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ABSTRACT
Since smart devices such as smart phones and tablets are at high
risk of theft, they prevent information leakage from storage by
full disk encryption (FDE). Recently, however, information leak-
age from memory is being critical as non-volatile main memory
(NVMM) is emerging. In smart devices with NVMM, even if stor-
age is encrypted, sensitive data in the page cache can be stolen
by physical attacks. In this paper, we propose efficient page-cache
encryption called Cache-Crypt to prevent part of the storage data
from leaking via the page cache. Cache-Crypt is well integrated
with FDE to avoid redundant cryptographic operations and take
advantage of FDE. It bypasses encryption and decryption by FDE
and stores encrypted data in the page cache. In response to ap-
plication’s requests, it executes encryption and decryption using
FDE’s cryptographic mechanism. To reduce the overhead, Cache-
Crypt defers re-encryption of decrypted data temporarily.We have
implemented Cache-Crypt in Linux and confirmed that the perfor-
mance was comparable to that in FDE only.
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• Security and privacy→ Operating systems security;Mobile
platform security; • Software and its engineering → File sys-
tems management;
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1 INTRODUCTION
Recently, smart devices such as smart phones and tablets are
widely used. The shipments of Android devices are over one bil-
lion units in 2015 and are being increasing [10]. Since smart de-
vices store a larger amount of more sensitive information than
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traditional cellular phones, users suffer from large damages on de-
vice theft. For example, personal information such as passwords
and credit card numbers and customer information such as phone
numbers and e-mail addresses can leak. In addition, smart devices
are at higher risk of theft than laptop PCs because they are much
smaller andmore lightweight. It is reported that 3.1 million devices
were stolen in the U.S. in 2013 [2]. In case of device theft, the oper-
ating systems for smart devices usually enable full disk encryption
(FDE) to prevent information leakage from storage.

Recently, however, information leakage from memory is being
a new threat as non-volatile main memory (NVMM) is emerging
[1, 15, 18]. NVMM is next-generation non-volatile memory and the
replacement of DRAM with high power consumption is expected.
Since NVMM can keep data without a power supply, attackers can
steal sensitive information fromNVMMmore easily than from cur-
rent volatile main memory by physical attacks. Although NVMM
is not widely used yet, the cold boot attack [9] has been proposed
against DRAM. This attack cools DRAMmodules to preserve data,
resets the device, boots attacker’s system, and steals data left in
memory. A similar attack has been reported for Android devices
[11]. In the main memory, most of the operating systems main-
tains the page cache to make file access faster. Therefore, attackers
can steal part of the storage data in the page cache even if storage
is fully encrypted.

This paper proposesCache-Crypt, which efficiently encrypts the
page cache in memory to prevent information leakage by phys-
ical attacks. Since FDE is already used in smart devices, Cache-
Crypt is well integrated with FDE to avoid redundant encryption
and take advantage of FDE. Upon file reads, it bypasses decryption
performed by FDE and directly stores encrypted data in the page
cache from storage. It decrypts data in the page cache using FDE’s
decryptionmechanism only when applications read files. Upon file
writes, Cache-Crypt encrypts data written by applications using
FDE’s mechanism and stores it in the page cache. The data is di-
rectly written back to storage without encryption by FDE. Using
Cache-Crypt, the target of information leakage is limited only to
the regions being accessed in the page cache.

To reduce cryptographic overhead, Cache-Crypt keeps the page
cache decrypted temporarily and defers encryption. With this de-
layed encryption, encryption and decryption are eliminated in the
critical paths of the read and write system calls, resulting in higher
performance. The delay time is a trade-off between performance
and security. We have implemented Cache-Crypt in the Linux ker-
nel, whose variant is used in Android. In the current implemen-
tation, Cache-Crypt is integrated with dm-crypt in Linux as FDE.
According to our experiment, it was shown that the performance
of file access in Cache-Crypt was comparable to that when only
dm-crypt was used.
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This paper is organized as follows. Section 2 describes informa-
tion leakage from the page cache. Section 3 proposes Cache-Crypt
and Section 4 explains the implementation details. Section 5 shows
experiments on Cache-Crypt. Section 6 describes related work and
Section 7 concludes this paper.

