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ABSTRACT

Recently, containers are widely used to process big data in clouds.
To prevent information leakage from containers, applications in
containers can protect sensitive information using enclaves pro-
vided by Intel SGX. The memory of enclaves is encrypted by a
CPU using its internal keys. However, the execution of SGX ap-
plications cannot be continued after the container running those
applications is migrated. This is because enclave memory cannot
be correctly decrypted at the destination host. This paper proposes
MigSGX for enabling the continuous execution of SGX applications
after container migration. Since the states of enclaves cannot be
directly accessed from the outside, MigSGX securely invokes each
enclave and makes it dump and load its state. At the dump time,
each enclave re-encrypts its state using a CPU-independent key
to protect sensitive information. For space- and time-efficiency,
MigSGX saves and restores a large amount of enclave memory in
a pipelined manner. We have implemented MigSGX in the Intel
SGX SDK and CRIU and showed that pipelining could improve
migration performance by up to 52%. The memory necessary for
migration was reduced only to 0.15%.

CCS CONCEPTS

« Security and privacy — Virtualization and security; « Soft-
ware and its engineering — Virtual memory.
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1 INTRODUCTION

Recently, containers are widely used in clouds [4, 6]. A container
is a virtual execution environment provided by the operating sys-
tem. Compared with a virtual machine (VM), it is more lightweight
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because it does not virtualize hardware. In a container, some of
the applications process big data, e.g., for artificial intelligence
(AI) and Internet of Things (IoT). Big data often includes sensitive
information such as users’ privacy and healthcare data. It is con-
fined into containers, but the protection provided by containers is
weaker than that by VMs. If attackers intrude into containers, they
could easily steal sensitive information. To prevent information
leakage from applications, the operating system provides various
security mechanisms [5, 18]. However, they can be disabled once
the operating system is compromised.

To protect sensitive information in containers without relying
on the operating system, a trusted execution environment called
Intel SGX [11] is often used, e.g., in Microsoft Azure [12] and IBM
Cloud [9]. SGX applications can create protection domains called
enclaves. Since the memory of enclaves is encrypted using internal
keys in a CPU, information leakage from enclaves is prevented.
However, after SGX applications are moved to another host by
container migration, their execution cannot be continued. The en-
crypted memory of enclaves is transferred to the destination host
as it is, while the internal keys in the CPU are not. As a result, the
enclave memory cannot be correctly decrypted at the destination
host because the CPU executing applications is changed.

This paper proposes MigSGX for enabling the enclaves in SGX
applications to continue their correct execution after container mi-
gration. Since the state of an enclave cannot be correctly saved or
restored from the outside due to the memory protection of SGX,
MigSGX makes an enclave itself dump and load its state. To save
the state at the source host, each enclave re-encrypts its state using
a CPU-independent key and dumps the encrypted state to the out-
side of it. To restore the state at the destination host, a re-created
enclave decrypts the saved state using the same key and loads the
decrypted state into itself. For space- and time-efficiency, MigSGX
saves and restores a large amount of enclave memory in a pipelined
manner using a small shared buffer. This pipelining can overlap
dumping and loading enclave memory with saving and restoring it,
respectively.

To enable the migration of an SGX application, MigSGX provides
the MigSGX library to an enclave and runs the MigSGX runtime
outside enclaves in an SGX application. The MigSGX manager runs
outside a container and sends the save and restore requests to the
runtime and then the runtime invokes the library to dump and load
the state of the enclave. To achieve secure communication between
the MigSGX manager and runtime, the MigSGX manager injects
code into the runtime and shares a buffer for pipelining. We have
implemented MigSGX in the Intel SGX SDK [10] and CRIU [15].
Using MigSGX, we examined the migration performance of an SGX
application. As a result, the pipelined save and restore of enclave
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memory could improve migration performance by up to 52%. The
memory necessary for migration was reduced only to 0.15%.

The organization of this paper is as follows. Section 2 describes
the issue in the migration of SGX applications. Section 3 proposes
MigSGX for supporting that migration. Section 4 explains the de-
tailed implementation of MigSGX. Section 5 shows the performance
of MigSGX. Section 6 describes related work and Section 7 con-
cludes this paper.

