.
In IaaS clouds, it is often difficult for IaaS providers to enforce
using specific file systems to the users. Users would like to use
their favorite file systems.

Another configuration is that DomM mounts an NFS volume
including the disk images of DomU and provides them to DomU
as virtual disks, as shown in Fig. 8(b). This means that DomM
is configured as a driver domain [11] to serve virtual disks to
DomU. DomU accesses the virtual disks through the blkfront
driver in DomU and the blkback driver in DomM. DomM can eas-
ily monitor the disk images as Dom0 can traditionally. However,
this configuration can affect the storage performance of DomU.
To access virtual disks, DomU has to communicate with DomM.
Then DomM has to access an NFS server via Dom0 because the
DomM’s network is virtualized as in Fig. 5.

A promising configuration is that Dom0 mounts the NFS vol-
ume for DomU and provides them to not only DomU but also
DomM, as shown in Fig. 8(c). The advantages of this configu-
ration are that DomU does not need to change its storage con-
figuration and that it can access its disks without the overhead of
DomM. However, the monitoring performance in DomM is lower
than that when DomM directly mounts the NFS volume, accord-
ing to our experiment in Section 5.2.

Therefore, we adopted the configuration shown in Fig. 9.
Dom0 mounts the NFS volume for DomU and provides DomU

DomM DomU

NFS
server

(a) NFS root mount

DomM DomU

NFS
server

blkback blkfront

(b) driver domain

DomM DomU

NFS
server

blkfront blkfront

Dom0

blkback

(c) virtual disk

Fig. 8 Possible configurations for storage monitoring.

DomM DomU

NFS
server

blkfront

Dom0

blkback

Fig. 9 Storage monitoring using an NFS server.

with the disk images in it as virtual disks. Also, DomM mounts
the same NFS volume and monitors the disk images in it by loop-
back mounts. The storage performance in DomU is the same as
that in the traditional system without DomM.

4.4 Migration of DomM
To migrate DomM, the migration manager in Dom0 transfers

the memory of DomM from a source to a destination host. Dur-
ing such memory transfers, the migration manager canonicalizes
the page table entries (PTEs) used by the DomM at a source host.
This canonicalization is rewriting PTEs so that the page tables do
not depend on host-specific memory allocation. Specifically, the
migration manager replaces the host-specific MFNs in the PTEs
with the corresponding PFNs. This translation is performed with
the M2P table in the VMM. At a destination host, the migration
manager uncanonicalizes those PTEs so that DomM can run with
the host-specific page tables. However, if DomM maps the mem-
ory pages of DomU, the uncanonicalization fails at the destina-
tion host. After the canonicalization, the page tables of DomM
have entries including the PFNs belonging to DomU. When the
migration manager uncanonicalizes them, it cannot distinguish
DomU’s PFNs from DomM’s because PFNs are local in each
VM.

In VMCoupler, the migration manager for DomM transfers
the memory-mapping state on DomU as well. If DomM maps a
memory page of DomU, the migration manager sets a monitor bit
to the corresponding PTE at the canonicalization, as illustrated in
Fig. 10. To examine if a PTE is used for mapping a memory page
of DomU, the migration manager re-translates the translated PFN
into an MFN. This is done using the P2M table of DomU, which
is stored in DomU’s memory. If the obtained MFN is equal to
the original one before the canonicalization, the migration man-
ager can determine that the PFN belongs to DomU. Otherwise, it
considers that the PFN belongs to DomM. The monitor bits are
automatically transferred to the destination with memory pages
used for the page tables.

At the destination host, the migration manager correctly re-
stores the memory-mapping state using the monitor bits. If a
monitor bit is set in a PTE, the migration manager considers the
PFN included in the PTE as the one of DomU and replaces it
with the corresponding MFN, which is allocated to DomU. Fig-
ure 11 shows the page table after reconstruction. For this pur-
pose, the migration manager cannot use the P2M table in DomU
yet because the P2M table is reconstructed by the guest operating
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Fig. 10 Saving the memory-mapping state for DomU.
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Fig. 11 Restoring the memory-mapping state for DomU.

system itself in DomU after DomU is resumed. Therefore, the
migration manager constructs the P2M table of DomU from the
list of MFNs allocated to DomU and the M2P table.

For network monitoring, the migration manager removes the
filters set up for port mirroring at the source host after it stops
DomM at the final stage of the migration. At the destination host,
it adds the filters for port mirroring again before it restarts DomM.
As such, DomM can monitor all the packets that DomU receives.
For storage monitoring, DomM can continue to monitor the disk
images of DomU after migration because the images are located
in an NFS server. The network connection to the NFS server is
kept during migration.