2 INFORMATION LEAKAGE FROM THE PAGE
CACHE

Smart devices usually enable FDE in case of device theft. FDE is a
mechanism for encrypting the entire partitions of storage to pro-
tect sensitive data. For example, Android uses dm-crypt in Linux
as FDE and encrypts the partition where applications’ data is lo-
cated. FDE decrypts data on disk reads and encrypts data on disk
writes. To obtain the master key for encrypting and decrypting
data, FDE requires a user to input a PIN or password at boot time.
Using the input information, FDE generates a key and decrypts
the master key from the generated key. Therefore, unless attack-
ers know user’s PIN or password, they cannot steal information in
encrypted storage even if they remove storage from stolen devices
and attaches it to their devices.

Recently, however, information leakage from memory is being
critical as NVMM such as STT-MRAM and NVDIMM is emerg-
ing [1, 15, 18]. Unlike traditional volatile memory such as DRAM,
NVMM can keep data without a power supply. From this feature,
it is expected that NVMM replaces DRAM in smart devices to re-
duce power consumption. If data used by the operating system and
applications is always preserved in NVMM, users could boot the
system faster. On the other hand, in case of device theft, attackers
could mount physical attacks and steal sensitive data from NVMM
more easily than from DRAM. This is because any data in NVMM
is not destroyed even if attackers power off the stolen device to
prevent the system from erasing sensitive data.

Even for currently used DRAM, the cold boot attack is possible
to physically steal information frommemory [9]. This attack cools
memory modules, forces to reset the device, boots the device us-
ing attacker’s system, and steals data left in memory. Usually, data
in volatile memory is gradually destroyed while a power is not
supplied after a device reset, but it takes a certain time before all
the data is destroyed. This destruction of memory data can be de-
layed by cooling memory modules. Unlike normal shutdown, the
operating system does not have any time to erase sensitive data in
memory because the cold boot attack resets a device suddenly.

For Android devices, the cold boot attack has been also reported
[11]. The reportedmethod cools the entire device and thereafter re-
sets the device by removing its battery. Next, it installs attacker’s
recovery image from a PC via USB and boots the device using that
image. When installing the recovery image, the entire data in stor-
age is erased if the boot loader has to be unlocked, but data inmem-
ory is not erased. The operating system included in the recovery
image can dump data in memory and extract sensitive information
such as cryptographic keys.

If the main memory of smart devices is compromised by phys-
ical attacks, data in the page cache can be stolen. In most of the
operating systems, the page cache is used for making file access
faster. When an application reads a file, the operating system first
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Figure 1: The system architecture of Cache-Crypt.

reads file blocks in storage to the page cache. If an application ac-
cesses the same file blocks, the operating system can return the
data in the page cache immediately. When an application writes
data to storage, the operating system first writes the data to the
page cache and writes it back to storage later. Therefore, the page
cache contains data that is the same as or newer than that in stor-
age. Consequently, part of the storage data leaks even if storage is
fully encrypted by FDE. Recently, the amount of memory equipped
with smart devices is increasing and most of free memory is used
as the page cache. This means that the amount of stolen data tends
to increase.

3 PAGE-CACHE ENCRYPTION
In this paper, we propose efficient page-cache encryption called
Cache-Crypt.

3.1 Threat Model
We assume that attackers eavesdrop on the page cache using phys-
ical attacks. We do not consider information leakage from the
other kernel memory or applications’ memory. Data in applica-
tions’ memory can be protected by several techniques [12, 13]. In
addition, we do not consider that malware installed in smart de-
vices accesses decrypted files and sends them to attackers. This
type of attacks can be protected by malware detection. Also, we
assume that the screen is locked on device theft and that attackers
cannot access decrypted files by normal operations.