2 BACKGROUND

Clouds tend to become the targets of attackers because they consoli-
date too many containers into a small number of network locations.
If attackers intrude into containers, they could steal sensitive in-
formation from applications processing big data such as Al and
IoT. To prevent information leakage from applications, the oper-
ating system provides various security mechanisms. For example,
SELinux [18] and AppArmor [5] can control access rights of ap-
plications in Linux. Such access restrictions can prevent attackers
from stealing sensitive information and sending it to the outside.
However, they can be disabled once the operating system is com-
promised.

To protect sensitive information in containers without relying
on the operating system, a CPU feature called Intel SGX is used.
SGX applications can create enclaves, which are protection domains
whose memory is encrypted using internal keys in the CPU. The
trusted computing base (TCB) is only the CPU and does not include
the operating system. Since no software including the operating
system can access enclave memory, enclaves can protect sensitive
information from attackers and even a compromised operating
system. In addition, the code and data inside a running enclave
cannot be altered. Only a correctly signed code can be executed in
an enclave.

In clouds, container migration is an indispensable functionality.
It is a technique of moving a container to another host for various
reasons. It is used to continue the execution of containers when
the host running containers is maintained. When the load of a host
becomes high, several containers are migrated to underloaded hosts
for load balancing. Conversely, multiple containers are consolidated
into a smaller number of hosts for power saving. Container migra-
tion first saves the states of all the processes in a container at the
source host. Then, it transfers the saved states to the destination
host and restores that container including the running processes
from the received states.

However, it is difficult to migrate containers including SGX ap-
plications. If an SGX application is migrated as a normal process, its
execution cannot be continued correctly. Upon migrating an SGX
application, its enclave memory is also transferred as it is to the
destination host. This means that the memory is encrypted using
the internal key in the CPU at the source host. Since this key can-
not be transferred to the destination host, the transferred enclave
memory cannot be decrypted correctly. The SGX application itself
might be able to re-create enclaves from scratch at the destination
host, but all the states including a large amount of data are lost.

3 MIGSGX

This paper proposes MigSGX for enabling the continuous execution
of the enclaves in SGX applications after container migration.

3.1 Container Migration with Enclaves

MigSGX makes an enclave itself dump and load its state because
such a state cannot be accessed from the outside of the enclave
due to the memory protection of SGX. When MigSGX invokes
an enclave to save the state, the enclave dumps its state into the
outside of it. For security, it encrypts data in its own memory using
a CPU-independent key. This key is securely obtained from a key
server using the secure communication channel established through
remote attestation of the enclave. When MigSGX invokes a new
enclave to restore the state, the enclave loads the saved state and
overwrites its own state. At this time, it decrypts the data included
in the saved state using the same key as used for dumping the state.

MigSGX provides a library to an application code running in an
enclave. This MigSGX library transparently dumps and loads the
state of an enclave during container migration. In addition, MigSGX
runs a runtime outside enclaves in an SGX application. This MigSGX
runtime invokes the MigSGX library in each enclave to save and
restore the state. Therefore, the developers of SGX applications do
not need to be aware of container migration. MigSGX also runs a
manager outside a container. This MigSGX manager communicates
with the MigSGX runtime and migrates a container including SGX
applications.

Figure 1 illustrates container migration using MigSGX. At the
source host, the MigSGX manager requests the runtime in each
SGX application in a container to save the states of all the enclaves.
When the runtime invokes the MigSGX library in each enclave, the
library stops the enclave so that its state is not changed and dumps
the state into the memory of the runtime. After that, the manager
saves all the states of the application process. Finally, it saves the
states of the container and transfers all the states. At the destination
host, the MigSGX manager first restores the container and all the
processes without enclaves. Then, it requests the MigSGX runtime
in each process to restore the states of all the enclaves. The runtime
re-creates enclaves and invokes the MigSGX library in each enclave.
The library loads the saved state and restarts the enclave.

3.2 Pipelined Save/Restore

As described above, save-after-dump and load-after-restore are easy
to implement, but such naive implementation is not suitable for
SGX applications using a large amount of enclave memory. Since
the recent third generation Intel Xeon Scalable processors enable ef-
ficient access to enclave memory of up to 512 GB, SGX applications
would use bigger data in enclaves. If the MigSGX library dumps the
entire enclave memory at once, the runtime temporarily needs a
buffer of the same size as the enclave memory to store the dumped
memory. If the memory size of the container is limited, this may
cause swapping and slow down container migration. At worst, the
runtime may fail to allocate the buffer and to save enclave memory.
This situation can also happen when MigSGX restores SGX applica-
tions. In addition, it takes a long time to encrypt the entire enclave
memory, dump the encrypted memory, and then save the dumped
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Figure 1: Container migration using MigSGX.
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Figure 2: Pipelined save/restore of enclave memory.

memory sequentially. The sequential execution for restoring the
state of an enclave can cause the same issue.

