
Optimization of Parallel Applications under CPU Overcommitment

Tokiko Takayama
Kyushu Institute of Technology

tokiko@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ksl.ci.kyutech.ac.jp

Abstract—As cloud computing is widely used, even parallel
applications run in virtual machines (VMs) of clouds. When
CPU overcommitment is performed in clouds, physical CPU
cores (pCPUs) can become less than virtual CPUs (vCPUs). In
such a situation, it is reported that application performance
degrades more largely than expected by the decrease of pCPUs
available to each VM. To address this issue, several researchers
have proposed optimization techniques of reducing the number
of vCPUs assigned to each VM. However, their effectiveness is
confirmed only in a limited VM configuration. In this paper,
we have first investigated application performance under three
configurations and revealed that the previous work cannot
always achieve optimal performance. Then we propose pCPU-
Est for improving application performance under CPU over-
commitment. pCPU-Est dynamically optimizes the number of
vCPUs on the basis of correlation between CPU utilization
and execution time (dynamic vCPU optimization). In addition,
it dynamically optimizes the number of application threads
when possible (thread optimization). According to our ex-
periments, dynamic vCPU optimization improved application
performance by up to 42%, while thread optimization did by
up to 72x.

Index Terms—Virtual machines, virtual CPUs, CPU over-
commitment, parallel applications, performance degradation,
performance improvement

1. Introduction

As the number of CPU cores is increasing, recent ap-
plications are parallelized to make their computation faster.
The computation of an application is divided and is executed
in parallel using multiple CPU cores. As cloud computing
is widely used, such parallel applications often run in vir-
tual machines (VMs) provided by public or private clouds,
instead of directly in physical machines. In virtualized en-
vironments, each CPU core called a physical CPU core
(pCPU) is virtualized and is provided as one or more virtual
CPUs (vCPUs) to VMs. While there are a sufficient number
of pCPUs, one pCPU is assigned to one vCPU. However, if
clouds perform CPU overcommitment, the total number of
vCPUs can exceed that of pCPUs. Under such a situation,
it is reported that application performance degrades more
largely than expected by the decrease of pCPUs available
to each VM [1]–[3].

To address this issue, several researchers have proposed
optimization techniques of reducing the number of vCPUs
assigned to each VM [1]–[3]. These techniques can elimi-
nate the root cause of lock-holder preemption [4] and vCPU
stacking [5] by mapping one vCPU to only one pCPU.
However, the previous work shows performance degradation
under the shortage of pCPUs and performance improvement
by the proposed methods only in a limited VM configu-
ration. In this paper, we have first measured application
performance and investigated the effectiveness of the pre-
vious work under three configurations on a pCPU shortage.
Consequently, it was revealed that application performance
was degraded under any configurations but the degree of
the performance degradation depends on configurations. In
addition, the number of vCPUs used in the previous work
were often not optimal.

Therefore, we propose pCPU-Est for further improv-
ing the performance of parallel applications under CPU
overcommitment. pCPU-Est provides two optimization tech-
niques: dynamic vCPU optimization and thread optimiza-
tion. Dynamic vCPU optimization determines the optimal
number of vCPUs at runtime on the basis of correlations be-
tween CPU utilization and execution time. Thread optimiza-
tion adjusts the number of application threads to overcome
the limitation of vCPU optimization. It should be noted
that thread optimization is not always applicable because
it depends on applications and situations. For these two
optimization techniques, pCPU-Est enables the number of
pCPUs available to each VM to be estimated. When vCPU
affinity is set to VMs, this estimation is not straightforward.

We have implemented pCPU-Est in Xen 4.4 [6] and ex-
amined whether pCPU-Est could improve the performance
of the NAS parallel benchmarks [7]. The experimental re-
sults show that dynamic vCPU optimization could achieve
larger performance improvement than the previous work in
several benchmarks. Compared with the previous work [1],
the performance was improved by up to 42%. This is
because pCPU-Est could determine the number of vCPUs
so that the number was nearer the optimal than that in the
previous work. Although dynamic vCPU optimization was
not effective for the rest of the benchmarks, thread optimiza-
tion could improve performance in all the benchmarks. The
maximum performance improvement was 72x.

The organization of this paper is as follows. Section 2
describes the existing optimization technique for CPU over-

0

0

vCPU

pCPU

hypervisor

1 2 3

1 2 3

thread

VM1 VM2

Figure 1: CPU assignment in a virtualized system.

commitment. Section 3 shows the results of our prelimi-
nary experiments on the previous work. Section 4 proposes
pCPU-Est for further performance improvement. Section 5
shows the results of our experiments on pCPU-Est. Section 6
describes related work and Section 7 concludes this paper.

2. CPU Overcommitment

In virtualized systems, physical CPU cores (pCPUs)
are virtualized and are provided to VMs as virtual CPUs
(vCPUs). While there are a sufficient number of pCPUs, one
pCPU can be assigned to only one vCPU, as illustrated in
Fig. 1. This assignment can be changed by the vCPU sched-
uler in the hypervisor. For example, pCPU 0 is assigned to
vCPU 0 in Fig. 1, but it can be assigned to one of the other
vCPUs later. To fix this assignment, the hypervisor provides
a mechanism called vCPU affinity. Using this mechanism,
each pCPU is always assigned to only one specified vCPU
for strict performance isolation. When parallel applications
are running in a VM, their threads are assigned to vCPUs
by the process scheduler in the operating system.

Virtualized systems often overcommit CPUs and run
more vCPUs than the number of pCPUs because all the
vCPUs do not always use 100% of all the pCPUs. In general,
CPU utilization is 5–20% in servers [8]. However, since
parallel applications often occupy CPUs, CPU overcommit-
ment easily leads to the shortage of pCPUs. For example,
after under-utilized VMs are consolidated by VM migration,
some of them can start running parallel applications. One
option is to migrate such VMs to hosts with sufficient
pCPUs, but it is often difficult because VM migration is
also heavyweight and deteriorates the situation.

