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Abstract—Since virtual machines (VMs) provided by
Infrastructure-as-a-Service clouds often suffer from attacks,
they need to be monitored using intrusion detection systems
(IDS). For secure execution of host-based IDS (HIDS), IDS
offloading is used to run IDS outside target VMs, but offloaded
IDS can still be attacked. To address this issue, secure IDS
offloading using Intel SGX has been proposed. However,
IDS development requires kernel-level programming, which is
difficult for most IDS developers. This paper proposes SCwatcher
for enabling user-level HIDS running on top of the operating
system (OS) to be securely offloaded using VM-compatible OS
emulation layers for SGX. SCwatcher provides the standard OS
interface used in a target VM to in-enclave IDS. Especially, the
virtual proc filesystem called vProcFS analyzes OS data using
VM introspection and returns the system information inside
the target VM. We have implemented SCwatcher using Xen
supporting SGX virtualization and two types of OS emulation
layers for SGX called SCONE and Occlum. Then, we confirmed
that SCwatcher could offload legacy HIDS and showed that the
performance could be comparable to insecure IDS offloading.

Index Terms—virtual machines, Intel SGX, VM introspection,
intrusion detection systems, proc filesystem

I. INTRODUCTION

Infrastructure-as-a-Service clouds provide virtual machines
(VMs) to users. Since clouds are connected to the Internet,
such VMs tend to suffer from various attacks. Therefore, it
becomes important to monitor VMs using intrusion detection
systems (IDS). Since host-based IDS (HIDS) has to be exe-
cuted inside target VMs to obtain system information, it can
be disabled if attackers intrude into VMs. To protect HIDS,
IDS offloading using VM introspection (VMI) [1] is used to
execute IDS outside target VMs. This technique can prevent
IDS from being disabled even if attackers intrude into VMs
because IDS does not exist in the VMs. However, offloaded
IDS could be compromised by external attackers to clouds. If
insiders exist in clouds, they could easily attack offloaded IDS
[2]–[4].

To address this issue, SGmonitor [5] has been proposed to
securely offload HIDS using Intel SGX. SGX is a security
feature of Intel processors and enables IDS to securely run in
a protection domain called an enclave. However, it is not easy
to develop IDS in SGmonitor. Since offloaded IDS needs to
analyze the data structures of the operating system (OS) in
the memory of target VMs, SGmonitor requires kernel-level
programming. This is much more difficult than application-
level programming for IDS running on top of the OS. IDS

developers need to develop IDS for each OS version because
kernel-level programs are largely affected by changes in the
OS. Moreover, it is necessary to use the library dedicated to
SGX. This makes legacy IDS difficult to run.

This paper proposes SCwatcher for enabling user-level
HIDS to be offloaded into enclaves using VM-compatible OS
emulation layers for SGX. SCwatcher provides the standard
OS interface such as the standard C library used in a target
VM to in-enclave IDS. Especially, the virtual proc filesystem
called vProcFS returns the system information on a target VM.
It obtains memory data of the target VM via the underlying
hypervisor, analyzes OS data in it, and creates pseudo files.
IDS can obtain system information inside the VM by accessing
these pseudo files. As such, even legacy HIDS can be offloaded
because it can use exactly the same OS interface as in the
VM. Moreover, IDS developers can develop new HIDS like
traditional one.

We have implemented SCwatcher using Xen-SGX 4.7 [6],
which supports SGX virtualization. Many OS emulation layers
for SGX have been proposed [7]–[11], but there are various
trade-offs between them, particularly in terms of performance
and security. Among them, SCwatcher supports two OS em-
ulation layers: SCONE [8] and Occlum [11]. For SCwatcher
with SCONE, we have implemented vProcFS independently
of SCONE because SCONE does not provide the library
OS or any filesystems. To invoke the hypervisor in closed-
source SCONE, SCwatcher leverages the system-call interface
provided by SCONE. It also transforms IDS programs at
compile time to enable IDS to invoke the additionally linked
vProcFS. For SCwatcher with Occlum, we have extended the
proc filesystem embedded into the Occlum library OS so that it
returns system information inside a target VM. This vProcFS
invokes the outside runtime using the interface provided by
SGX and then the hypervisor to obtain memory data of a
target VM.

We executed legacy HIDS called chkrootkit [12], which
consisted of shell scripts and external commands, using
SCwatcher. Then, we confirmed that this IDS could monitor
networks and processes in a target VM. We examined the
performance of this IDS and showed that the overhead of
invoking many external commands was large in SCwatcher.
Therefore, we have re-implemented this IDS using Python and
C so that IDS did not invoke external commands. As a result,
the overhead of IDS written in C was 6-39% and SCwatcher



could achieve performance comparable to traditional insecure
IDS offloading.

The organization of this paper is as follows. Section II
describes issues of existing IDS offloading in clouds. Sec-
tion III proposes SCwatcher for securely offloading user-level
HIDS using SGX. Section IV explains the implementation of
SCwatcher using SCONE and Occlum and Section V shows
experimental results. Section VI describes related work and
Section VII concludes this paper.