To address these issues, MigSGX saves and restores enclave
memory in a pipelined manner, as illustrated in Fig. 2. Since it
uses only a small buffer, it can prevent pressure on the memory
of a container. Upon saving enclave memory, the MigSGX library
dumps part of the enclave memory into this small buffer. Then, the
MigSGX manager can save that data immediately. Similarly, upon
restoring enclave memory, the MigSGX manager writes part of the
dumped enclave memory to the small buffer. Then, the MigSGX
library can load the data immediately. In addition, this pipelining
enables parallel execution between dump and save and between
restore and load. In particular, time-consuming encryption and
decryption in an enclave can be overlapped with save and restore
in the runtime. This overlap increases the migration performance.

To save and restore enclave memory in a pipelined manner, the
MigSGX manager has to receive memory data from and send it to
the MigSGX runtime. There are various communication methods
between processes, but the capability of access control is mandatory.
If there is no access restriction, attackers could actively make the
MigSGX runtime stop all the enclaves by saving their states without
the root privilege. For secure communication, the MigSGX manager
injects code into the runtime and makes the code to establish shared
memory for sending and receiving enclave memory. Since this code
injection needs the root privilege, the availability of enclaves is
kept as long as attackers cannot take the root privilege. A detailed
comparison with the other communication methods is described in
Section 4.4.

4 IMPLEMENTATION

We have implemented the MigSGX library and runtime in the Intel
SGX SDK 1.9 [10] and the MigSGX manager in CRIU 3.9 [15].

4.1 Migrating an SGX Application

We focus only on the migration of one SGX application in a con-
tainer. At the source host, the MigSGX manager first requests the
process to save the states of all the enclaves to state files, as de-
scribed in Section 4.2. After that, the manager saves the states of the
process without enclaves as usual. It first suspends the process and
saves memory mapping, mapped files, and open files by reading
the proc filesystem. It also saves registers using the ptrace system
call. Then, it saves the internal state that cannot be accessed from
the outside of the process, e.g., memory pages and credentials, by
using the parasite mechanism [13]. This mechanism injects parasite
code into the process and makes the process itself save the states.
Since it is also used for secure communication between the MigSGX
manager and runtime, we describe the details of this mechanism in
Section 4.4.

Next, the MigSGX manager transfers the state files to the des-
tination host. This step can be skipped using several methods. If
the state files are saved in network storage, the destination host
can share the state files without explicit file transfers. As another
method, CRIU provides disk-less migration [14]. Instead of saving
state files in a local disk at the source host, the manager can directly
save state files in a remote disk via the page server at the destination
host. These methods can overlap saving the states with network
transfers.

At the destination host, the MigSGX manager first restores the
process without enclaves as usual. It creates a process using the
fork system call and restores various states of the original process
from state files. For example, it opens files, creates sockets, prepares
namespaces, and maps private memory areas. Then, the manager
requests the restored process to restore the states of enclaves, as
described in Section 4.3.

4.2 Saving Enclave States

Figure 3 illustrates how to save the state of an enclave in an SGX
application. The MigSGX manager first shares a small buffer with
the runtime via the injection of parasite code, as described in Sec-
tion 4.4. Then, the injected parasite code invokes the runtime. The
runtime obtains the list of enclaves and saves the number of en-
claves to its global variable, which is used on restoring the enclaves.
For each enclave, the runtime saves the enclave ID that is assigned
by the SDK and is used by the SGX application to its global variable.
Also, it saves the base address where the enclave is located in the
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Figure 3: Saving the state of an enclave.

process memory. In addition, it saves the path name of the enclave
image file used for creating the enclave.

Then, it invokes the MigSGX library using the enclave call
(ECALL) of SGX. ECALL is a mechanism for securely invoking
only the functions exported by an enclave. To dump the state of an
enclave, the library exports the dump function. The library implic-
itly defines and exports several functions that can be invoked by
ECALL. In the Intel SGX SDK, the developers of SGX applications
usually define such ECALL functions using the enclave definition
language (EDL). Using this framework requires all the SGX applica-
tions to explicitly define the dump function in EDL. Also, the load
function for restoring the state of an enclave needs to be defined.
Since this is troublesome for developers, the library internally de-
fines these ECALL functions without EDL. Then, it assigns special
ECALL IDs to these internal functions and the MigSGX runtime
uses these IDs to execute ECALL.