3.2 Cache-Crypt
Cache-Crypt keeps the page cache encrypted while data in the
page cache is not accessed. It decrypts minimal regions in the page
cache only when applications access files. As such, it can protect
most of the data in the page cache even if attackers can phys-
ically eavesdrop on the entire main memory. Specifically, it can
limit the target of information leakage only to the regions of the
page cache that applications are accessing. Figure 1 illustrates the
system architecture of Cache-Crypt. The virtual filesystem (VFS)
layer invokes Cache-Crypt and accesses the encrypted page cache.
Although there are various filesystems underlying the VFS, Cache-
Crypt is independent of individual filesystems.
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Cache-Crypt is well integrated with FDE, which is usually en-
abled in smart devices. The aims are (1) to avoid redundant crypto-
graphic operations by both FDE and Cache-Crypt and (2) to avoid
the increase in user’s management cost, e.g., key management for
both FDE and Cache-Crypt. Cache-Crypt bypasses the encryption
and decryption of FDE and executes them using FDE’s mechanism
with its cryptographic key. Without such integration, the perfor-
mance of file access to encrypted storage would degrades. Data
read from encrypted storage has to be decrypted by FDE and be en-
crypted by Cache-Crypt to store the data in the page cache. Then,
Cache-Crypt has to decrypt the data when applications read it.
When encrypted data in the page cache is written back to stor-
age, it has to be decrypted by Cache-Crypt and be encrypted by
FDE.

In Cache-Crypt, when data in encrypted storage is read, it is di-
rectly stored in the page cache. Decryption by FDE is bypassed at
this time. Instead, FDE registers cryptographic information needed
for later decryption to Cache-Crypt. That information includes the
cipher and decryption key used in FDE and associated sector num-
bers used only in the block I/O layer. When an application reads
the data by issuing the read system call, Cache-Crypt decrypts the
data in the page cache using registered cryptographic information
and stores the decrypted data in the application’s buffer. The appli-
cation can handle decrypted data stored in its buffer without being
aware of encryption by Cache-Crypt. As in FDE only, the number
of decryption is only once in Cache-Crypt.

When an application writes data to a file using the write system
call, Cache-Crypt encrypts the data and stores it in the page cache.
An application is not aware of encryption by Cache-Crypt. If the
start and end of the written data are not aligned to the bound-
ary of FDE blocks, Cache-Crypt decrypts only the first and last
block because in-between blocks are completely overwritten. To
execute such encryption and decryption using FDE’s mechanism,
Cache-Crypt retrieves cryptographic information from FDE when
the page cache is allocated for the data. This is because FDE is not
applied yet at this time. When the data in the page cache is writ-
ten back to encrypted storage, the encryption by FDE is bypassed.
As in FDE only, the number of encryption is only once in Cache-
Crypt.

Cache-Crypt assumes to protect the cryptographic key of FDE
using ARMORED [6]. If the cryptographic key is stored inmemory,
it can be stolen by physical attacks. As a result, attackers could de-
crypt data in the page cache using the key. Since ARMORED stores
the cryptographic key in CPU debug registers, it can prevent the
leakage of the key even under physical attacks. In addition, it per-
forms cryptographic operations using CPU’s registers provided for
the SIMD extension instruction set instead of memory. Therefore,
it can also prevent the leakage of intermediate results of encryp-
tion and decryption processing.

3.3 Delayed Encryption
The performance of the write system call is largely degraded by
Cache-Crypt because the system call just stores data in the page
cache without storage access. In FDE, the encryption of writ-
ten data is executed asynchronously on writeback to storage. In
Cache-Crypt, however, it has to be executed in the critical path of

the system call. In addition, excessive encryption and decryption of
the same FDE block can occur in Cache-Crypt. For example, when
an application reads one FDE block (typically 512 bytes of sector
size) little by little, the same block is decryptedmany times because
Cache-Crypt has to decrypt the entire block using FDE’s decryp-
tion mechanism to obtain part of its data. When an application
writes one FDE block little by little, decryption and encryption are
repeated for the same block. Even if an application accesses the en-
tire FDE block at a time, a similar situation occurs when the same
block is repeatedly accessed.