II. IDS OFFLOADING IN CLOUDS

IDS offloading using VMI [1] is a technique for securely
executing HIDS outside target VMs. Using this technique,
offloaded IDS cannot be disabled even if attackers intrude into
VMs because IDS does not exist inside the VMs. Unlike HIDS
running inside target VMs, offloaded HIDS obtains memory
data of target VMs, analyzes OS data in it, and monitors
the system information. For example, HIDS can detect illegal
network communication by examining network sockets used
inside target VMs. It can also detect the execution of malware
by checking the list of running processes.

Even if it is offloaded to the outside of target VMs, IDS
can still be attacked. This is because external attackers could
attack offloaded IDS running in clouds. In addition, insiders
could exist in clouds running offloaded IDS. In fact, system
administrators stole personal information and violated users’
privacy in Google [2]. It is reported that 28% of cybercrimes
were done by insiders [3] and that 35% of system admin-
istrators have eavesdropped on sensitive information [4]. If
offloaded IDS is compromised, it could no longer monitor the
system correctly. It could leak sensitive information obtained
from target VMs.

To address this issue, SGmonitor [5] has been proposed
to securely offload HIDS using Intel SGX, as illustrated in
Fig. 1. SGX is a security feature of Intel processors. It enables
secure program execution in a protection domain called an
enclave. It checks the digital signature of a program at the
load time to an enclave. Since it preserves the integrity of
the memory of an enclave, it is impossible to tamper with
the program running inside an enclave. In addition, SGX can
prevent information leakage from the memory of an enclave
by encrypting it. SGmonitor offloads IDS into an enclave and
protects it from attacks. Offloaded IDS obtains OS data from
the memory of a target VM via the hypervisor underneath the
VM.

However, SGmonitor requires kernel-level programming to
develop IDS. Offloaded IDS needs to analyze the kernel
memory of a target VM and monitor the system in the VM
using obtained OS data. Such IDS development is not easy
for average developers because kernel-level IDS is not popular.
Also, it is necessary to develop IDS for each version of the OS
running in a target VM. Kernel-level programs are subject to
changes in the internal data structures of the OS. In addition,
IDS developers need to use the SDK dedicated to SGX. They
cannot develop IDS using standard libraries.
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Fig. 1: The system architecture of SGmonitor.

Several systems have been proposed to run user-level IDS
using SGX. User-level IDS is developed using standard user-
level libraries and runs on top of the OS. S-NFV [13] runs
only a sensitive part of user-level IDS in an enclave. As an
example, it stores the states of virtual network functions of
Snort [14] in an enclave. SEC-IDS [15] enables running the
entire Snort in an enclave by obtaining network packets using
DPDK [16]. However, these systems are for network-based
IDS (NIDS) and are not applicable to HIDS. NIDS monitors
only packets, while HIDS needs to monitor various system
states such as networks and processes.

III. SCWATCHER

A. Threat Model

This paper assumes the following threat model. First, we
trust cloud providers because it is critical for the providers
to lose the trust of users. This assumption is often used
[17]–[19]. Consequently, we trust hardware managed by cloud
providers, including processors with the SGX feature. We
assume that SGX and software executing in its enclaves
have no vulnerabilities. In addition, we trust the hypervisor
managed by cloud providers. This assumption of trusting both
SGX and the hypervisor is also used [20]. We can validate
that the hypervisor works correctly in various methods. For
example, cloud providers and their users can confirm that an
unmodified hypervisor is booted by remote attestation with
TPM [21]. The runtime modification to the hypervisor can
be detected using hardware mechanisms such as the system
management mode (SMM) [22]–[24].

On the other hand, we do not trust software except for IDS
inside enclaves and the hypervisor, e.g., the host OS running
IDS. We assume that external attackers or insiders in clouds
attack offloaded IDS.

B. IDS Offloading with VM-compatible OS Emulation Layers

To enable user-level HIDS to be offloaded into SGX
enclaves, SCwatcher provides the standard OS interface to
in-enclave IDS. For this purpose, SCwatcher uses a VM-
compatible OS emulation layer for SGX, which has been
developed for running legacy applications inside enclaves.
Thanks to this layer, IDS can use the traditional OS interface
such as the standard C library. Figure 2 illustrates the system
architecture of SCwatcher. An OS emulation layer consists of
the library provided to IDS inside an enclave and the runtime
running outside an enclave.
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Fig. 2: The system architecture of SCwatcher.

In addition, SCwatcher provides the virtual proc filesystem
for VM monitoring, which is called vProcFS, to in-enclave
IDS. The proc filesystem is the interface for obtaining system
information and is often used by user-level IDS. In SCwatcher,
IDS can transparently obtain system information in a target
VM by accessing pseudo files provided by vProcFS. Unlike
regular files stored in persistent storage, pseudo files are
special files whose data is dynamically generated in memory
at access time. For example, /proc/[pid]/stat, where [pid] is a
process ID, returns information on the state, memory usage,
and so on of the specified process.

vProcFS obtains necessary OS data in the memory of a
target VM using VMI when IDS starts to access a pseudo file.
First, it invokes the hypervisor via the SCwatcher library and
runtime and obtains memory data in which target OS data
is contained from the VM. To prevent information leakage
from the obtained memory data, the hypervisor encrypts it
and the library in the enclave decrypts it. The encryption key
is securely shared only between the hypervisor and the library
using the public key infrastructure. Then, vProcFS analyzes
OS data structures in the VM and generates the data of the
pseudo file. It returns a requested part of the generated file
data whenever IDS reads the pseudo file.