The dump function in the MigSGX library first obtains informa-
tion on the heap area and the data and BSS segments of the enclave.
It can obtain the address and size of the heap area using the internal
API of the SDK. However, there is no information on the data and
BSS segments inside the enclave at runtime. Therefore, MigSGX
extracts the offsets from the beginning of the enclave image file and
the sizes for these segments at compile time. Then, it embeds them
into the enclave image file by modifying the global data structure
used by the SDK. The library provides an API for obtaining this
embedded information.

It should be noted that the MigSGX library does not dump the
code or stack segment. For the code segment, enclave code is not
modified and is loaded again from the enclave image file when the
enclave is re-created at the destination host. For the stack segment,
the library waits for the other ECALLS to finish before starting to
dump the state. In addition, the MigSGX runtime suspends threads
that attempt to execute new ECALLs. This means that the stacks
in the enclave are empty and there is no useful information to
be dumped. Similarly, the library does not dump the other states
such as threads. We assume that enclaves provide only functions
executed in a short time.

The MigSGX library dumps enclave memory in a pipelined man-
ner. It first encrypts a chunk of enclave memory using the AES-NI
functions ported from wolfSSL [20]. Note that the library imple-
ments these functions without using the standard malloc function
so that the heap area and the data and BSS segments are not changed
during the execution of the dump function. Instead, the library al-
locates variable-length arrays in the stack. Next, the library writes
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Figure 4: Restoring the state of an enclave.

the encrypted chunk to the shared buffer allocated in the runtime.
In SGX, the code inside an enclave can freely access the memory
outside the enclave although the code outside an enclave cannot
access enclave memory. Then, it sets the flag in the shared memory
and waits for the flag to be reset by the MigSGX manager. When
the flag is set, the manager reads the data from the shared buffer
and resets the flag. It saves the read data to a state file created for
saving the state of the enclave.

After saving the state of the enclave, the MigSGX runtime de-
stroys that enclave. This is because releasing enclave memory can
reduce the amount of process memory to be saved. Even if enclave
memory is transferred, it could not be reused at the destination
host. In addition, the MigSGX manager based on CRIU cannot save
the memory used by the enclave because that is a special region.
After all the enclaves are destroyed, the runtime closes the SGX
device used by the SDK because the manager cannot save the state
of this special device.

4.3 Restoring Enclave States

Figure 4 illustrates how to restore the state of an enclave in an SGX
application. The MigSGX manager first shares a small buffer in the
runtime using the parasite mechanism. Then, the injected parasite
code invokes the runtime. The runtime re-creates the necessary
number of enclaves, which is saved to its global variable. When
it creates a new enclave, it specifies the path name of the enclave
image file, which is also saved to its global variable. This restores
the code segment of the enclave, but the data and BSS segments
are initialized. Then, it re-assigns the enclave ID saved to its global
variable to the enclave.

Upon re-creating an enclave, the operating system locates the
memory of the enclave in a random address. Even after the enclave
memory is restored correctly, the enclave cannot continue to run if
the enclave memory contains addresses. To address this issue, the
MigSGX runtime locates the enclave memory in the same address
as at the source host, which is saved to its global variable. It specifies
the saved address to the parameter of the mmap system call used
for allocating enclave memory. The enclave memory can be always
located in the original memory region because that region is used
by the enclave just before the enclave is destroyed at the source
host.

Then, the MigSGX runtime invokes the library in the enclave
using ECALL to restore the enclave memory in a pipelined manner.
The invoked load function waits for the flag in the shared buffer to
be set. The MigSGX manager reads a chunk of encrypted memory



data from a state file and writes it to the shared buffer. When it sets
the flag in the shared memory, the library reads the chunk from
the shared buffer and resets the flag so that the MigSGX manager
can process the next chunk. The library decrypts the chunk using
the same CPU-independent key as used at the source host and
overwrites the heap area and the data and BSS segments in the
enclave memory. This does not affect the execution of the load
function itself in the enclave. This function uses only the code and
stack segments, which are not overwritten by restoring the enclave
memory.