To reduce the overhead of such wasteful encryption and de-
cryption, Cache-Crypt defers encryption of the page cache. Once
Cache-Crypt decrypts the page cache or stores unencrypted data,
it keeps that page cache decrypted for a while. If the page cache
is not accessed for a specified period, Cache-Crypt encrypts the
page cache asynchronously. As such, the performance of Cache-
Crypt is improved because Cache-Crypt does not need to always
encrypt and decrypt data when applications read or write files. For
example, written data is encrypted later outside the critical path of
the write system call. While an application accesses one FDE block
continuously, the page cache is not encrypted.

The period for this delayed encryption is a trade-off between per-
formance and security. Longer delay can increase performance, but
a larger amount of decrypted data in the page cache increases a
risk of information leakage in case of device theft. Fortunately, it
takes not a short time to mount physical attacks to stolen devices.
In particular, the cold boot attack needs to cool device memory.
Therefore, security is preserved if the page cache is encrypted be-
fore attackers succeed physical attack. To further reduce the risk,
Cache-Crypt does not defer encryption while the screen in a smart
device is locked, which means that the user does not access the de-
vice.

4 IMPLEMENTATION
We have implemented Cache-Crypt in Linux 3.5.7. In the current
implementation, Cache-Crypt is integrated with dm-crypt, which
is one of the most popular FDE and is also used in Android.

4.1 dm-crypt for Cache-Crypt
We have modified dm-crypt for enabling Cache-Crypt. When dm-
crypt receives a read request, it registers cryptographic informa-
tion to the specified page-cache pages, as illustrated in Fig. 2. The
information includes dm-crypt config and sector numbers where
the requested data is stored in storage. When encrypted data is
read from storage, the callback function of dm-crypt is invoked.
Unlike traditional dm-crypt, the modified dm-crypt does not de-
crypt the data at this time. When metadata of the filesystem is
read, dm-crypt decrypts it as usual. Unlike file data, metadata
is processed by the VFS and individual filesystems. If metadata
were encrypted, Cache-Crypt would have to repeat decryption and
encryption. This complicates the implementation and increases
the performance overhead. In addition, metadata does usually not
include so sensitive information. Cache-Crypt determines that a
page-cache page contains metadata when the inode number asso-
ciated with the page is zero. Each page-cache page contains either
only metadata or file data.
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When the modified dm-crypt receives a write request, it just
copies each block in the specified page-cache page to the allocated
buffer if the block is encrypted. If the block is not encrypted, dm-
crypt first encrypts the block and then stores it in the buffer as
usual. This encryption is executed only when the page contains
metadata or when Cache-Crypt defers encryption of blocks in the
page. Then, the buffer is written back to encrypted storage.

4.2 Encryption/Decryption in Cache-Crypt
Cache-Crypt decrypts a page-cache page using the decryption
mechanism of dm-crypt. Originally, dm-crypt decrypts data read
from storage asynchronously with read requests. In contrast,
Cache-Crypt decrypts data synchronously to return decrypted
data to the VFS as fast as possible. Since it is invoked to decrypt
data that is already stored in the page cache, instead of data in stor-
age, the decryption latency is more critical. To execute decryption,
Cache-Crypt uses dm-crypt config registered to the target page-
cache page. It also uses registered sector numbers to generate an
initialization vector of the cipher algorithm, e.g., AES-XTS. The de-
cryption is done by a sector size of 512 bytes. Cache-Crypt main-
tains an encryption bitmap for eight sectors in one page. After de-
cryption, Cache-Crypt clears the corresponding bits in the bitmap.

Similarly, Cache-Crypt encrypts a page-cache page using the
encryption mechanism of dm-crypt. Since the timing of encryp-
tion is controlled by the mechanism of delayed encryption, Cache-
Crypt provides a function for synchronous encryption. After en-
cryption, Cache-Crypt sets the corresponding bits in the encryp-
tion bitmap. To execute encryption, Cache-Crypt also uses dm-
crypt config and sector numbers registered to a page-cache page, as
illustrated in Fig. 3. Unlike decryption, however, dm-crypt cannot
register necessary information to the page before encryption be-
cause the page can be encrypted by Cache-Crypt before dm-crypt
is invoked for handling write requests.