C. Trade-offs between OS Emulation Layers

Many OS emulation layers for SGX have been proposed
[7]–[11], but there are various trade-offs, particularly in terms
of performance and security. One of the design choices is
the library OS. Some of the OS emulation layers provide
the library OS inside an enclave [7], [9], [11]. The library
OS enables its processes to use various OS features including
process management and filesystems. It requires exposing only
a small interface to the outside of an enclave, while it increases
the size of the trusted computing base (TCB) inside an enclave.
A larger TCB leads to more vulnerabilities.

In contrast, the other OS emulation layers provide only thin
libraries, e.g., the standard C library, inside an enclave without
a large library OS [8], [10]. This architecture can decrease the
TCB size and avoid the extra overhead of the library OS.
However, the external interface to the outside of an enclave
tends to be larger, e.g., many system calls or many functions
of the standard C library. This can expand the attack surface
against an enclave.

Multi-process support is another design choice. It is neces-
sary for some type of IDS to execute external commands as a
helper. Some of the OS emulation layers can execute only a
single process in an enclave [8]–[10]. The isolation between
processes is strong because processes share nothing. However,
it is necessary to create a new enclave whenever a child process
is created by the fork system call and whenever a new program
is executed by the execve system call. Therefore, the cost of
process management is high. Multiple processes can securely
run in one enclave by isolating them with software fault
isolation [11]. This is an advantage in terms of performance,
but the isolation between processes is weaker because each
process can interfere with the others via the shared library
OS.

To enable users to take trade-offs between these, SCwatcher
supports two types of OS emulation layers. One is a thin
OS emulation layer. It provides no library OS and runs
only a single process in an enclave. vProcFS is provided
independently inside an enclave because this OS emulation
layer does not provide filesystems. This vProcFS leverages
the existing external interface and obtains the memory data of
a target VM to keep the interface as narrow as possible. When
it accesses a pseudo device called the VM memory device
installed in the host OS, the device invokes the hypervisor.
The vProcFS is additionally linked to IDS as a library, but
legacy IDS cannot use any functions of vProcFS because it is
not aware of vProcFS. To glue vProcFS to IDS, SCwatcher
transforms IDS programs at compile time so that IDS invokes
the in-enclave virtual filesystem (VFS), which is also linked
to IDS. The VFS dispatches file requests to vProcFS when
necessary.

The other is a rich OS emulation layer. It provides the
library OS and runs multiple processes in an enclave. vProcFS
is embedded into the library OS because the library OS in-
cludes filesystems. This vProcFS uses a newly added external
interface and obtains the memory data of a target VM. This
slightly expands the interface, but it can avoid the overhead
of the library OS, e.g., extra data copy.

IV. IMPLEMENTATION

We have implemented SCwatcher using Xen-SGX 4.7 [6],
which supports SGX virtualization. In Xen, IDS is usually
offloaded into Dom0, which is a privileged VM, but Xen-
SGX cannot create enclaves in Dom0 because Dom0 is para-
virtualized. Therefore, SCwatcher creates enclaves in a VM
dedicated for IDS, which is fully virtualized and called the
IDS VM, and offloads IDS into them.

SCwatcher supports two largely different OS emulation
layers for SGX: SCONE [8] and Occlum 0.24.0 [11]. The
reasons why we chose these two are that they support fork/exec
and that they can run on top of Xen-SGX 4.7. Both OS
emulation layers provide the standard C library, while Occlum
provides the library OS as well. Most of the Occlum library
OS is written in Rust, which is the memory-safe language,
and is therefore less vulnerable than one written in C. Occlum



TABLE I: Examples of pseudo files provided by vProcFS.

pseudo file description
/proc/meminfo statistics of memory usage
/proc/stat kernel/system statistics
/proc/uptime time spent since the system boot
/proc/net/{tcp,udp} TCP/UDP socket table
/proc/[pid]/auxv loader information passed to the process
/proc/[pid]/cmdline command line for the process
/proc/[pid]/stat status information about the process
/proc/[pid]/status human-readable format of /proc/[pid]/stat
/proc/sys/kernel/osrelease kernel version
/proc/sys/kernel/pid max maximum process ID
/proc/tty/drivers list of tty drivers

can run multiple processes in one enclave on top of the library
OS.

A. In-enclave vProcFS

vProcFS generates the data of pseudo files by obtaining OS
data in a target VM. We have implemented the function of
VM monitoring in vProcFS using LLView [25]. LLView is a
framework for analyzing OS data in the memory of VMs using
the source code of the OS. It enables developing IDS using
data structures, global variables, macros, and inline functions
by including the header files of the Linux kernel. LLView
compiles the source code of vProcFS and generates the LLVM
intermediate representation called bitcode. Then, it transforms
the bitcode so that vProcFS obtains the memory data from a
target VM whenever it needs to access OS data.