When a parallel application runs with insufficient pC-
PUs, its performance degrades more largely than expected
by the decrease of pCPUs available to each VM [1]–[3]. For
example, when the number of pCPUs available to a VM is
reduced from 16 to 8, it is expected that the performance of a
parallel application using 16 threads becomes half. However,
the performance often degrades to less than half. The root
causes are lock-holder preemption (LHP) [4] and vCPU
stacking [5]. LHP is caused when a vCPU holding a spin
lock is preempted and vCPUs waiting for the lock cannot
run. vCPU stacking is caused when a pCPU is assigned to
a vCPU waiting for a spin lock before one holding the lock.

To solve this problem, several optimization techniques
have been proposed [1]–[3]. All of these techniques reduce
the number of vCPUs of each VM according to that of
pCPUs available to the VM. However, the previous work
investigates performance degradation only when pCPUs are
shared between two VMs and performance improvement by
the proposed techniques at that time. Therefore, it is unclear
how the performance is degraded and is improved at various
VM configurations, e.g., when pCPUs are shared among
many VMs, when CPU utilization of each VM is limited,
and when pCPU assignment to each VM is reduced.

In addition, the previous work basically calculates the
reduced number of vCPUs of VMi as follows:

Nall cpu × Wi∑
0≤k<Nvm

Wk

where Nall cpu is the total number of pCPUs, Nvm is the
number of VMs, and Wi is the weight of VMi. The weight
is used as CPU shares and is configured to relatively allocate
CPU time to VMs. The calculated value means the number
of pCPUs available to VMi. If the weights of all the VMs
are the same, the number of vCPUs is adjusted to the total
number of pCPUs divided by the number of VMs. However,
the previous work does not discuss whether this calculation
is optimal or not. At least, this is not optimal when vCPU
affinity is set so that each vCPU cannot use pCPUs equally.

3. Exploratory Experiments

We first conducted experiments to measure performance
degradation under various VM configurations on a pCPU
shortage. Then, we examined performance improvement by
one of the previous work in Section 2, named VCPU-Bal [1],
under these configurations. In addition, we experimentally
searched for the optimal number of vCPUs.

We used three VM configurations. The configuration of
CPU sharing shares pCPUs between VMs by assigning one
pCPU to vCPUs of multiple VMs. The proportion of a
pCPU available to each vCPU is determined by the weights
configured to VMs. Note that surplus pCPUs can be used
by arbitrary vCPUs when vCPUs do not use up the pCPUs
assigned to them. The configuration of CPU limit limits
the CPU utilization of VMs for sharing pCPUs between
VMs. By default, each VM can use 100% multiplied by
the number of pCPUs available to the VM. The vCPU
scheduler determines how many pCPUs each VM uses and
what percentage of each pCPU is used. The configuration
of CPU reduction reduces pCPU assignment to VMs and
assign one pCPU only to vCPUs of a specific VM using
vCPU affinity. Each VM can occupy the entire pCPUs, while
one pCPU is shared between multiple vCPUs of the VM.

We used a PC with two AMD Opteron 6376 processors
(16 cores for each) and 320 GB of memory. We ran Xen
4.4.0 [6] with the default credit scheduler and VMs with
16 vCPUs and 4 GB of memory on top of it. Since these
Opteron processors share several hardware units between
adjacent two cores, we used only 16 cores in total for the
VMs so that application performance was maximized [9]. In

2.9 2.6 1.1 1.2 1.1 1.2 1.3

7.7

54

BT CG DC EP FT IS LU MG SP UA
0

10

20

30

40

50

60

70
p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

426

(a) CPU sharing

42
74

3.5 4.7 3.9 4.5

407

15

137

BT CG DC EP FT IS LU MG SP UA
0

100

200

300

400

500

p
e

rf
o

rm
a

n
c
e

 d
e

g
ra

d
a

ti
o

n
 (

x
)

1126

(b) CPU limit

1.8 2.1 1 1.3 1 1 1
4

31

BT CG DC EP FT IS LU MG SP UA
0

10

20

30

40

p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

253

(c) CPU reduction

Figure 2: The maximum performance degradation on a pCPU shortage (Dbase).

the VMs, we ran Ubuntu 14.04 and the Linux kernel 3.13.
As parallel applications, we ran all the benchmarks in the
NAS Parallel Benchmarks (NPB) [7] using OpenMP [10].
Those problem sizes were BT.A, CG.B, DC.A, EP.B, FT.B,
IS.C, LU.A, MG.C, SP.A, and UA.A. We ran each bench-
mark for each VM configuration ten times and calculated
the average and standard deviation.

3.1. Performance Degradation

As a baseline, we examined performance degradation
when the three VM configurations were applied. The per-
formance degradation is defined as

Dbase =
Tbase

E
(1)

where Tbase is the execution time measured using pCPUs
available under each VM configuration and E is the execu-
tion time expected under that VM configuration. E is the
possible shortest execution time and is calculated from the
execution time Tmin measured when one VM can use all
the pCPUs. Note that the performance degrades more largely
as the value of Dbase becomes bigger and the value of 1.0
means no degradation.

For the configuration of CPU sharing, we increased the
number of VMs running in one host, Nvm, from one to
eight and measured the execution time for each benchmark.
The previous work measured performance degradation when
only two VMs were run. In this configuration, the expected
execution time is defined as

Eshare = Tmin ×Nvm. (2)

For example, when the number of VMs is increased from
one to two, Eshare becomes twice. Fig. 2(a) shows the
maximum values of the Dbase among various numbers of
VMs sharing pCPUs for each benchmark. The performance
of LU was 426x lower than expected when eight VMs
were run. In contrast, the performance degradation of half
the benchmarks was not so large. To compare the standard
deviations of Tbase between different degrees of CPU shar-
ing, we calculated the coefficient of variation (CV), which
is the standard deviation divided by the average. In this
experiment, the CV was 0.17 at maximum and was relatively
large.