4.4 Secure Communication

MigSGX achieves secure communication for pipelining between the
manager and runtime using the parasite mechanism of CRIU. This
mechanism can dynamically inject the parasite code for communi-
cation into a process. This code injection can be done only in the
root privilege. The operating system traditionally provides many
methods for communication between independent processes, which
mean processes without parent and child relationship. However, no
methods are enough secure or provide sufficient communication
capabilities.

Network communication is the most common method, but it is
difficult to perform access control in a finer-grained manner than
an IP address and a port number. Authentication with public-key
infrastructure is possible, but the management of the digital certifi-
cate of the MigSGX manager is troublesome. A Unix domain socket
and a named pipe can perform access control by setting appropri-
ate permission to a created special file. However, it is necessary
to permit access for the user who executes an SGX application.
Even if only the privilege of the user is taken, attackers could freely
communicate with the application process. For System V shared
memory and message queues, any processes can access the data if
they know the identifier of a segment or a message queue. A signal
can perform access control based on the user ID of a sender process,
but it cannot send information except for a signal number.

Figure 5 illustrates how to inject parasite code into the target
process of an SGX application. First, the MigSGX manager suspends
the process and saves part of the code segment, which is pointed by
the current instruction pointer, using the ptrace system call. Then,
it writes a code fragment for executing the memfd_create system
call to that code segment. When it resumes the process, the process
automatically executes that system call and creates an anonymous
file in the process memory. Since the manager receives the returned
descriptor of that file, it maps the corresponding pseudo file ex-
ported by the proc filesystem onto its memory. Finally, the manager
makes the process map the file onto its memory by executing the
mmap system call using the parasite mechanism. As a result, the
manager can share part of the process memory.

It is difficult for attackers to map this anonymous file and share
the memory with the target process. First, its descriptor is returned
internally via the ptrace system call. Attackers cannot eavesdrop on
the exact number of the file descriptor. Second, the target process
closes the file soon after it maps that file. Therefore, attackers have
only a very short time to illegally map the pseudo file exported by
the proc filesystem.
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Figure 5: Injecting parasite code.

Once the shared memory is established, the MigSGX manager
allocates a small buffer used for pipelining in it. Then, it writes
parasite code to the shared memory and makes the process execute
it. The parasite code invokes the MigSGX library in each enclave,
but it cannot do that by directly executing ECALL. This is because
the parasite code cannot use any functions of the SDK. Therefore,
the runtime runs two threads for invoking the library and creates
two anonymous pipes between the main thread and either thread.
Since anonymous pipes cannot be accessed outside the process,
they can be used securely. To enable the parasite code to access
these anonymous pipes, the runtime assigns the fixed numbers to
their file descriptors. When the parasite code sends a request to the
thread via the pipe, the thread invokes the library using ECALL.

4.5 Key Management

MigSGX provides a trusted key server and manages CPU-
independent keys used for encrypting and decrypting enclave mem-
ory. When it saves the state of an enclave at the source host, the
key server generates a new key and shares it with the enclave. First,
it remotely attests to the enclave and establishes a secure communi-
cation channel to the enclave. Then, it securely sends the generated
key to the enclave. Note that it holds that key during migration.
When the enclave is re-created at the destination host, it shares
the same key with the key server. The key server first performs
remote attestation to the new enclave. If this enclave is identical to
the enclave saved at the source host, the key server securely sends
the corresponding key to that enclave. This prevents attackers from
illegally obtaining CPU-independent keys and decrypting enclave
memory.

5 EXPERIMENTS

We conducted several experiments to show that MigSGX could
migrate an SGX application efficiently. For comparison, we used a
naive migration method, which saved and restored enclave memory
without pipelining, as described in Section 3.1. We used a PC with
an Intel Xeon E3-1225 v5 processor, 32 GB of memory, 1 TB of HDD,
and Gigabit Ethernet as the source host. As the destination host,
we used another PC with an Intel Core i7 8700 processor, 32 GB
of memory, 1 TB of HDD, and Gigabit Ethernet. At both hosts, we
ran Linux 4.4 with the Intel SGX driver, the Intel SGX SDK 2.2, and
CRIU 3.9.
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5.1 Migration of a Key-value Store

As an SGX application, we have developed a key-value store run-
ning in an enclave. This application stores data in enclave memory
and manages it using a hash table. It handles requests for the set and
get operations and invokes ECALL for storing and retrieving data,
respectively. We stored a large amount of data in this key-value
store by sending the set requests to the source host. Then, we mi-
grated this application using MigSGX and retrieved the stored data
by sending the get requests to the destination host. Since we could
obtain the same data, it was shown that MigSGX could migrate this
SGX application correctly.