Specifically, LLView inserts the function call for obtaining
OS data from a target VM just before each load instruction
in bitcode. The invoked function obtains memory data from
the VM and stores it in the enclave memory. Then, LLView
transforms bitcode so that the load instruction reads the data
stored in the enclave memory. The obtained memory data is
cached in the enclave. If vProcFS needs the same OS data,
it can read it from the cache. It provides a special pseudo
file of /proc/drop caches as an interface for flushing the
stale cache. If IDS reads this pseudo file, LLView removes
the entire cache. This is necessary for long-running IDS to
obtain up-to-date information.

Table I shows the pseudo files used by the netstat and
ps commands, which were executed in our experiments. For
example, /proc/net/tcp is the pseudo file that stores the IP ad-
dresses, port numbers, and states of TCP connections. vProcFS
generates the data of this file by traversing all the entries
of two hash tables for the sockets of the LISTEN and ES-
TABLISHED states in the Linux kernel. It obtains necessary
information from the sock structures. /proc/[pid]/cmdline is
the pseudo file created for the process whose ID is [pid].
vProcFS generates the data of this file by reading information
on the command line, which is stored in the process memory.
It obtains the memory address of the command line from the
mm struct structure.

B. SCwatcher/SCONE

To build legacy IDS for SCONE, the user needs to slightly
change the build procedure to use the SCONE compiler.

hypervisor

target VM

SGX enclave

IDS

OS

memory

SCONE library

vProcFS

SCONE
runtime

VM memory devicehost OS

pread

hypercall

pread

page
tables

IDS VM

Fig. 3: The system architecture of SCwatcher/SCONE.

The SCONE compiler compiles the source code as position
independent code. It uses the musl library as the standard
C library. Then, it links the object files as a shared library.
Finally, it signs that shared library and creates a binary file
that contains the signed shared library in the .enclave section.
When this binary file is executed on top of the host OS,
the shared library for IDS is loaded to an enclave. When
this in-enclave IDS invokes other programs, it executes the
corresponding binaries in the host filesystem.

1) Accessing VM Memory Device: The VM memory device
is a pseudo device installed in the host OS. It is used to obtain
memory data of target VMs using closed-source SCONE. It
provides the interface for the memory of VMs. The minor
number of this device specifies the domain ID of a target VM.
vProcFS accesses this device using the pread system call, as
illustrated in Fig. 3. This system call is usually used to obtain
file data from the specified offset. vProcFS uses this offset to
specify a memory address in the target VM.

vProcFS first masks the lower 12 bits of the 64-bit virtual
address of OS data and calculates the first address of the 4-KB
page containing that OS data, which is called a page address.
Then, it specifies that page address as a 64-bit file offset and
executes the pread system call. However, the page address of
the kernel data is too large for SCONE to accept. Therefore,
vProcFS compresses the page address, as in Fig. 4(a). From
the above definition of a page address, the lower 12 bits of the
page address are always zero. In addition, the upper 17 bits
of the kernel address are always one. Since it is not necessary
to pass these fixed bits to the VM memory device, vProcFS
extracts the remaining 35 bits and stores them in the lower
35 bits of a file offset. The generated file offset is within the
acceptable range by setting the upper 29 bits to zero.

To obtain process data in a target VM, on the other hand,
vProcFS needs to pass the address of the page tables as well as
the page address of process data. It stores these two addresses
in one file offset, as illustrated in Fig. 4(b). First, it compresses
the page address of process data into the lower 35 bits of a
file offset, as in kernel data. Note that the upper 17 bits of the
process address are zero. Then, it translates the virtual address
of the page tables into the physical address and uses only its
lower 40 bits. This limits the memory that can be assigned
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Fig. 4: The compression of address(es) into a file offset.

to a target VM to 1 TB, but this is usually sufficient. Since
the lower 12 bits of the address of the page tables is always
zero, vProcFS uses the remaining 28 bits as the next 28 bits
of the file offset. It makes the generated file offset acceptable
by setting the most significant bit to zero.

When vProcFS issues the pread system call, it invokes the
VM memory device via the SCONE library and runtime. The
read function of this device obtains the minor number of the
accessed device and identifies the domain ID of a target VM.
Then, the VM memory device extracts and decompresses the
page address of OS data and the address of the page tables
from the passed file offset. If the address of the page tables
is zero, the VM memory device issues the hypervisor call for
obtaining the kernel memory of the target VM. It uses the
page tables currently used in the VM. Otherwise, it issues the
hypervisor call for obtaining the process memory of the target
VM using the specified page tables.

2) In-enclave VFS: When IDS invokes the standard file
functions, SCwatcher/SCONE makes the IDS transparently
invoke the in-enclave VFS, as illustrated in Fig. 5, instead
of the SCONE library. To enable this, we have developed
a tool called REPLLVM, which transforms IDS programs at
compile time. It replaces the standard file functions invoked
by the call instructions in bitcode with the corresponding
VFS functions with the prefix of vfs . Note that we cannot
use any OS mechanisms for replacing invoked functions, e.g.,
LD PRELOAD, in enclaves. The VFS provides such replaced
functions and invokes vProcFS if the accessed file or directory
is a pseudo one of vProcFS. It manages pseudo files using
the PFILE structure, which has the buffer storing the data
generated for the pseudo file, the size of the pseudo file, and
the current file offset. It also manages pseudo directories using
the PDIR structure, which has the list of the dirent structures.