4.5 Synchronized Co-migration
In VMCoupler, two migration managers migrate DomU and

DomM synchronously as shown in Fig. 3. First, they create new
empty VMs at a destination host and synchronize their migration
processes at S 3. To wait for new DomU’s creation, the migration
manager for DomM repeatedly looks up the DomU correspond-
ing to the universally unique identifier (UUID) specified in its
configuration. If it can find that DomU, it proceeds the migration
of DomM.

When these migration managers enter the final stage of live mi-
gration, they synchronize their migration processes at S 1. To wait
for DomU’s stop, the migration manager for DomM repeatedly
obtains information on DomU until DomU becomes the stopped
state. Concurrently, it continues to transfer dirty pages of DomM
to the destination. It repeats iterations of the migration until
DomU stops for the final stage. In each iteration, the migration
manager transfers dirty pages modified after the previous itera-
tion. This can keep the number of dirty pages to be transferred at
the final stage as small as possible.

In the current implementation, the migration manager for
DomU does not wait for DomM when it is ready for the final stage
earlier. One reason is that we assume that the memory transfer for
DomM completes in a shorter time than that for DomU. Usually
the memory size of DomM is smaller than that of DomU because
DomM runs only offloaded IDSes. The other reason is that we
have implemented one-way synchronization by examining only
the VM state, e.g., stopped and running, for simplicity. We be-
lieve that it is not so difficult to implement two-way synchroniza-
tion, but that is our future work.

When the migration managers terminate the original VMs at
the source host, they synchronize the tasks at S 2. To wait for
DomM’s termination, the migration manager for DomU repeat-

edly checks the existence of DomM. Finally, they synchronize
the restarts of the migrated VMs at S 4. The migration manager
for DomU repeatedly examines the state of DomM until DomM
becomes the running state.

5. Experiments
We conducted experiments to examine the continuity of mon-

itoring across co-migration and to measure the performance of
monitoring and co-migration. For server machines hosting VMs,
we used two PCs with one Intel Quad Core 2.83 GHz processor,
8 GB of memory, and gigabit Ethernet. We used Xen 4.0.1 and
ran Linux 2.6.32 in Dom0, DomM, and DomU. By default, we
allocated one virtual CPU and 512 MB of memory to DomM,
one virtual CPU and 1 GB of memory to DomU, and four virtual
CPUs and the rest of the memory to Dom0. For an NFS server,
we used NAS with one Intel Xeon X5640 3.16 GHz processor,
32 GB of memory, 16 TB of RAID-5 disks, and gigabit Ethernet.
For a client machine, we used a PC with one Intel Xeon E5630
2.53 GHz processor, 4 GB of memory, and gigabit Ethernet. We
used Xen 4.3.2 and ran Linux 3.13.0 in Dom0. These PCs and
NAS are connected with a gigabit Ethernet switch.

5.1 Memory Monitoring
We executed the integrity checker of the DomU kernel in

DomM. The integrity checker calculates the hash value of the
memory area for the kernel text and detects tampering with it.
We compared the hash value with the one pre-calculated from
the kernel image and confirmed that the integrity checker could
correctly monitor the kernel in DomU. Even if we co-migrated
DomM and DomU during the integrity check, the checker could
continue to run and complete its check at the destination host.

Next, we measured the time needed for the integrity check.
For comparison, we executed the integrity checker in Dom0 as
traditional and measured the time. We ran the integrity checker
100 times. On average, it took 135 ms and 203 ms for the in-
tegrity checks in DomM and Dom0, respectively. Unexpectedly,
the integrity check running in DomM was 33% faster than that in
Dom0.

According to our analysis of the implementation in Xen and
Linux, we found that the number of virtual CPUs allocated to a
VM affected the performance of memory mapping. When DomM
and Dom0 map memory pages of DomU, they issue the hypercall
for obtaining the state of virtual CPUs. At that time, they al-
locate a buffer passed to the hypercall and lock it by using the
mlock system call so that the corresponding memory pages are
not paged out. Since the system call waits for all the CPUs to
synchronously complete pending operations on memory pages,
the execution time is proportional to the number of CPUs.

Figure 12 shows the time for the integrity check when we
changed the number of virtual CPUs allocated to DomM and
Dom0. The results show that the time is proportional to the num-
ber of virtual CPUs. For four virtual CPUs, the performance in
DomM was degraded largely. This is probably because the PC
used had only four physical CPUs and CPU contention occurred
among VMs.

In general, memory monitoring in DomM can be faster than
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Fig. 12 The impact of various numbers of virtual CPUs on the kernel mon-
itoring.

that in Dom0. For DomM, one or a small number of virtual CPUs
are sufficient if only one or several IDSes are running. In contrast,
Dom0 requires many virtual CPUs because it has to handle I/O
requests from all the VMs.