For the configuration of CPU limit, we decreased the
upper limit of CPU utilization, U , from 1600% to 100%

and measured the execution time. We ran only one VM
so that the VM could fully use 16 pCPUs when the limit
was set to 1600%. The previous work did not measure
performance degradation under this configuration at all. In
this configuration, the expected execution time is defined as

Elimit = Tmin × 1600

U
. (3)

For example, when the CPU limit is decreased from 1600%
to 800%, Elimit becomes twice. Fig. 2(b) shows the max-
imum values of Dbase among various CPU limits. Com-
pared with the configuration of CPU sharing, performance
degradation became larger except for LU. At least, the
performance was degraded by 247%. The performance of
UA was 1126x lower than expected when the CPU limit
was set to 100%. The CV was 0.25 at maximum and was
larger than in the configuration of CPU sharing.

For the configuration of CPU reduction, we decreased
the number of pCPUs assigned to a VM, Ncpu, from 16 to
1 and measured the execution time. We ran only one VM so
that the VM could fully use 16 pCPUs assigned. The pre-
vious work did also not measure performance degradation
under this configuration. In this configuration, the expected
execution time is defined as

Ereduce = Tmin × 16

Ncpu
. (4)

For example, when the number of assigned pCPUs are
reduced from 16 to 8, Ereduce becomes twice. Fig. 2(c)
shows the maximum values of Dbase among various pCPU
assignments. Compared with the other two configurations,
the performance degradation was relatively small. However,
the performance of LU was still 253x lower when 4 pCPUs
were assigned. The CV was 0.16 at maximum.

3.2. Performance Improvement by VCPU-Bal

We examined performance improvement by VCPU-Bal
to the baseline under the three VM configurations. The
performance improvement is defined as

Ibal/base =
Dbase

Dbal
(5)

where Dbal is the performance degradation that is still left
even when VCPU-Bal is applied. Note that the performance

3.1 3.3
1.1 1.3 1.3 1.3

18

1.4

4.2

23.8

BT CG DC EP FT IS LU MG SP UA
0

5

10

15

20

25

30
p
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t
(x

)

(a) CPU sharing

55

288

4.4 4.8 7.8 6.6 14
42

196

BT CG DC EP FT IS LU MG SP UA
0

50

100

150

200

250

300

350

p
e

rf
o

rm
a

n
c
e

 i
m

p
ro

v
e

m
e

n
t

(x
)

1183

(b) CPU limit

1.7

4

1.2 1.3 1.5 1.5

9.1

1.8

4.1

13.7

BT CG DC EP FT IS LU MG SP UA
0

5

10

15

p
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t
(x

)

(c) CPU reduction

Figure 3: The maximum performance improvement by VCPU-Bal (Ibal/base).

0481216
16 / # of VMs

0

10

20

30

40

50

60

p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

baseline
VCPU-Bal

(a) CPU sharing (UA)

040080012001600
CPU limit (%)

0

100

200

300

400

500

p
e

rf
o

rm
a

n
c
e

 d
e

g
ra

d
a

ti
o

n
 (

x
)

baseline
VCPU-Bal

(b) CPU limit (LU)

0481216
of pCPUs

0.0

0.5

1.0

1.5

2.0

2.5

p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

baseline
VCPU-Bal

(c) CPU reduction (BT)

Figure 4: The detailed comparison of performance degradation in VCPU-Bal (Dbal and Dbase).

improves more largely as the value of Ibal/base becomes
bigger. Like Dbase, Dbal is defined as

Dbal =
Tbal

E
(6)

where Tbal is the execution time measured with the opti-
mization of VCPU-Bal.

For the configuration of CPU sharing, we decreased the
number of vCPUs of each VM to that of pCPUs available
to the VM and measured the execution time for each bench-
mark. For example, when two VMs were run, the number of
vCPUs was adjusted from 16 to 8 for each VM. The previous
work showed performance improvement only for two VMs.
Fig. 3(a) shows the maximum values of Ibal/base for each
benchmark. VCPU-Bal could improve the performance of
all the ten benchmarks. In several benchmarks, the perfor-
mance improvement exceeded the degradation in Fig. 2(a)
because the measured execution time was shorter than the
expected time. This happened when an application did not
scale well. In LU and UA, the performance degradation
was large, while the performance improvement was also
large. For UA, Fig. 4(a) shows the detailed comparison
between Dbal and Dbase. VCPU-Bal could always improve
the performance for any numbers of VMs. The performance
was improved more largely when the number of VMs was
more than two.

For the configuration of CPU limit, we decreased the
number of vCPUs of a VM similarly and measured the
execution time. For example, when the CPU limit of a VM
was 800%, the number of vCPU was adjusted to eight.
Fig. 3(b) shows the maximum values of Ibal/base. While the
performance was degraded more largely than in the config-
uration of CPU sharing, it was improved more largely by

VCPU-Bal. In particular, the performance improvement of
UA was very large. Unlike the configuration of CPU sharing,
VCPU-Bal could improve the performance of BT, CG, MG,
and SP largely, but it could not improve that of LU so
largely. Fig. 4(b) compares Dbal and Dbase for LU in detail.
As we configured CPU limit to a lower value, VCPU-Bal
could improve the performance more largely. This is because
the performance degradation became extremely large when
the CPU utilization was limited more. However, when CPU
limit was 1200%, the performance was rather 11x lower by
reducing the number of vCPUs.