When IDS issues the open function, the vfs open function
is invoked instead. This function first examines the file path
and determines whether the opening file is a pseudo one
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host OS

open
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vfs_open

SCONE 
runtime

open

virtual
diskpopen

Fig. 5: The virtual filesystem in an enclave.

in vProcFS or not. If it is a pseudo file, the VFS assigns
the pseudo-file number consecutively from zero. It uses the
assigned pseudo-file number as an index of the array of the
PFILE structures. Then, it generates a file descriptor by adding
the fixed value to the assigned pseudo-file number. Using a
large fixed value, it avoids the conflict with file descriptors
assigned to regular files.

Next, the vfs open function invokes the vProcFS function
corresponding to the path. vProcFS generates the data of the
specified pseudo file and stores it in the corresponding PFILE
structure as a cache. Finally, the vfs open function returns the
value of the generated pseudo-file descriptor. For vfs fopen
function, the VFS handles a pseudo file similarly, but it returns
a pseudo-file pointer instead of a file descriptor. It generates
a pseudo-file pointer by adding a pseudo-file number to the
fixed base address. This enables distinguishing a regular file
pointer to the FILE structure.

When a VFS function with a file descriptor such as
vfs read is invoked, the VFS determines whether the specified
file descriptor is of a pseudo file or not. If the value is equal to
or more than the fixed value, the VFS calculates the pseudo-file
number by subtracting that fixed value from the file descriptor.
For a VFS function with a file pointer, it calculates the pseudo-
file number similarly by using the fixed base address. Then, it
searches the array of the PFILE structures using the pseudo-
file number as an index. Finally, it executes the corresponding
file operation to the found PFILE structure. Note that the VFS
discards the cache in the PFILE structure when vfs close is
invoked.

When IDS issues the opendir function to open a pseudo
directory in vProcFS, the invoked vfs opendir function cre-
ates directory entries, which include pseudo files and sub-
directories. For /proc, vProcFS traverses the list of the
task struct structures in the memory of the target VM. Then,
the VFS creates sub-directories whose names are obtained
process IDs. For a pseudo directory, it assigns a pseudo-
directory number consecutively from zero. Then, it makes a
pointer to the DIR structure by adding the assigned pseudo-
directory number to the fixed base address. When a VFS
function with a pointer to the DIR structure is invoked, the
VFS first calculates the pseudo-directory number. Then, it
executes the corresponding directory operation to the found
DIR structure.

If IDS accesses a non-pseudo file or directory, the VFS
accesses the virtual disk of a target VM. SCwatcher makes the



IDS VM share the virtual disk with the target VM using NFS.
Then, it mounts that disk on /tmp/vm[domid], where [domid]
is the domain ID of the target VM, in advance. At access
time, the VFS modifies the path specified to the standard
file functions. For example, the vfs open function appends
/vm[domid] to the specified absolute path and executes the
standard open function with the modified path through the
SCONE library. Finally, the host OS accesses the virtual disk.
IDS needs to access the host filesystem as well if it invokes
other binaries, but such binaries are located in the special
directory in SCwatcher/SCONE. Therefore, IDS can monitor
all the files in the virtual disk.

For more secure access, SCwatcher should provide filesys-
tems such as ext4 in an enclave and handle encrypted virtual
disks like SGmonitor. This is our future work, but it is not
difficult that the VFS invokes the in-enclave ext4 filesystem.

C. SCwatcher/Occlum

To build legacy IDS for Occlum, the user needs to slightly
change the build procedure to use the Occlum compiler. Like
the SCONE compiler, the Occlum compiler also compiles the
source code as position independent code using the musl
library. Then, it links the object files as a shared library.
In addition, the user prepares an Occlum filesystem image
including that shared library. When the occlum run command
is executed, it loads the Occlum library to an enclave and
then that library loads the IDS from the in-enclave filesystem.
When this IDS invokes other binaries, it loads them from the
in-enclave filesystem as well.

Since Occlum is open-source software unlike SCONE, we
have extended the proc filesystem in the Occlum library OS to
implement vProcFS. Unfortunately, the original proc filesys-
tem in Occlum provides only a small subset of pseudo files and
directories. Therefore, we added necessary pseudo files and
directories. Unlike SCwatcher/SCONE, SCwatcher/Occlum
generates the data of a pseudo file at the first read. This is
because the file open operation is executed outside vProcFS.
Our design policy is to minimize the modification to the
Occlum library except for its proc filesystem.