5.2 Storage Monitoring
We executed Tripwire in DomM to scan the DomU’s disk.

Tripwire records the correct state of the file systems in its
database and detects changes to the file systems. We confirmed
that Tripwire in DomM could monitor the DomU’s disk cor-
rectly as it ran inside DomU. Then, we co-migrated DomM and
DomU while Tripwire in DomM was monitoring the DomU’s
disk. Across the migration, Tripwire could complete the integrity
check of the entire disk.

Next, we measured the time needed for the integrity check by
Tripwire in DomM. For comparison, we also executed Tripwire in
Dom0 and measured the time for the check. On average, it took
18.9 seconds and 4.5 seconds for the integrity check in DomM
and Dom0, respectively. The time in DomM was 4.2 times longer
than that in Dom0. The primary reason is network virtualization.
Tripwire in DomM and Dom0 had to access the disk image of
DomU in the NFS server. Since the network of DomM is virtual-
ized, its access to the NFS server is performed via Dom0.

To show the efficiency of our storage configuration, we mea-
sured the execution time of Tripwire when DomM monitored
the virtual disk of DomU provided by Dom0 as illustrated in
Fig. 8(c). The execution time was 30.1 seconds and was 59%
lower than that in our configuration in Fig. 9. The primary cause
of this overhead is probably that network virtualization is more
lightweight than storage virtualization. In the configuration of
Fig. 8(c), DomM suffers from the overhead of storage virtualiza-
tion to access DomU’s virtual disks mounted on Dom0. In our
solution, DomM suffers from the overhead of network virtualiza-
tion to access the NFS server.

5.3 Network Monitoring
We executed Snort in DomM to inspect the DomU’s pack-

ets. Snort is a signature-based IDS for network traffic. Snort
in DomM could capture all the packets to/from DomU. When we
mounted portscans to DomU using nmap, Snort in DomM could
detect the portscans. Next, we performed co-migration of DomM
and DomU while Snort in DomM was monitoring the packets for
DomU. Since port mirroring in Dom0 was disabled after DomU
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Fig. 13 The co-migration time for various combinations of the memory
sizes of DomM and DomU.

stopped and enabled before DomU restarted, Snort did not drop
any packets that DomU received.

To examine the overhead of network monitoring in DomM, we
measured the increase of the CPU utilization in DomM by run-
ning Snort. As a result, the CPU utilization did not increase.

5.4 Co-migration Time
We measured the time needed for synchronized co-migration

of DomM and DomU when we changed the size of memory allo-
cated to the VMs. First, we allocated 1 GB of memory to DomU
and changed the memory size of DomM from 256 MB to 1 GB.
For comparison, we migrated two independent DomUs in parallel
without synchronization. We fixed the memory size of one DomU
to 1 GB and changed the memory size of the other DomU. Ex-
cept for the experiment in Section 5.7, we did not run any IDSes
in DomM or any active applications in DomU. The time we mea-
sured was from when we started co-migration until the migration
of both VMs completed. We measured the co-migration time 10
times.

Figure 13(a) shows the co-migration time. As the memory size
of DomM became larger, the co-migration time was increasing.
This is because the total migration time of two VMs depends on
the total memory size to be transferred. The overhead of synchro-
nization in co-migration was small. The difference between the
co-migration times was slightly increasing as the memory size of
DomM became smaller. However, even when the memory size
of DomM was 256 MB, the synchronization increased the co-
migration time only by 0.6 second.

Next, we fixed the memory size of DomM to 1 GB and changed
that of DomU from 256 MB to 1 GB. Figure 13(b) shows the co-
migration time in this case. Similar to the above experiment, the
time for co-migration with synchronization was almost the same
as that without synchronization.

5.5 Downtime
We measured the downtime of DomU during synchronized

co-migration with DomM. Since various services are running in
DomU, its downtime should be short. The downtime of DomU
can increase at the synchronization points S 2 and S 4 in Fig. 3, at
which the migration manager for DomU waits for DomM. First,
we allocated 1 GB of memory to DomU and changed the mem-
ory size of DomM from 256 MB to 1 GB. The downtime we
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Fig. 14 The downtime of DomU for various combinations of the memory
sizes of DomM and DomU.
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Fig. 15 The numbers of iterations and dirty pages during synchronization.

measured was the time in which DomU was not running at either
source or destination host. We measured the downtime 10 times.

Figure 14(a) shows the average downtime. As the memory size
of DomM became larger, the downtime was increasing gradually.
However, even for DomM with 1 GB of memory, the downtime
increased only by 162 ms due to synchronization. This means that
synchronized co-migration does not affect the downtime largely.

Next, we measured the downtime of DomU when we fixed
the memory size of DomM to 1 GB. We changed the memory
size of DomU from 256 MB to 1 GB. The results are shown in
Fig. 14(b). It is shown that the downtime was dramatically in-
creasing as the memory size of DomU became smaller. This
is because our current implementation performs one-way syn-
chronization from DomM to DomU. If we implement two-way
synchronization, the downtime would be similar to that without
synchronization. However, as described in Section 4.5, we as-
sume that the memory size of DomM is usually smaller than that
of DomU because DomM only monitors DomU. Therefore, the
configuration of VMs in Fig. 14(b) is a special case. Reducing
the downtime in such a special case is our future work.