For the configuration of CPU reduction, we also de-
creased the number of vCPUs of a VM according to that
of pCPUs assigned to the VM and measured the execution
time. As shown in Fig. 3(c), the result was similar to that
in the configuration of CPU sharing. Fig. 4(c) shows the
detailed result of BT. The improvement was small in BT
because the performance did not degrade so largely even
without the optimization by VCPU-Bal. In addition, when
the number of pCPUs was 12, the performance was 34%
lower than that without the optimization. In any configura-
tions, the CV of Tbal was 0.09 at most and was quite small.

3.3. Optimal Number of vCPUs

From the results in the previous section, it was revealed
that the performance rather degraded in several cases when
VCPU-Bal was applied. Therefore, we thoroughly measured
the performance for all the numbers of vCPUs and identified
the optimal number. For the configuration of CPU sharing,
the optimal number of vCPUs was exactly the same as
the number of pCPUs available to each VM in BT, EP,
and LU. However, that was often larger in the other seven

0481216
16 / # of VMs

0

4

8

12

16

#
 o

f
v
C

P
U

s

VCPU-Bal
optimal

(a) CPU sharing (UA)

040080012001600
CPU limit (%)

0

4

8

12

16

#
 o

f
v
C

P
U

s

VCPU-Bal
optimal

(b) CPU limit (LU)

0481216
of pCPUs

0

4

8

12

16

#
 o

f
v
C

P
U

s

VCPU-Bal
optimal

(c) CPU reduction (BT)

Figure 5: The optimal number of vCPUs.

0
1.4

18.1

0

5.9

8.2

0
1.3

14.2

5.3

BT CG DC EP FT IS LU MG SP UA
0

5

10

15

20

25

m
a

x
im

u
m

 i
m

p
ro

v
e

m
e

n
t

(%
)

(a) CPU sharing

0

8.4

0 0

6.6

1.7 0

12.9

40

BT CG DC EP FT IS LU MG SP UA
0

10

20

30

40

50

m
a

x
im

u
m

 i
m

p
ro

v
e

m
e

n
t

(%
) 1029

(b) CPU limit

42

11.9
14.5

0
3.4

0

27.8

0

19.6

34.6

BT CG DC EP FT IS LU MG SP UA
0

10

20

30

40

50

m
a

x
im

u
m

 i
m

p
ro

v
e

m
e

n
t

(%
)

(c) CPU reduction

Figure 6: The maximum possible improvement from VCPU-Bal by the optimal vCPU assignment (Iopt/bal).

1.4
1 1 1 1 1 1

1.8

3.1

BT CG DC EP FT IS LU MG SP UA
0

1

2

3

4

5

p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

61.6

(a) CPU sharing

2.1

1 1 1 1 1 1

2.5

3.2

BT CG DC EP FT IS LU MG SP UA
0

1

2

3

4

5

p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

57.1

(b) CPU limit

1.5

1 1 1 1 1 1

1.8

4.1

BT CG DC EP FT IS LU MG SP UA
0

1

2

3

4

5

p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

55.2

(c) CPU reduction

Figure 7: The maximum performance degradation even under the optimal vCPU assignment (Dopt).

benchmarks. For example, as shown in Fig. 5(a), the optimal
number in UA was larger except when the number of VM
was one and eight.

For the configuration of CPU limit, the optimal number
of vCPUs was equal to the number of pCPUs available to
a VM in BT, EP, DC, and MG. Unlike in the configuration
of CPU sharing, the optimal number was much larger in
LU when the CPU limit was larger than 600%, as shown
in Fig. 5(b). In CG, FT, and IS, the optimal number was
slightly smaller only when the CPU limit was 1200%. For
the configuration of CPU reduction, the optimal number of
vCPUs was different from the number of assigned pCPUs,
except for EP, IS, and MG. As shown in Fig. 5(c), the larger
number was optimal in most cases. In CG, FT, and LU, the
slightly smaller number was sometimes optimal.

The maximum possible performance improvement from
VCPU-Bal is defined as

Iopt/bal =
Dbal

Dopt
(7)

where Dopt is the performance degradation that still exists

even when the optimal number of vCPUs obtained is ap-
plied. Dopt is defined as

Dopt =
Topt

E
(8)

where Topt is the execution time measured using the optimal
number of vCPUs.

Fig. 6 shows the maximum values of Iopt/bal. The
performance could be further improved by 18%, 1029%,
and 42% at best for the three VM configurations, respec-
tively. However, even the optimal vCPU assignment cannot
improve the performance sufficiently in several benchmarks.
Fig. 7 shows the maximum values of Dopt under the optimal
vCPU assignment. It is shown that the performance of LU is
still approximately 60x lower in any configurations. In BT,
SP, and UA, the performance is also several times lower.
The CV of Topt was 0.08 at most and was small.

4. pCPU-Est

We propose pCPU-Est for further improving the perfor-
mance of parallel applications under CPU overcommitment.

0

0

vCPU

pCPU

hypervisor

1 2

1

thread

VM

(a) vCPU Optimization

0

0

1 2

1

VM

3

(b) Thread Optimization

Figure 8: Two optimizations in pCPU-Est.

pCPU-Est provides two optimization techniques: dynamic
vCPU optimization and thread optimization, which are il-
lustrated in Fig. 8. Dynamic vCPU optimization adjusts the
number of vCPUs assigned to a VM at runtime. Thread
optimization adjusts the number of threads used by an
application in a VM. For these two optimization techniques,
pCPU-Est enables the number of pCPUs available to a VM
to be correctly estimated even if vCPU affinity is set to
VMs.