Since most of the Occlum library is written in Rust, vProcFS
invokes C code to generate the data of pseudo files using
LLView. That C code is transformed to issue a newly added
outside call (OCALL) when memory data of a target VM
is required. An OCALL is the SGX interface for securely
invoking untrusted code outside an enclave from trusted code
inside the enclave. SCwatcher/Occlum provides two types of
OCALLs. For kernel data, vProcFS calculates the page address
of its virtual address and passes it to one OCALL. For process
data, vProcFS passes its page address and the address of
the page tables to another OCALL. When these OCALLs
invoke the extended Occlum runtime, the runtime directly
issues the corresponding hypervisor calls for obtaining the
specified memory data of a target VM, as illustrated in Fig. 6.
It does not invoke the VM memory device in the host OS
unlike SCwatcher/SCONE.
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vProcFS Occlum
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Fig. 6: The system architecture of SCwatcher/Occlum.

vProcFS itself preserves the generated data of pseudo files
as a cache. Since it cannot recognize the file close operation,
it flushes the cache after the specified period to prevent a stale
cache. In addition, SCwatcher/Occlum needs to periodically
flush the cache of the memory data obtained by LLView
even for short-running IDS. Unlike SCONE, Occlum can run
multiple processes in one enclave. If IDS is invoked many
times, the LLView cache can become stale. Currently, we
sometimes flush the LLView cache manually to reduce the
overhead of checking cache expiration whenever memory data
is obtained.

To monitor the virtual disk of a target VM,
SCwatcher/Occlum merges the in-enclave root filesystem and
the root filesystem in the target VM. It makes the IDS VM
share the virtual disk with the target VM using NFS and
mounts that disk on /host/vm in the in-enclave filesystem.
If it cannot find a file in the lookup operation, it appends
/host/vm to the specified path and recursively searches the
root filesystem in the target VM. For this purpose, we have
slightly modified the VFS in Occlum. Since the in-enclave
filesystem provides only a minimum set of files, IDS can
substantially monitor all the files in the virtual disk.

V. EXPERIMENTS

We conducted several experiments to show the effectiveness
of SCwatcher. We offloaded chkrootkit [12], which was one
of the legacy HIDS, to enclaves. Since chkrootkit is written
in shell scripts, we first executed the bash shell in an enclave
and then ran chkrootkit on bash. We used SCwatcher/SCONE
and SCwatcher/Occlum. For SCwatcher/Occlum, we created
an enclave for IDS in advance. Since chkrootkit is usually
executed for periodic intervals, we ran the shell script that
executed chkrootkit periodically on bash. For comparison, we
used traditional insecure IDS offloading, which ran chkrootkit
without enclaves by reusing the implementation of vProcFS
in SCwatcher/SCONE.

We used a PC with Intel Core i7-8700, 16 GB of memory,
and a 2-TB HDD. For the IDS VM, we assigned two virtual
CPUs, 2 GB of memory, and an 80-GB virtual disk. For a
target VM, we assigned two virtual CPUs, 2 GB of memory,
and a 50-GB virtual disk.



SCwatcher/SCONE
SCwatcher/Occlum
insecure offloading

ac
ce

ss
 ti

m
e 

(m
s)

0

2

4

6

8

mem
inf

o
sta

t

up
tim

e
ne

t/tc
p

ne
t/u

dp
1/s

tat

1/s
tat

us

1/c
mdlin

e
1/a

ux
v

os
rel

ea
se

pid
_m

ax

tty
/dr

ive
rs

(a) Access time

# 
of

 p
re

ad
s/

O
C

AL
Ls

0
10
20
30
40
50
60

mem
inf

o
sta

t

up
tim

e
ne

t/tc
p

ne
t/u

dp
1/s

tat

1/s
tat

us

1/c
mdlin

e
1/a

ux
v

os
rel

ea
se

pid
_m

ax

tty
/dr

ive
rs

(b) Issued preads/OCALLs

Fig. 7: The performance of accessing pseudo files of vProcFS.

A. Secure Offloading of chkrootkit

chkrootkit invokes many external commands, but only two
commands, netstat and ps, access the proc filesystem. The
netstat command obtains information on network sockets and
the ps command obtains information on running processes.
First, we offloaded and executed these two commands using
SCwatcher. As a result, we confirmed that the outputs of these
offloaded commands were almost exactly the same as those
when we ran them inside a target VM.

Next, we offloaded and executed chkrootkit. We used one
function for network-level malware detection and three func-
tions for process-level malware detection in chkrootkit. Only
these functions use the proc filesystem through the execution
of external commands. For network-level malware detection,
chkrootkit checks whether the slapper warm infects the system
or not. For process-level malware detection, chkrootkit checks
whether inetd, sshd, and tcpd are compromised or not. In this
experiment, we made the target VM be infected by malware.
According to the execution results, we confirmed that the
offloaded chkrootkit could detect malware correctly.

B. Performance of vProcFS

We examined the performance of accessing each pseudo
file of vProcFS. We measured the time needed for open-
ing, reading, and closing pseudo files. We performed this
measurement ten times and calculated the average and the
standard deviation. Fig. 7(a) shows the results for pseudo
files used by netstat and ps. Compared with the insecure
IDS offloading, SCwatcher/SCONE took 2.8-9.8x longer. In
contrast, SCwatcher/Occlum was only 1.3-4.2x slower. This
access time was basically proportional to the number of issued
pread system calls or OCALLs, as shown in Fig. 7(b).
SCwatcher/SCONE issued the pread system calls to obtain
memory data, while SCwatcher/Occlum issued OCALLs. The
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Fig. 8: The execution time of each pread system call.

execution time of the pread system calls or OCALLs occupied
a large portion of the access time.