Therefore, instead of dm-crypt, Cache-Crypt registers such in-
formation when a page-cache page is allocated on file writes. First,
Cache-Crypt finds the block device associated to the page and ob-
tains the request queue for it. If the request queue is created for
handling requests of the device mapper, Cache-Crypt determines
that the page is used for the device mapper. The device mapper is
a framework for mapping physical block devices onto higher-level
virtual block devices and is used by dm-crypt. Next, Cache-Crypt
obtains queue data from the request queue and finds the device-
mapper table from the data. Then, it finds a device-mapper tar-
get from the table and determines whether the page is used for
dm-crypt. If so, Cache-Crypt can obtain dm-crypt config from the
device-mapper target. The sector numbers are calculated from the
numbers of the blocks contained in the page.

4.3 Delayed Encryption in Cache-Crypt
When Cache-Crypt defers encryption of a page-cache page, it adds
the page to the tail of the delay list. In the list, the page is linked in
the order in which the remaining time to encryption is shorter. If
the page is already linked to the list, Cache-Crypt moves it to the
tail of the list. After adding the page, it resets the encryption timer
by the remaining time of the page at the head of the list. When
the timer is expired and the timeout function is invoked, Cache-
Crypt starts asynchronous encryption. First, it removes the timed-
out page from the delay list and adds it to the ready list. Then, it
wakes up the encryption thread to execute actual encryption. This
is because the timeout function should not execute processing that
needs a long time. The encryption thread removes the page from
the ready list and finally encrypts it.

4.4 Supporting Memory-mapped File
Cache-Crypt decrypts a page-cache page allocated for a memory-
mapped file when a fault for the page occurs at the first access.
The page is kept decrypted because an application directly access
the page and the operating system cannot mediate later accesses to
the page. It should be noted that page-cache pages for a memory-
mapped file are not decrypted immediately after the mmap system
call is issued.When data in the page is written back to storage, dm-
crypt encrypts the data as usual. The page is re-encrypted when
it is unmapped by the munmap system call. To reduce the risk of
information leakage, Cache-Crypt can periodically remove access
permission from a page decrypted for a memory-mapped file and
encrypt it. As an initial state, the page is kept encrypted until it
is accessed again. However, performance of accessing memory-
mapped files degrades.

4.5 Supporting tmpfs
Although Cache-Crypt is independent of filesystems, it supports
tmpfs specially. tmpfs is a memory-based filesystem, which is also
known as initramfs used at boot time. To enable file data to be pre-
served in the page cache, tmpfs performs its own management of
the page cache. In addition, Cache-Crypt cannot use cryptographic
information registered by dm-crypt because files in tmpfs are not
read from storage via dm-crypt. Therefore, when a new page is
added to the page cache for tmpfs, Cache-Crypt marks the page
and applies its own cryptographic operations to the marked page.
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5 EXPERIMENTS
We conducted experiments to examine the performance of Cache-
Crypt. Wemeasured the performance of file access in Cache-Crypt
with or without delayed encryption, independent page-cache en-
cryptionwith the existing dm-crypt, and dm-crypt only. For the ex-
periments, we have developed page-cache encryption that was not
integrated with dm-crypt. Since we could not obtain NVMM, we
used traditional SDRAM, assuming NVDIMM-N or STT-MRAM,
which will have almost the same performance as DRAM. For ease
of experiment, instead of a smart device, we used a PC with Intel
Xeon E3-1270v3, 8 GB of DDR3-1600 SDRAM, 1 TB of HDD, and
64 GB of Intel X25-E SSD. We encrypted the SSD with dm-crypt
and used the encrypted SSD for measuring performance. The used
cipher was AES-XTS and the key length was 256 bits. For the page-
cache encryption independent of dm-crypt, we used AES-ECB for
the cipher because of an implementation issue. We ran modified
Linux 3.5.7.