4.1. Dynamic vCPU Optimization

To dynamically optimize the number of vCPUs assigned
to a VM using runtime information, we focused on the
CPU utilization of a VM. As a preparatory experiment, we
changed the number of vCPUs one by one and measured the
execution time of benchmarks and the CPU utilization of a
VM. As a result, we found that there are several correlations
between the CPU utilization and the execution time. Fig. 9
shows four typical correlations, which were categorized on
the basis of changes in CPU utilization when the number of
vCPUs increased. Note that we omit data when the number
of vCPUs is less than that of pCPUs available to a VM
because we could not find clear correlation for less numbers
of vCPUs.

Fig. 9(a) is the case where CPU utilization is constant.
Larger the number of vCPUs is, lower the performance
is. A VM uses up available pCPUs and the efficiency
of pCPUs cannot increase even if the number of vCPUs
increases. Rather, when the number of vCPUs is larger,
performance degradation is caused due to LHP and vCPU
stacking. Fig. 9(b) is the case where CPU utilization tends
to increase and then becomes constant. When the number
of vCPUs increases, the performance increases gradually.
While CPU utilization increases, parallelism increases ef-
fectively. However, after CPU utilization becomes constant,
the performance no longer increases and often decreases.

Fig. 9(c) is the case where CPU utilization decreases
largely and then increases or becomes constant. While
CPU utilization is decreasing, the performance is increasing.
When CPU utilization does not increase any more, the per-
formance no longer increases and often decreases. Fig. 9(d)
is the case where CPU utilization largely increases and
decreases repeatedly. Larger the number of vCPUs, lower

8 10 12 14 16

of vCPUs

CPU utilization

execution time

(a) Correlation 1

4 6 8 10 12 14 16

of vCPUs

CPU utilization

execution time

(b) Correlation 2

6 8 10 12 14 16

of vCPUs

CPU utilization

execution time

(c) Correlation 3

4 6 8 10 12 14 16

of vCPUs

CPU utilization

execution time

(d) Correlation 4

Figure 9: Four typical correlations between CPU utilization
and execution time.

the performance is. This behavior is probably caused by
application’s CPU usage, but the root cause is unclear.

Using these four correlations, pCPU-Est determines the
optimal number of vCPUs at runtime by examining only
changes in CPU utilization. The algorithm is as follows.
pCPU-Est begins at the number of vCPUs that is the same
as that of pCPUs available to a VM and increases the
number while CPU utilization increases. It considers the
number of vCPUs as optimal when CPU utilization becomes
constant. If CPU utilization largely drops at the beginning,
pCPU-Est adopts that number of vCPUs when CPU uti-
lization increases or becomes constant. If CPU utilization
repeats increases and decreases largely, pCPU-Est considers
the number of available pCPUs as the optimal number of
vCPUs.

To change the number of vCPUs, we have developed a
mechanism for externally changing the number from Dom0
in Xen. Dom0 is a privileged VM for managing VMs. The
vcpu-set command in Xen’s xl tool is provided for that
purpose, but we could not change the number in Xen 4.4.
First, pCPU-Est writes the new number of vCPUs of a VM
to XenStore, which is the database for VM configuration.
Then, the Linux kernel module installed in the VM detects
that write. The kernel module reads the specified number
from XenStore and performs hot-plug and hot-unplug of
CPUs. Specifically, it changes the state of each CPU to
online or offline to enable only the specified number of
vCPUs. This kernel module uses standard support for Xen
provided by Linux.

4.2. Thread Optimization

On the basis of the number of pCPUs available to a VM,
pCPU-Est can change the number of application threads.

This results in indirectly reducing the number of vCPUs
because vCPUs to which any threads are not assigned are
not scheduled. In addition, this optimization method can
overcome the limitation of vCPU optimization because it
enables solving LHP and vCPU stacking not only at the
kernel level but also at the application level. Note that the
applicability of this method depends on applications. First,
it is required that applications can run using the arbitrary
number of threads. Second, applications need to have a
mechanism for changing the number of threads at runtime.
If they do not have such a mechanism, they would have to
be restarted.

4.3. Estimation of Available pCPUs

pCPU-Est provides a new hypercall for returning the
number of pCPUs available to the specified VM. A hypercall
is a mechanism for invoking the hypervisor from VMs. This
mechanism is similar to a system call used for the invocation
to the operating system.

First, pCPU-Est divides pCPUs and vCPUs into several
groups on the basis of the proportion of pCPUs available
to each vCPU. Then, it estimates the number of pCPUs
available to each VM. Such groups are created so that all
the vCPUs in a group can use an equal proportion of pCPUs
if the weights assigned to VMs are the same. As long as
there is no restriction for the assignment of pCPUs, pCPUs
and vCPUs create one group as a whole. However, they can
be divided into several groups if vCPU affinity is set. Even
if vCPU affinity is not set explicitly, some of the virtualized
systems set NUMA affinity implicitly. NUMA affinity is the
assignment of pCPUs considering NUMA.

pCPU-Est creates groups by dividing a graph of pCPUs
and vCPUs as in Fig. 10. pCPUs and vCPUs are vortices and
a pCPU and a vCPU are connected by an edge if the pCPU
is assigned to the vCPU. When CPU affinity is set from
several pCPUs to several vCPUs, each pCPU is connected
to all of those vCPUs. Fig. 10(a) shows the graph when
vCPU affinity is set from pCPUs 0 and 1 to vCPUs 0 and
1 and from pCPUs 1, 2, and 3 to vCPUs 2, 3, and 4.

The algorithm for graph division is as follows. First,
pCPU-Est selects the pCPU that is connected to the mini-
mum number of vCPUs. Then, it creates a group consisting
of the selected pCPU and the vCPUs connected from the
pCPU. This is because the proportion of pCPUs in the
group is maximized as much as possible. The proportion
is calculated by the number of pCPUs divided by that of
vCPUs. In Fig. 10(b), pCPU 0 and vCPUs 0 and 1 form a
group because the number of vCPUs connected from pCPU
0 is two and the smallest.