Although SCwatcher/SCONE was much slower than
SCwatcher/Occlum, it should be faster to invoke system calls
in SCONE thanks to asynchronous system calls [8]. To analyze
the large overhead in SCwatcher/SCONE, we measured the
execution time of the pread system call in an enclave inside
the IDS VM 200 times. For comparison, we measured the
execution time in an enclave without using the IDS VM. In
both cases, the VM memory device returned dummy data of
4 KB.

In this experiment, we needed to obtain the execution time
in the order of microseconds. In SCONE, a program running
in an enclave can get time via the clock gettime system call,
but it is not accurate because the invocation overhead of the
system call is not negligible. To get time inside an enclave as
accurately as possible, we obtained time information directly
from the vsyscall area in the process memory, on which part
of the kernel memory was mapped. However, the granularity
of the obtainable time was only 4 ms. It was necessary to
execute the rdtsc instruction to adjust the obtained time, but
that instruction could not be executed in an enclave. Therefore,
we developed a kernel module to periodically execute rdtsc
and store the result in the vsyscall area.

Fig. 8 shows the histogram of the execution time of pread.
The execution time was 3-320 µs regardless of the IDS VM.
However, it took about 300 µs more than 100 times when
SCONE ran in the IDS VM. Without the IDS VM, it was
rare to take more than 4 µs. As a result, it was clarified
that virtualization in Xen increased the overhead of the pread
system call in SCONE.

C. Performance of Commands Using vProcFS

We measured the execution time of the netstat
and ps commands offloaded to enclaves. Fig. 9(a)
shows that SCwatcher/Occlum was 3.5-9.0x faster than
SCwatcher/SCONE. This is because SCwatcher/Occlum did
not need to create a new enclave for the command execution.
In terms of security, it is more secure to create an enclave for
each command execution like SCwatcher/SCONE. From this
result, SCwatcher could take a trade-off between performance
and security. Note that the reason why the overhead in
netstat was much larger is that the time for enclave creation
occupied the large portion of the execution time.
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Fig. 9: The performance of executing external commands.

Compared with insecure IDS offloading, SCwatcher/Occlum
was 39% slower in netstat and 52% slower in ps. One reason
for this overhead is the posix spawn system call used for
creating a process and executing the command. This system
call does not create a new enclave, but it needs to load a new
program from the Occlum filesystem. The other reason is the
overhead of vProcFS. As shown in Fig. 9(b), vProcFS issued
many OCALLs to obtain memory data of the target VM. The
difference in the overhead between netstat and ps came from
the number of issued OCALLs. SCwatcher/Occlum needed
much more OCALLs during the execution of ps.

D. Performance of chkrootkit

We measured the execution time of the above four de-
tection functions for networks and processes in chkrootkit.
Fig. 10(a) shows the time needed for detecting malware
using SCwatcher. SCwatcher/Occlum was 8.9-12x faster than
SCwatcher/SCONE. To examine the reason for such a large
difference, we first measured the average time of invoking
each external command. As shown in Fig. 11(a), SCONE
needed 20x longer time than Occlum to invoke one external
command. In SCwatcher/SCONE, two enclaves were created
whenever bash executed one external command by issuing
the fork and execve system calls. In SCwatcher/Occlum, in
contrast, bash modified by the Occlum developer issued only
one posix spawn system call, instead of fork and execve.
In addition, Occlum did not create an enclave by this system
call.

On the other hand, even SCwatcher/Occlum took 18-29x
longer than insecure IDS offloading, as in Fig. 10(b). Since
chkrootkit executed external commands many times, as shown
in Fig. 11(b), a large portion of the execution time was spent by
the posix spawn system calls even if new enclaves were not
created. This experiment shows that SCwatcher is not suitable
for IDS that creates many processes by invoking external
commands.

E. Performance of chkrootkit/Python

To examine the performance of IDS that does not invoke
external commands in SCwatcher, we have re-implemented the

SCwatcher/SCONE
SCwatcher/Occlum

ex
ec

ut
io

n 
tim

e 
(s

ec
)

0

10

20

30

40

slapper inetd sshd tcpd

(a) SCwatcher

SCwatcher/Occlum
insecure offloading

ex
ec

ut
io

n 
tim

e 
(s

ec
)

0

1

2

3

4

slapper inetd sshd tcpd

(b) vs. insecure offloading

Fig. 10: The execution time of four detection functions in
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four detection functions in chkrootkit by using Python. This
chkrootkit is executed using only one process. It accesses only
/proc/[pid]/cmdline and /proc/net/{tcp,udp} in vProcFS.
Fig. 12 shows the execution time in SCwatcher/Occlum
and insecure IDS offloading. We omit the result of
SCwatcher/SCONE because its execution time was much
longer due to creating an enclave at first. It was shown that the
performance of chkrootkit written in Python was improved by
18-25x, compared with that of the original chkrootkit written
in shell scripts. However, SCwatcher/Occlum was still 2.2-2.7x
slower than insecure IDS offloading. One of the reasons was
that the Python interpreter accessed many files at startup time.
It is reported that the average overhead of reading files was
39% in Occlum [11].