To measure the performance of file access, we used the fio
benchmark. To exclude the impact of asynchronous writeback of
dirty pages, we disabled writeback. For Cache-Crypt, we config-
ured sufficiently long delay time for delayed encryption to avoid
being encrypted during the experiment. In this experiment, we
first invalidated the page cache, created a file, and wrote 2-GB and
1-GB data to the file sequentially and randomly, respectively. Then,
we rewrote data to the same file without invalidation of the page
cache. In addition, we measured the throughput of the write and
rewrite including the issue of explicit fsync. Next, we invalidated
the page cache and read the file. Finally, we reread the file, whose
data was kept in the page cache. The block size for I/O units was
4 KB and the number of thread was one.

5.1 Throughput
Figure 4 shows the throughput of sequential file access. When
page-cache encryption was not integrated with dm-crypt, the per-
formance was degraded by 28-95%, compared with that in dm-
crypt only. For read, the performance degradation was 28%. This
overhead is relatively small because this file read involved stor-
age access. For write and rewrite with fsync, the degradation was
about 50% because encryption was executed in the critical path of
the write system call. For write, rewrite, and reread, however, the
throughput was degraded by 95%. The reason is that these accesses
need only memory access in addition that encryption and decryp-
tion were executed in the critical paths.

Using Cache-Crypt, the performance was improved even if de-
layed encryption was not enabled. For read, there was no perfor-
mance degradation thanks to the elimination of wasteful encryp-
tion and decryption. For write and rewrite with fsync, the through-
put was also improved by 20% point. However, the performance
was still 30% lower than that in dm-crypt only. For write, rewrite,
and reread, the integration with dm-crypt did almost not improve
the performance because these accesses were performed only to
the page cache and dm-crypt was not invoked.

The performance of Cache-Crypt with delayed encryption was
comparable to that in dm-crypt only. For write and rewrite with
fsync, the throughput became almost the same as that in dm-crypt
only. This is because encryptionwas eliminated in the critical path.
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Even for write, rewrite, and reread, the performance degradation
was reduced to 12-19%. Upon write and rewrite, unencrypted data
was stored in the page cache without encryption. Upon reread,
data in the page cache was already decrypted by the preceding
read. The remaining overhead is checking the encryption status of
accessed page-cache pages, locking the pages for that check, and
resetting the timeout of delayed encryption.

For random access, the result was very similar to that of sequen-
tial access except for read access, as shown in Figure 5. The per-
formance of read access was much lower in all cases. Even when
page-cache encryption was not integrated with dm-crypt, the per-
formance degradation of read access was only 16% due to low per-
formance of random storage access.

5.2 Latency
Figure 6 and Figure 7 show the latency of sequential and random
access. For write and rewrite, the latency was increased by 20 µs ,
compared with dm-crypt only, when page-cache encryption was
not integrated with dm-crypt. This overhead comes from the en-
cryption of one page-cache page. For reread, the latency was in-
creased by 17 µs due to the decryption. Using Cache-Crypt, the
increase in latency was still 14 µs . The reason of this improvement
is that the encryption and decryption of dm-crypt are more effi-
cient. Delayed encryption in Cache-Crypt suppressed the increase
to 0.15-0.24 µs . The remaining overhead is caused by the manage-
ment of delayed encryption.
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5.3 Impact of Delayed Encryption
We examined the impact of delayed encryption in Cache-Crypt.
First, we measured the performance of sequential write access
with asynchronous writeback enabled. As shown in Fig. 8(a), the
throughput did not depend on the delay time and was approx-
imately 250 MB/s constantly. This is because the encryption of
page-cache pages was performed in parallel with fio. Second, we
used a mixed workload of read and write and repeated random ac-
cess to a 1-GB file 20 times. We reduced the delay time from 10
seconds to 1 second. Figure 8(b) shows the result. When we con-
figured the delay time to 2 seconds, the performance suddenly de-
graded due to the encryption of page-cache pages to be read. Con-
sequently, the impact of delayed encryption depended on work-
loads.

6 RELATEDWORK
Instead of FDE, encrypted filesystems also decrypt files on disk
read and encrypts them on disk write. eCryptfs [8] is an encrypted
filesystem overlaid on the existing filesystem and stores encrypted
data in the page cache used by the underlying filesystem. However,
the page cache used by eCryptfs itself is not encrypted. EncFS [7]
allocates its own page cache only while files are opened, but the
page cache is not encrypted. On the other hand, TransCrypt [16]
provides an optionalmechanism for encrypting and decrypting the
page cache when it copies data between the page cache and pro-
cess’s buffers. However, it neither consider the overhead nor eval-
uate it. These approaches require using specific filesystems, but
Cache-Crypt allows using any filesystems.