Next, among the rest of the pCPUs that is connected
from the created group, pCPU-Est selects the pCPU that
is connected to the minimum number of vCPUs. Then,
it attempts to create a larger group including the selected
pCPU and the vCPUs connected from that pCPU. If the
proportion of the pCPUs in this new group is larger than
that in the original group, pCPU-Est adopts the new group.
It repeats this and creates as a large group as possible. If the

0 1 2 3 4

0 1 2 3

vCPU

pCPU

(a)

0 1 2 3 4

0 1 2 3

1/2

(b)

0 1 2 3 4

0 1 2 3

(c)

0 1 2 3 4

0 1 2 3

1/3

(d)

0 1 2 3 4

0 1 2 3

3/31/2

(e)

0 1 2 3 4

0 1 2 3

4/5

(f)

Figure 10: An example of the estimation of available pCPUs.

proportion of the pCPUs in the new group becomes smaller,
pCPU-Est removes the edges connected to the outside of the
group. For example, the proportion in the group created in
Fig. 10(b) is 1/2. If pCPU-Est adds pCPU 1 and vCPUs
2, 3, and 4 to the group, the proportion becomes 2/5 and
smaller. Therefore, pCPU-Est removes the edges between
pCPU 1 and vCPUs 0 and 1 (dashed lines) and results in
Fig. 10(c).

pCPU-Est repeats this for the rest of the graph. In
Fig. 10(d), pCPU-Est selects pCPU 1 and creates a group
consisting of pCPU 1 and vCPUs 2, 3, and 4. Similarly,
among the pCPUs connected from this group, pCPU-Est
attempts to add pCPU 2 to the group. Since the proportion
of the pCPUs in the original group is 1/3 but that in the
new group becomes 2/3 and larger, pCPU-Est adopts the
new group. Finally, pCPU-Est adds pCPU 3 to the group
and forms two groups, as in Fig. 10(e).

Once the entire graph is divided into several groups,
pCPU-Est merges the created groups into the small number
of groups as much as possible. This is because only local
graph division does not result in correct graph division.
First, pCPU-Est selects two groups that were connected by
a removed edge. We call the group including the vCPU
that was connected to the edge as group 1 and the group
including the pCPU as group 2. If the proportion of the
pCPUs in group 2 is larger or equal, pCPU-Est merges
the two groups. It repeats this for all the groups that were
connected by removed edges. For example, since two groups
in Fig. 10(e) were connected by two removed edges, pCPU-
Est attempts to merge them. The proportion of the pCPUs
in group 1 is 1/2, while that in group 2 is 1 and larger.
Therefore, pCPU-Est merges them into one group.

For each created group, pCPU-Est equally assigns pC-

0 1 2 3 4

0 1

1/31/2

Figure 11: Another example of the estimation of available
pCPUs.

PUs to vCPUs according to the weights set to VMs. In the
case of Fig. 10, the proportion of pCPUs assigned to each
vCPU is 4/5 if the weights of VMs are the same. Next,
pCPU-Est accumulates the proportions of pCPUs assigned
to the vCPUs of each VM. It rounds up this value and
considers the value as the number of pCPUs available to
each VM. For example, if vCPUs 0 and 1 belong to one
VM, the number of available pCPUs becomes two.

The example in Fig. 10 finally forms one group, but
pCPUs and vCPUs form several groups in general. Fig. 11 is
such an example. In this example, the proportion of pCPUs
assigned to each vCPU is not 2/5 equally because pCPUs
2, 3, and 4 can use only 1/3 of pCPUs.

5. Experiments

We conducted several experiments to examine the ef-
fectiveness of dynamic vCPU optimization and thread op-
timization in pCPU-Est. We used the same experimental
setup as in Section 3. We ran each benchmark ten times
and calculated the average. We show the results under the
configuration of CPU reduction.

5.1. Effectiveness of Dynamic vCPU Optimization

We applied dynamic vCPU optimization and measured
the execution time of the ten benchmarks in NPB. The
performance improvement from VCPU-Bal is defined as

Iest/bal =
Dbal

Dest
(9)

where Dest is performance degradation in this optimization
to the expected performance. Dest is defined as

Dest =
Test

E
(10)

where Test is the execution time measured using this op-
timization. Fig. 12 shows the maximum values of Iest/bal
and compares them with those of Iopt/bal obtained in Sec-
tion 3.3. As a result, pCPU-Est accomplished almost the
same maximum performance improvement as optimal in BT,
CG, SP, and UA and that was up to 42%. In contrast, the
performance was not improved at all in DC and LU although
performance improvement is possible by the optimal vCPU
assignment.

To further investigate performance improvement in
pCPU-Est, we compared Dest of BT, CG, SP, and UA
in pCPU-Est with Dbal and Dopt in detail. Fig. 13 shows

BT CG DC EP FT IS LU MG SP UA
0

10

20

30

40

50

m
a

x
im

u
m

 i
m

p
ro

v
e

m
e

n
t

(%
)

pCPU-Est

optimal

Figure 12: The maximum improvement from VCPU-Bal by
dynamic vCPU optimization (Iest/bal and Iopt/bal).

0481216
of pCPUs

0.0

0.5

1.0

1.5

2.0

2.5

p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

VCPU-Bal
pCPU-Est

optimal

(a) BT

0481216
of pCPUs

0

1

2

3

4

5

6

p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

VCPU-Bal
pCPU-Est

optimal

(b) UA

Figure 13: The detailed improvement by dynamic vCPU
optimization (Dest, Dbal, and Dopt).

the performance degradation of only two benchmarks due
to space limitation. In BT, the performance was higher in
pCPU-Est than in VCPU-Bal when the number of pCPUs
were between 6 and 12. The performance was almost the
same as that in the optimal vCPU assignment. Similarly,
in SP, the performance was improved when the number of
pCPUs were between 4 and 12. In UA, the performance was
improved to near-optimal one, but it was the same as that in
VCPU-Bal when the number of pCPUs was 12. In CG, the
performance was also improved, but it is rather degraded
when the number of pCPUs was 2.

