
Reliable and Accurate Fault Detection with GPGPUs and LLVM

Yuichi Ozaki∗, Sousuke Kanamoto∗, Hiroaki Yamamoto∗, and Kenichi Kourai†
Kyushu Institute of Technology

∗{bushido, k sousuke, hiroaki}@ksl.ci.kyutech.ac.jp, †kourai@csn.kyutech.ac.jp

Abstract—As the scale and complexity of cloud systems are
increasing, system faults are becoming unavoidable. Therefore,
they should be detected as reliably and accurately as possible.
Black-box monitoring can reliably monitor a target system
from a remote host, but it is often coarse-grained and cannot
identify the root causes of system faults. In contrast, white-
box monitoring can accurately obtain fault information inside
a target system, but it is largely affected by system faults.
This paper proposes GPUSentinel for more reliable white-box
monitoring using general-purpose GPUs. GPUSentinel runs
fault detectors in an isolated GPU, which is not easily affected
by faults of a target system. For accurate detection, fault
detectors in a GPU analyze main memory and directly monitor
the state of the operating system. To easily develop such fault
detectors, GPUSentinel provides a development environment
with LLVM. We have implemented GPUSentinel and seven
fault detectors and then confirmed that GPUSentinel could
detect various system faults and identify the root causes.

Index Terms—operating systems, system faults, fault detection,
GPUs, white-box monitoring

1. Introduction

Recently, the systems used for cloud computing are
getting larger and more complex. As a consequence, it
becomes difficult to avoid system faults. Once a system fault
occurs, it sometimes results in a system failure and services
provided by the system stop. This leads service providers
to a huge financial loss. For example, it is estimated that
Amazon lost $72 million during Prime Day’s one-hour
failure [1]. Such a system failure largely affects the users
of the services and system administrators as well. The users
can also suffer from some loss due to service unavailability.
System administrators have to identify the root cause of the
system failure and restore the system.

To reduce such loss, system faults should be detected as
reliably and accurately as possible before a system failure.
Traditionally, black-box monitoring is used for fault detec-
tion. A typical example is heartbeat monitoring of a target
host and services [2]. In this method, fault detectors in a
remote host can reliably monitor a target system even when
system faults occur. However, it is difficult to obtain detailed
information on the target system. For more accurate fault
detection, white-box monitoring can be used inside a target
system [3]–[6]. In this method, fault detectors run on top

of the operating system (OS) or are embedded into the OS
kernel. This method can obtain the internal state of the target
system, but fault detectors can be affected by system faults.
This is because fault detectors strongly depend on the target
system.

In this paper, we propose GPUSentinel for more re-
liable white-box monitoring using general-purpose GPUs.
GPUSentinel runs fault detectors in a GPU, which can
execute code independently of CPUs and main memory.
Therefore, fault detectors are not easily affected by faults
of a target system running in CPUs. In GPUSentinel, fault
detectors analyze main memory using the knowledge of data
structures used in the OS kernel and obtain the state of the
target system. As such, they can use detailed information
to detect system faults and identify the root causes. To
easily develop such fault detectors like OS kernel modules,
GPUSentinel provides a development environment including
program transformation with LLVM [7].

We have implemented GPUSentinel using CUDA [8].
GPUSentinel uses the mapped memory mechanism in
CUDA and transparently accesses main memory from a
GPU. To allow the entire main memory to be mapped in
the GPU address space, we have modified the memory
management in the Linux kernel. In addition, we have
developed a framework called LLView, which transparently
transforms the programs of fault detectors so as to translate
virtual addresses of OS data to GPU addresses. LLView also
enables developers to reuse the source code of the OS kernel.
Using GPUSentinel, we have developed seven fault detectors
for detecting system hangs. Through our experiments, we
confirmed that GPUSentinel could detect these system faults
successfully.

This paper is an extension of our workshop paper [9].
In the previous paper, we presented only the basic idea of
GPUSentinel and preliminary results. In this paper, we have
significantly extended our previous paper. First, we have
completely implemented the mechanism for fault detection
using a GPU. Second, we have developed seven fault detec-
tors for GPUSentinel. Third, we compared the abilities of
fault detection between GPUSentinel and the existing CPU-
based white-box monitoring system.

The organization of this paper is as follows. Section 2
describes the issues of traditional fault detection. Section 3
proposes GPUSentinel for reliable and accurate fault detec-
tion and Section 4 explains its implementation. Section 5
reports the results of our experiments. Section 6 describes
related work and Section 7 concludes this paper.

2. Reliable and Accurate Fault Detection

To avoid a system failure, it is necessary to detect system
faults as reliably as possible. Fault detectors have to always
detect system faults whenever faults occur in a target system.
If they cannot work well at that time, missed system faults
can cause a system failure and lead to a huge financial loss.
In addition, accurate fault detection is also necessary. If
possible, it is desirable to detect symptoms of system faults.
Earlier detection of system faults can lower the probability
of leading to a system failure. Obviously, more information
helps system administrators correctly identify system faults
and their root causes. If false positives occur, system admin-
istrators may have to investigate the root causes of system
faults that do not actually occur.