ZIA [3] is a filesystem that decrypts files only when hardware
tokens exist near devices. It first decrypts a key used for encrypt-
ing files by communicating with user’s token and then decrypts
files using the decrypted key. If the device is stolen and there is no
token near the device, ZIA destroys the decrypted key and starts to
encrypt the page cache. However, ZIA does not allow background
processing using the filesystem such as mail receipts while users
with tokens are far from their devices. Moreover, ZIA cannot pro-
tect files when both a device and a token are stolen.

In Keypad [4], users can notice files accessed after devices are
stolen and can prevent file access after that. To achieve this, Key-
pad encrypts each file with a different key and stores keys in the
server. Therefore, it cannot decrypt or securely encrypt files when
devices are not connected to the network. To overcome this draw-
back, Keypad requires one more device. Keypad is designed so that
the page cache is encrypted, but it is unclear how to handle the
page cache because Keypad is implemented using FUSE.

Several mechanisms have been proposed to protect data in ap-
plication’smemory. Swap encryption [14] encrypts pages swapped
out to storage and decrypts pages swapped in. Since it encrypts
pages with a cryptographic key that is valid for only a short period,
data in the swap space cannot be decrypted after process termina-
tion. Cryptkeeper [13] is a virtual memory manager that encrypts
process’ memory. It divides the memory into a small working set
and the other and encrypts the latter. It traps access to encrypted
pages and decrypts these pages on page faults. If the number of
decrypted pages exceeds the upper limit, Cryptkeeper encrypts
the page that has been decrypted the earliest. Software-based main
memory encryption [12] encrypts data in the store instruction and
decrypts data in the load instruction by instrumenting application
code. The instrumentation is achieved statically and dynamically
without any architectural support. This system provides not only
full but also selective memory encryption.

Vanish [5] and CleanOS [17] encrypt sensitive data after a pre-
defined time and store cryptographic keys in the Internet. CleanOS
extends Android and stores sensitive data in Java objects called
SDO. If SDO is not frequently used, CleanOS encrypts it and stores
the used cryptographic key in a cloud. Therefore, when a device
is not connected to the network, CleanOS has to keep SDO un-
encrypted or store cryptographic keys in the same device. These
increases a risk of information leakage.
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There are many studies on hardware for transparently protect-
ing NVMM by encryption. MECU [15] encrypts all memory trans-
fers between CPUs and NVMM with low overhead. i-NVMM [1]
provides incremental encryption, which encrypts infrequently ac-
cessed pages but does not encrypt frequently accessed pages.
DEUCE [18] reduces encryption overhead on writeback to NVMM
by re-encrypting only the words that have been changed. These
approaches need special hardware, but Cache-Crypt is a software-
only solution.

7 CONCLUSION
In this paper, we proposed Cache-Crypt, which efficiently encrypts
the page cache in memory to prevent part of the storage data from
being stolen. Cache-Crypt is well integrated with FDE to avoid
redundant cryptographic operations and take advantage of FDE.
Upon file reads, it bypasses decryption by FDE and directly stores
encrypted data in the page cache. Upon writeback to storage, it
bypasses encryption by FDE and directly writes data back to stor-
age. To decrypt and encrypt data in the page cache, Cache-Crypt
uses FDE’s mechanism. To reduce cryptographic overhead, Cache-
Crypt performs delayed encryption. We have implemented Cache-
Crypt in Linux and confirmed that the performance degradation
was up to 19%, compared with dm-crypt only.

One of our future work is to apply Cache-Crypt to the Android
operating system. We would like to investigate the impact on the
performance and energy consumption in smart devices. Also, we
are planning to evaluate Cache-Crypt using real applications. An-
other direction is tomeasure the performance of Cache-Crypt with
ARMORED [6], which protects cryptographic keys but causes ex-
tra overhead.
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