To clarify the reasons of the above results, we compared
the number of the vCPUs determined by pCPU-Est with that
used in VCPU-Bal and the optimal one. Fig. 14 shows the
comparison only in the two benchmarks. In BT and SP, the
number of vCPUs in pCPU-Est was a bit smaller than the
optimal one in several numbers of pCPUs, but that difference
did almost not affect the performance. Similarly, in UA,
the number of vCPUs in pCPU-Est was a bit larger in less
numbers of pCPUs, but the performance was not affected.
However, when the number of pCPUs was 12, the number
of vCPUs in pCPU-Est was smaller than the optimal and the
same as that used in VCPU-Bal. This is the reason why the
performance was not improved in this number of pCPUs. In
CG, the performance degraded when the number of pCPUs
was 2 because the number of vCPUs in pCPU-Est was quite
larger.

For LU and DC, on the other hand, we also examined
the number of vCPUs determined by pCPU-Est. In LU, the
optimal number of vCPUs was less than the number of
pCPUs. In the current algorithm, pCPU-Est cannot optimize
such applications. Worse, the difference between the number

0481216
of pCPUs

0

4

8

12

16

#
 o

f
v
C

P
U

s

VCPU-Bal
pCPU-Est

optimal

(a) BT

0481216
of pCPUs

0

4

8

12

16

#
 o

f
v
C

P
U

s

VCPU-Bal
pCPU-Est

optimal

(b) UA

Figure 14: The number of vCPUs determined by pCPU-Est.

BT CG DC EP FT LU MG SP UA
0

20

40

60

80

100

120

e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

static
dynamic

1011 1024

Figure 15: The maximum overhead of dynamic vCPU opti-
mization.

of vCPUs in pCPU-Est and the optimal number was only
one, but such slight difference affected the performance very
largely. In DC, the number of vCPUs in pCPU-Est was far
from the optimal when the number of pCPUs was less than
four. This is the reason why pCPU-Est could not optimize
this application.

Next, we examined the overhead of dynamically deter-
mining the number of vCPUs. While pCPU-Est searches
for the optimal number of vCPUs, the benchmarks run in
non-optimal numbers of vCPUs. Therefore, the application
performance can be degraded in total. We measured the
execution time when we used the number of vCPUs stat-
ically determined in advance and when we dynamically
determined it at run time. Fig. 15 shows the execution time
when the overhead is maximum for each benchmarks. We
omit the data for IS because the execution time was too short
to determine the optimal number of vCPUs. Although the
maximum overhead reached 28% in CG, it would become
negligible in longer-running real applications. Shorter the
execution time is, larger the overhead tends to be. Also, the
overhead depends on the sensitivity of application perfor-
mance to the number of vCPUs.

5.2. Effectiveness of Thread Optimization

We applied thread optimization and measured the exe-
cution time of the ten benchmarks. We statically fixed the
number of threads because the optimal number of threads
was almost always the same as the number of available
pCPUs according to our experiments. The performance im-
provement from VCPU-Bal is defined as

Iest2/bal =
Dbal

Dest2
(11)

115

35 32
3

38
17 5

156

486

BT CG DC EP FT IS LU MG SP UA
0

100

200

300

400

500

600

m
a

x
im

u
m

 i
m

p
ro

v
e

m
e

n
t

(%
) 7105

Figure 16: The maximum improvement from VCPU-Bal by
thread optimization (Iest2/bal).

0481216
of pCPUs

0

10

20

30

40

50

60

p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

VCPU-Bal
pCPU-Est

(a) LU

0481216
of pCPUs

0

1

2

3

4

5

6

p
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti
o
n
 (

x
)

VCPU-Bal
pCPU-Est

(b) UA

Figure 17: The detailed improvement by thread optimization
(Dest2 and Dbal).

where Dest2 is performance degradation to the expected
performance. Dest is defined as

Dest2 =
Test2

E
(12)

where Test2 is the execution time measured using this op-
timization. Fig. 16 shows the maximum values of Iext2/bal.
The performance was improved in all the benchmarks. In
LU, in particular, the performance improvement was signif-
icant and up to 72x although dynamic vCPU optimization
was not effective at all, as in Fig. 12. This is because the
LHP problem inside the application was solved. In BT, SP,
and UA, the performance became more than twice higher
as well.

For LU and UA, Fig. 17 compares Dest2 and Dbal in
detail. In any numbers of pCPUs, pCPU-Est could achieve
much higher performance than VCPU-Bal. Even compared
with the result of the optimal vCPU assignment in the pre-
vious section, thread optimization was much more effective.
However, it should be noted again that thread optimization
is not always applicable due to its application dependence.

6. Related Work

VCPU-Bal [1] prevents LHP and vCPU stacking using
vCPU ballooning, which increases and decreases the num-
ber of vCPUs of a VM. The paper points out that these
issues rise due to double scheduling of vCPUs and applica-
tion threads. Therefore, VCPU-Bal statically determines the
number of vCPUs so that vCPUs are assigned to pCPUs
one-to-one. In contrast, pCPU-Est dynamically determines
the more appropriate number of vCPUs. FlexCore [2] is the
implementation of VCPU-Bal and achieves the detection of

vCPU conflict, efficient communication between VMs and
the hypervisor, and hot-plug of vCPUs in KVM [11]. We
have implemented pCPU-Est in Xen.

vScale [3] adjusts the number of vCPUs in a finer-
grained manner than VCPU-Bal. Like VCPU-Bal, vScale
basically determines the number of vCPUs according to the
weights of VMs. In addition, when some of the VMs do
not use up assigned pCPUs, vScale decreases the number of
vCPUs of these VMs and increases that of the other VMs. To
enable frequently changing the number of vCPUs of VMs,
vScale provides a mechanism for reconstructing CPUs in
the operating system. VCPU-Bal and vScale assume only
that multiple VMs share pCPUs, but pCPU-Est assumes that
CPU utilization of VMs is limited and the assignment of
pCPUs is reduced as well.