F. Performance of chkrootkit/C

To reduce the number of file accesses, we have re-
implemented chkrootkit by using C. This chkrootkit is also
executed using only one process and accesses only monitored
files. Fig. 13 shows the execution time of this chkrootkit
in SCwatcher/Occlum and insecure IDS offloading. The per-
formance of chkrootkit written in C was further improved
by 4.5-5.0x, compared with that of chkrootkit written in
Python. The performance degradation in SCwatcher/Occlum
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was only 5.9-39%, compared with insecure IDS offloading.
Consequently, SCwatcher/Occlum could execute IDS written
in C in performance comparable to insecure IDS offloading.
This result is consistent with the performance of external
commands, as shown in Section V-C.

VI. RELATED WORK

S-NFV [13] enables NIDS to be offloaded into SGX en-
claves. It stores the states of virtual network functions in
enclaves and runs code that handles them in enclaves. As an
example, it runs Snort in an enclave so that Snort can securely
manage the state for each network flow. As such, S-NFV can
minimize the TCB size inside an enclave, but it is not easy
to divide existing IDS into two without introducing a new
attack surface. In contrast, SCwatcher can run the entire IDS
in enclaves.

SEC-IDS [15] runs the entire Snort in an enclave with al-
most no modification. To enable this, it uses the OS emulation
layer for SGX called Graphene-SGX [9], which provides the
library OS but runs a single process in an enclave. This is
different from SCONE and Occlum used by SCwatcher. SEC-
IDS uses DPDK [16] to efficiently obtain network packets
even in an enclave. As long as the state of Snort is smaller
than the enclave page cache in SGX, SEC-IDS can achieve
the performance comparable to running Snort without SGX.
However, its TCB is relatively large because Graphene-SGX
uses glibc as the standard C library. SCONE and Occlum use

much smaller musl. In addition, SCwatcher can offload the
entire HIDS.

Transcall [26] enables legacy user-level IDS to be offloaded
from VMs. It provides an execution environment so that IDS
can monitor a target VM. This execution environment is simi-
lar to a container and provides the standard OS interface, e.g.,
the standard C library, the proc filesystem, and system calls.
For the proc filesystem and several system calls, Transcall
obtains system information from the memory of a target VM
and provides it to IDS. Also, it provides the same filesystem
as used in a target VM. However, the provided execution
environment can be easily attacked by external attackers and
insiders because it is not suitably protected unlike SGX
enclaves.

VMST [27] can also offload legacy IDS from VMs. Unlike
Transcall, it provides a monitoring VM for each target VM.
A monitoring VM runs exactly the same system as a target
VM and provides the standard OS interface to IDS. The OS
in a monitoring VM transparently obtains system information
from the memory of a target VM and provides it to IDS.
A monitoring VM is isolated more strictly than an execution
environment in Transcall, but its protection is much weaker
than SGX enclaves. Recently, AMD SEV [28] is used to
encrypt the memory of VMs transparently. If AMD SEV is
applied, a monitoring VM could be hardened.

RemoteTrans [29] can offload legacy IDS into trusted re-
mote hosts outside clouds. Unfortunately, remote hosts can be
attacked because they need to be connected to the Internet.
It is also troublesome for users to maintain remote hosts by
themselves. V-Met [30] runs the entire virtualized system in an
outer VM using nested virtualization [31] and offloads legacy
IDS to the outside of the outer VM. However, the overhead of
nested virtualization largely degrades the performance of the
entire virtualized system.

Besides, various systems have been proposed for the secure
execution of offloaded IDS. Co-pilot [32] checks OS data
using a dedicated PCI add-in card. Flicker [33] securely runs
IDS using AMD SVM and Intel TXT. HyperCheck [23] and
HyperSentry [24] monitor the hypervisor using the SMM of
Intel processors. Self-service cloud [34] runs IDS in VMs
isolated by the hypervisor. BVMD [35] embeds IDS into the
hypervisor and checks the disk I/O of VMs. However, these
systems cannot run legacy user-level IDS.

VII. CONCLUSION

This paper proposed SCwatcher for offloading user-level
HIDS into enclaves using VM-compatible OS emulation layers
for SGX. SCwatcher provides the standard OS interface using
SCONE and Occlum. In addition, in-enclave IDS can obtain
system information inside a target VM via vProcFS. vProcFS
obtains memory data of the target VM, analyzes OS data in
it, and generates the data of its pseudo files. We confirmed
that SCwatcher could run legacy HIDS and monitor target
VMs. Also, it was shown that IDS written in C could achieve
monitoring performance comparable to insecure IDS offload-
ing without SGX.



Our future work is to reduce the overhead of obtaining
memory data from target VMs. For this purpose, the hy-
pervisor could perform read-ahead of kernel data structures
such as lists and obtain a larger amount of memory data
at once. Another direction is to reduce the overhead of
invoking external commands from IDS. One possible solution
is to use the process pool. For SCwatcher/SCONE, we could
preserve enclaves after command execution and reuse them
by restarting the execution. For SCwatcher/Occlum, similarly,
we could preserve processes in the enclave after command
execution and reuse them. Since the recent third-generation
Intel Xeon Scalable processors have up to 512 GB of the
enclave page cache, the process pool in enclaves becomes
realistic.
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