5.6 Extra Memory Transfer
We examined the amount of memory transferred while the mi-

gration manager for DomM waited for DomU’s stop at S 1 in
Fig. 3. In this experiment, we allocated the smaller amount of
memory to DomM so that DomM is ready for the final stage ear-
lier than DomU. We fixed the memory size of DomU to 1 GB and
changed that of DomM from 256 MB to 1 GB. We measured the
number of iterations of the migration and the number of trans-
ferred dirty pages 10 times.
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Fig. 16 The page dirty rate when using memcached and memaslap.
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Fig. 17 The co-migration time and downtime of DomU when using mem-
cached and an IDS.

Figure 15 shows the averages. The number of iterations was
inversely proportional to the memory size of DomU. As the mem-
ory size of DomM became smaller, it increased dramatically. The
number of transferred dirty pages was proportional to that of iter-
ations. When the memory size of DomM was 256 MB, the total
size of the transferred data increased only by about 12 MB.

5.7 Co-migration of Memcached and an IDS
To examine the performance of co-migration when we used a

real application, we ran memcached 1.4.20 [29] in DomU. Mem-
cached is a distributed memory object caching system. We allo-
cated 512 MB to memcached. To send requests to memcached
from a client machine, we used the memaslap benchmark in-
cluded in libmemcached 1.0.18 [30]. It is well known that the
migration performance is largely affected by the rate at which the
memory pages of a VM are modified. Therefore we changed the
request concurrency of memaslap from 16 to 256 to change the
page dirty rate in DomU. The page dirty rate when using mem-
cached and memaslap is shown in Fig. 16. It became larger as the
concurrency increases.

In addition, to examine the influences of IDSes running in
DomM as well, we ran three kinds of IDSes: the integrity checker
in Section 5.1, Tripwire, and Snort. The integrity checker was ex-
ecuted every second, and Tripwire was executed repeatedly with-
out waits. For comparison, we measured the performance when
we did not run any IDS.

Figure 17(a) shows the co-migration time. In any cases, the
co-migration time became longer as the concurrency of memaslap
increased. On average, the co-migration time was long in the or-
der of no IDS, the integrity checker, Snort, and Tripwire. The rea-
son why the co-migration time is longer for Tripwire is that Trip-

c⃝ 2014 Information Processing Society of Japan 53



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 45–55 (Dec. 2014)

normal execution co-migration
0

10000

20000

30000

40000

50000

th
ro

ug
hp

ut
 (

op
er

at
io

ns
/s

)
no IDS
integrity checker
Snort
Tripwire

Fig. 18 The throughput of memcached in DomU.

wire frequently modified the page cache in memory by reading
new files. Figure 17(b) shows the downtime of DomU. The down-
time was not largely affected by the concurrency of memaslap or
the difference of an IDS running in DomM. As the concurrency
was increasing, the downtime slightly increased only for Snort,
while it slightly decreased for the others.

Next, we measured the performance of memcached in DomU
during normal execution and during co-migration. To examine
the influences of IDSes in DomM, we also ran one of the three
IDSes or no IDS. Figure 18 shows the throughput of memcached
when we used memaslap. During normal execution, the through-
put when an IDS ran in DomM was higher than that when no
IDS ran. To investigate the cause of this improvement, we ran
a simple infinite loop in DomM. Since the throughput was also
higher in this case, this improvement was probably due to virtual
CPU scheduling. During co-migration, the throughput was re-
duced largely in any cases, but it was almost not affected by the
difference of a running IDS.

6. Conclusion
In this paper, we proposed VMCoupler, which enables syn-

chronized co-migration of offloaded IDSes and their target VM.
Offloaded IDSes are run in a guard VM and monitor its target VM
using VM introspection. VMCoupler synchronizes the migration
processes of a guard VM and a target VM so that a guard VM can
always monitor a running target VM. Our experiments showed
that the overhead of monitoring and co-migration was small and
that the downtime of a target VM was short.

Our future work is decreasing the downtime of a target VM due
to the synchronized co-migration. We need to implement two-
way synchronization so that a target VM also waits for a guard
VM to be ready for the final stage of the migration. Another direc-
tion is extending VMCoupler to support various combinations of
guard VMs and target VMs as a group. Currently, one guard VM
is necessary for one target VM, but one guard VM could moni-
tor multiple target VMs. In this case, VMCoupler has to migrate
more than two VMs simultaneously, so that it could impact the
migration performance and the downtime of target VMs. Also,
we are planning to extend VMCoupler to domains other than IDS
offloading, such as out-of-band remote VM management [31].
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