Next, we examined the impact of the migration on the applica-
tion performance. We measured the time needed for storing and
retrieving data to and from the database before and after the migra-
tion. Figure 6 shows the performance of the set and get operations.
The performance degraded by 1-3% after the migration, but the
root cause of this small overhead is under investigation.

5.2 Migration Performance

To examine the migration performance of an SGX application with
a large amount of enclave memory, we measured the time needed
for migrating the developed key-value store. In this experiment,
we allocated 14 GB or 16 GB of memory to its enclave. When the
application used 14 GB of enclave memory, more than 16 GB of
free memory was left in the host. This free memory was enough for
dumping the entire enclave memory at once. However, when the
application used 16 GB of enclave memory, less than 16 GB of free
memory was left. Swap space was necessary to dump the entire
enclave memory without pipelining. We used a buffer of 20 MB for
pipelining in MigSGX.

Figure 7 shows the migration time in MigSGX and the naive
migration method. For 14 GB of enclave memory, MigSGX could
reduce the migration time only by 7.6%. In contrast, it became 52%
faster for 16 GB of enclave memory. We examined the breakdown
of the migration time to clarify the reason for this performance
improvement.

The migration of the SGX application consists of saving the
states of its process, transferring them, and restoring them. Figure 8
shows the save time of the states of the process. Compared with
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the naive method, MigSGX could reduce the save time by 29% for
14 GB of enclave memory and 35% for 16 GB of that. This is because
MigSGX could overlap encrypting and dumping enclave memory
with saving the dumped memory by pipelining. In contrast, the
naive method needed to first encrypt and dump the entire enclave
memory and then save the process memory including the dumped
memory sequentially. Due to this, it caused swapping due to out-
of-memory for 16 GB of enclave memory. MigSGX could suppress
swapping by using only a small buffer.

As shown in Fig. 9(a), the size of transferred data was the same
between MigSGX and the naive method. It was dominated by the
size of enclave memory. MigSGX saved enclave memory indepen-
dently of the states of the process, while the naive method saved
it with the states of the process. In any case, the size of the saved
states was the same. However, MigSGX took a slightly longer time
to transfer the saved states, as shown in Fig. 9(b). This is because the
current implementation of MigSGX creates one state file for each
chunk of enclave memory and sequentially sends them. It needs a
longer time to transfer multiple files, compared with transferring
one large file like the naive method. If we overlap dumping enclave
memory with transferring the created state files, the transfer time
should become much shorter. Furthermore, we can transfer the
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Figure 10: The restore time of the SGX application.

dumped memory without creating state files. These are our future
work.

Figure 10 shows the restore time of the saved states of the pro-
cess. Unlike saving enclave memory, the restore time was almost
the same between MigSGX and the naive method when the SGX
application used 14 GB of enclave memory. MigSGX could reduce

the restore time only by 5 seconds although the naive method had
to restore a 14-GB larger amount of process memory including the
dumped enclave memory. This is because MigSGX just mapped
the state file to which the process memory was saved onto the re-
created process without reading the file. For both methods, it took
110 seconds to re-create the enclave after the states of the process
wad restored. In MigSGX, it took 6 seconds longer time to load
the enclave memory due to the overhead of pipelining. Therefore,
MigSGX could not improve the restore performance in this case.
For 16 GB of enclave memory, in contrast, the restore time was
much shorter in MigSGX. This is because MigSGX could avoid
swapping due to out-of-memory. When re-creating an enclave, the
naive method took 225 seconds longer time by the memory pressure
of the enclave memory saved in the process memory. Similarly, the
time for loading the enclave memory was 396 seconds longer.

5.3 Memory Usage

To examine the memory usage of the SGX application during mi-
gration, we measured the changes in consumed physical memory
and swap space at each host. The physical memory consumed by
the process is called the resident set size (RSS). Note that the RSS
does not include the size of enclave memory because the operating
system deals with that memory region as special. As in the previ-
ous section, we migrated the application using 14 GB or 16 GB of
enclave memory.