Co-scheduling [12] can solve LHP by simultaneously
scheduling all the vCPUs of a VM. vCPUs of lock holders
can always run whenever those of lock waiters are sched-
uled. However, it cannot schedule a VM until the necessary
number of pCPUs are prepared. As a result, vCPUs with a
higher priority can be scheduled after vCPUs with a lower
priority. Balance scheduling [5] spreads vCPUs of a VM on
different pCPUs and prevents both lock-holder and lock-
waiter vCPUs from entering the run queue of the same
pCPU. These scheduling algorithms can be less efficient due
to their scheduling constraints.

Intel Pause Loop Exiting [13] and AMD Pause Fil-
ter [14] are mechanisms for causing a VM exit when several
PAUSE instructions are executed during a spin lock. If the
hypervisor schedules another vCPU when it detects spin
waiting, the performance degradation due to LHP and vCPU
stacking is mitigated. However, frequent VM exits can affect
the performance of VMs. In addition, this mechanism is
ineffective for spin waiting that does not execute any PAUSE
instruction, as used by LU in NPB.

For thread optimization in non-virtualized systems, there
are a lot of work to estimate the optimal number of threads.
Thread Reinforcer [15] runs an application with various
numbers of threads for a short period and statically finds
the best number. Aurora [16] redirects function calls to
the OpenMP library and dynamically adjusts the number of
threads by using the OpenMP function. These mechanisms
can be combined with thread optimization in pCPU-Est.

7. Conclusion

This paper first investigated how the performance of par-
allel applications degraded under three VM configurations
on a pCPU shortage. Then it revealed that the previous work
could not always achieve optimal performance. Therefore,
this paper proposes pCPU-Est for improving application
performance under CPU overcommitment. Dynamic vCPU
optimization determines the optimal number of vCPUs of
VMs at runtime, while thread optimization optimizes the
number of application threads. According to our experi-
ments, dynamic vCPU optimization improved application
performance by up to 42% and thread optimization did by
up to 72x under the configuration of CPU reduction.

One of our future work is to confirm the effectiveness
of pCPU-Est under the other two VM configurations. For
ease of analysis, we ran only one VM in this paper, except
for the configuration of CPU sharing. The impact of other
VMs in the same host should be considered as the next
step. In addition, it is necessary to apply pCPU-Est to other
parallel applications, in particular, cloud-oriented ones such
as MapReduce. Another direction is to develop a method for
always determining the optimal number of vCPUs even in
the cases where the current algorithm cannot optimize that.
Using such methods, it is possible to further improve ap-
plication performance and prevent performance degradation
by dynamic vCPU optimization.

Acknowledgment

This work was supported in part by JSPS KAKENHI
Grant Number 19H04087.

References

[1] X. Song, J. Shi, H. Chen, and B. Zang. Schedule processes, not
VCPUs. In Proc. Asia-Pacific Workshop on Systems, 2013.

[2] M. Tianxiang and H. Chen. FlexCore: Dynamic Virtual Machine
Scheduling Using VCPU Ballooning. Tsinghua Science and Technol-
ogy, 20(1):7–16, 2015.

[3] L. Cheng, J. Rao, and F. Lau. vScale: Automatic and Efficient
Processor Scaling for SMP Virtual Machines. In Proc. European
Conf. Computer Systems, 2016.

[4] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. Towards
Scalable Multiprocessor Virtual Machines. In Proc. Virtual Machine
Research and Technology Symposium, 2004.

[5] O. Sukwong and H. Kim. Is Co-scheduling Too Expensive for SMP
VMs? In Proc. European Conf. Computer Systems, pages 257–272,
2011.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proc. Symp. Operating Systems Principles, pages
164–177, 2003.

[7] NASA Advanced Supercomputing Division. NAS Parallel Bench-
marks. http://www.nas.nasa.gov/publications/npb.html.

[8] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above
the Clouds: A Berkeley View of Cloud Computing. Technical report,
University of California at Berkeley, 2009.

[9] K. Kourai and R. Nakata. Analysis of the Impact of CPU Virtual-
ization on Parallel Applications in Xen. In Proc. Int. Symp. Parallel
and Distributed Processing with Applications, pages 132–139, 2015.

[10] OpenMP Architecture Review Board. OpenMP Application Program-
ming Interface Version 5.0. https://www.openmp.org/, 2018.

[11] Red Hat, Inc. Kernel Based Virtual Machine. http://www.linux-kvm.
org/.

[12] VMware, Inc. Co-scheduling SMP VMs in VMware ESX Server,
2008.

[13] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 3 (3A, 3B, 3C & 3D): System Programming
Guide, 2016.

[14] AMD, Inc. AMD64 Architecture Programmers Manual Volume 2:
System Programming, 2017.

[15] K. Pusukuri, R. Gupta, and L. Bhuyan. Thread Reinforcer: Dynam-
ically Determining Number of Threads via O Level Monitoring. In
Proc. Int. Symp. Workload Characterization, pages 116–125, 2011.

[16] A. Lorenzon, C. de Oliveira, J. Souza, and A. Beck. Aurora: Seamless
Optimization of OpenMP Applications. IEEE Trans. Parallel and
Distributed Systems, 30(5):1007–1021, 2019.