Figure 11(a) shows the changes in memory usage when we used
the naive method to migrate the application with 14 GB of enclave
memory. At the source host, the RSS gradually increased until it
became 14 GB. This is because the enclave encrypted and dumped
its memory into the process memory. The naive method started to
save the states of the process at 130 seconds and terminated the
process at 207 seconds. At the destination host, the RSS suddenly
increased to 14 GB at 372 seconds by restoring the process memory
including enclave memory. The RSS did not change after that. Swap
space was not used at both hosts.

The changes in memory usage for MigSGX are shown in
Fig. 11(b). At the source host, the RSS increased by 20 MB at 10
seconds because the process allocated a small buffer for pipelining.
The RSS did not change until the process was terminated. At the
destination host, the RSS increased only slightly after the states
of the process were restored. When MigSGX started to load the
enclave memory at 400 seconds, the RSS increased by 20 MB, which
was used as the buffer for pipelining. Swap space was not used at
both hosts.

On the other hand, Figure 12(a) shows the changes in memory
usage when we migrated the application with 16 GB of enclave
memory using the naive method. At the source host, the RSS grad-
ually increased to 16 GB by dumping the enclave memory into the
process memory. Unlike 14 GB of enclave memory, swap space was
used up to 3.6 GB because physical memory ran out. At the desti-
nation host, the RSS suddenly increased to 16 GB, but it decreased
by 1.3 GB at 482 seconds while an enclave was re-created. At the
same time, swap space increased by 3.5 GB. After the naive method
started to load the enclave memory at 771 seconds, the RSS and the
swap size increased gradually.
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Figure 11: The memory usage during the migration of the
SGX application with 14 GB of enclave memory.

The changes in memory usage for MigSGX are shown in
Fig. 12(b). The memory usage was almost the same as the migration
of the application with 14 GB of enclave memory. Only one differ-
ence was that the destination host started to use swap space in the
middle of loading the enclave memory. The swap size increased by
2.1 GB finally. Since MigSGX did not cause swapping at the source
host, physical memory should not run out at the destination host
as well. The Intel SGX SDK might use more memory in a hidden
manner, but the reason for this swapping was under investigation.

5.4 CPU Usage

To examine how pipelining in MigSGX affected the CPU usage
during migration, we measured the entire CPU utilization at both
hosts. Figure 13 shows the changes in CPU utilization when we
migrated the application with 14 GB of enclave memory. CPUs
were used very similarly in both methods. The CPU utilization for
dumping enclave memory was about 10%. That for re-creating the
enclave was 65% at first and then reduced to 40%. That for loading
the enclave memory was about 30%. It should be noted that the
CPU utilization for saving the states of the process was different.

25 T T T T T
— RSS (source) — RSS (destination)
ool L= swap (source) — swap (destination) ]
— |
o e ]
)
[0}
N
& ]
500 750 1000 1250
elapsed time (sec)
(a) Naive
0.04 T T T T T T
— RSS (source) — RSS (destination)
— swap (source) — swap (destination)
0.03+ R
8
o 0.02F R
N
[}
0.01 R

0 100 200 300 400 500 600
elapsed time (sec)

(b) MigSGX

Figure 12: The memory usage during the migration of the
SGX application with 16 GB of enclave memory.

The naive method slightly used more CPUs for 77 seconds to save
the dumped enclave memory.

On the other hand, Fig. 14 shows the changes in CPU utilization
when we migrated the application with 16 GB of enclave memory.
The CPU utilization in MigSGX was similar to the above, but that
for the naive method was largely different at the destination host.
While the enclave was re-created, the CPU utilization was high at
first but became much lower after that. While the enclave memory
was loaded, the CPU utilization slightly increased but much lower.
This is because the naive method caused frequent swapping and
was IO-intensive.

6 RELATED WORK

This paper focuses on the migration of containers including SGX
applications, but that of VMs running SGX applications has been
already studied.

The SGX extension called eMotion [16, 17] introduces a new
instruction set. This method prepares migration enclaves at the
source and destination hosts, performs remote attestation each
other, and exchanges a master key. SGX generates a migration
key from the master key. At the source host, the hypervisor saves



80 T T T T T T

— source
— destination

[}
o

CPU utilization (%)
N
o

20

0O 100 200 300 400 500 600
elapsed time (sec)
(a) Naive
80 T T T T T
— source
— destination
60 R

CPU utilization (%)
N
o

N
o
T

0 100 200 300 400 500

elapsed time (sec)

(b) MigSGX

Figure 13: The CPU usage during the migration of the SGX
application with 14 GB of enclave memory.

enclave memory re-encrypted using the migration key by SGX.
At the destination host, it restores enclave memory, which is re-
encrypted using another key by SGX. This method does not require
any modifications to SGX applications, but hardware modification
by Intel is necessary.

TEEnder [8] uses hardware security modules (HSMs) to securely
re-encrypt enclave memory. At the source host, an enclave sends
its memory data to the HSM and receives encrypted memory data.
At the destination host, a re-created enclave sends the encrypted
memory data to the HSM and receives decrypted memory data.
This method can avoid vulnerabilities in remote attestation and
migration enclaves, but it is costly to use hardware appliances.

A software-only method has been also proposed [7]. This method
makes an enclave itself dump and load its state like MigSGX, but
it has four drawbacks. First, an enclave dumps the entire enclave
memory into the outside at once. When the size of enclave mem-
ory is large, swapping in the VM can largely degrade migration
performance, as shown in our experiments. MigSGX addresses this
issue using pipelining. Second, the guest operating system in a VM
sends signals to SGX applications to save the states of enclaves
when it receives a virtual interrupt from the hypervisor on VM
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Figure 14: The CPU usage during the migration of the SGX
application with 16 GB of enclave memory.

migration. In this method, it is difficult to prevent attackers from
illegally sending the save requests to SGX applications. MigSGX
uses the parasite mechanism to securely communicate with SGX
applications. In addition, it is necessary to modify the operating
system unlike MigSGX. Finally, this method is not applicable to
applications developed using the standard Intel SGX SDK because
it is implemented using its own SDK. MigSGX is implemented in
the Intel SDK.

In addition to the internal states of enclaves, its external persis-
tent states can be maintained after VM migration [3]. For example,
such states include data written to the outside after being sealed
with a secret key per enclave and monotonic counters. This method
provides the library for VM migration to an enclave and the enclave
seals data using the secret key generated in the library. Since the
key is migrated with the state of the enclave, the sealed data can
be unsealed at the destination host. For monotonic counters, the
library transfers the values and resets them at the destination host.

AMD SEV [1] provides another trusted execution environment.
It encrypts the memory of VMs and natively supports VM mi-
gration. At the source host, the hypervisor saves the target VM’s
memory, which is re-encrypted for transmission by SEV. At the



destination host, the hypervisor restores the VM’s memory, which
is re-encrypted using another key by SEV. For SEV-SNP [2], the
hypervisor swaps out the entire memory of a VM at the source host.
The swapped memory is re-encrypted by the offline encryption key.
At the destination host, the hypervisor swaps in the VM’s memory,
which is re-encrypted using another key.

The migration of GPGPU applications [21] has a similarity to that
of SGX applications. GPUs have states that cannot be accessed from
the outside. In addition, GPU kernels cannot be suspended from the
outside. This method allows kernels running in GPUs to cooperate
with the migration framework. It achieves the migration of GPGPU
applications using GLoop [19], which is a framework for enabling
cooperative multitasking in GPGPU applications. Using GLoop, it
makes GPU kernels themselves suspend their execution and save
all the execution contexts of GPUs. Then, it migrates the process
and restores the states of GPUs using GLoop at the destination host.

7 CONCLUSION

This paper proposed MigSGX for enabling the migration of con-
tainers including SGX applications. Since the state of an enclave
cannot be correctly saved or restored from the outside, MigSGX
makes the enclave itself dump and load its state. To securely trans-
fer the state, the enclave encrypts and decrypts the state using
a CPU-independent key. For space- and time-efficiency, MigSGX
saves and restores enclave memory in a pipelined manner. It pro-
tects the communication with the target SGX applications using
the parasite mechanism. We have implemented MigSGX in the Intel
SGX SDK and CRIU. Our experiments show that pipelining could
improve migration performance by up to 52% and that the memory
necessary for migration was reduced only to 0.15%.

One of our future work is to support live migration of SGX appli-
cations. Currently, MigSGX stops the services provided by enclaves
and then saves the states of the enclaves. We need to overlap the ex-
ecution of the services with saving the states of enclaves to reduce
the service downtime. To enable this, it is necessary to efficiently
detect the memory regions modified during saving the states.
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