Traditionally, black-box monitoring is performed in a
remote host to detect system faults. An example of black-
box monitoring is the heartbeat monitoring of a target host
and services provided by a target system via the network [2].
Fault detectors in a remote host can examine not only the
state of the target host but also the state of each service by
periodically connecting to all the services. If the responses
are slow, that may be a symptom of system faults. If there
are no responses, system faults probably occur. However,
this monitoring method cannot achieve accurate fault de-
tection. Since fault detection by black-box monitoring is
coarse-grained, fault detectors cannot identify which types
of system faults exactly occur. Furthermore, it is difficult
to obtain detailed information on the target system when
system faults occur because fault detectors cannot access
the internal state of the system. Therefore, the root causes
of system faults cannot be identified as well.

If target hosts equip with hardware monitoring such as
IPMI [10], fault detectors in a remote host can obtain more
detailed information even outside the target system. They
can examine the hardware state and use that information
for fault detection. For example, CPU usage, the amount of
disk access, and the number of network packets help fault
detectors detect system faults more accurately than simple
heartbeat monitoring. Similarly, if a target system runs in a
virtual machine (VM), fault detectors can obtain the state
of virtual hardware from the outside of the VM. However,
such extra information may still be insufficient to identify
exact fault types and root causes.

For more accurate fault detection, white-box monitoring
can be used [3]–[6]. In this monitoring method, fault detec-
tors run inside a target system and notify a remote host of
system faults. They can obtain more detailed information
than black-box monitoring. In particular, when they are
embedded into the OS kernel, they can identify fault types
and root causes more easily. However, white-box monitoring
cannot achieve reliable fault detection. Once a system fault
occurs, fault detectors may not work correctly. For example,
they cannot detect system faults or identify the root causes
if the OS kernel stops. Even if the OS kernel continues to
run correctly, detector processes may be terminated by the
OS kernel, e.g., the out-of-memory (OOM) killer in Linux,
when system memory runs out.

CPU

data

main
memory

GPU

fault
detector

monitor

target hosttarget system

Figure 1: The architecture of GPUSentinel.

3. GPUSentinel

This paper proposes GPUSentinel for achieving more
reliable white-box monitoring by running fault detectors
in commodity GPUs. Fig. 1 shows the system architec-
ture of GPUSentinel. In GPUSentinel, fault detectors start
to run at the boot time of the target system, i.e., before
any system failures occur. They occupy one GPU and run
autonomously. Even if the target system uses GPUs for
computing, GPUSentinel is available by installing another
low-cost GPU. To monitor the target system from a GPU,
fault detectors inspect OS data stored in main memory. If
they detect system faults, they analyze the root causes.

Using GPUs, GPUSentinel enables reliable and accurate
fault detection. For reliability, fault detectors in a GPU can
continue to run with a high probability even when system
faults occur in the target system. This is because GPUs
are physically isolated from CPUs and main memory, on
top of which the target system runs. System faults in the
target system are not easily propagated to fault detectors
in a GPU. It should be noted that GPUs are usually used
as co-processors and are controlled by CPUs. Therefore,
GPUSentinel takes control of one dedicated GPU by running
fault detectors indefinitely.

For accuracy, GPUSentinel can detect system faults that
can be found from OS data stored in main memory if
necessary data are not corrupted by faults. System faults that
run out of system resources or cause resource starvation are
detectable. For example, if the system uses a large amount of
memory or memory leaks occur, it cannot allocate necessary
memory. If all the CPUs are involved in deadlocks with
spinlocks, the entire system hangs. To detect these system
faults, fault detectors in a GPU can monitor the amount of
free memory and consumed CPU time. If these values are
abnormal, GPUSentinel can detect that state as symptoms
of system faults.

However, it is a troublesome task to develop such fault
detectors that monitor OS data in main memory from a
GPU. To obtain OS data, fault detectors have to find the
location in main memory and analyze data structures used
in the OS kernel. For ease of development, GPUSentinel
enables developers to write programs of fault detectors like
OS kernel modules. The programming of OS kernel modules
is natural to access OS data. In GPUSentinel, a framework
called LLView provides a development environment for fault
detectors. It transparently transforms the programs of fault
detectors using LLVM [7] so that developers are not aware

of indirect access to main memory from a GPU. In addition,
it enables developers to reuse the source code of the OS
kernel as much as possible.

4. Implementation

We have implemented GPUSentinel using CUDA
8.0 [8], LLVM 5.0. To enable GPUs to monitor the entire
main memory, we have modified Linux kernel 4.4. For
GPUSentinel, we have developed seven fault detectors as
one GPU program using multiple GPU cores.

4.1. Main Memory Mapping

GPUSentinel enables fault detectors in a GPU to trans-
parently access main memory using mapped memory in
CUDA. Mapped memory is used to map main memory
onto the GPU address space and make it accessible from
GPU kernels. To use mapped memory for the entire main
memory, GPUSentinel first maps main memory onto the
address space of a host process. However, if GPUSentinel
simply maps the entire main memory, free memory runs
out. When CUDA maps the memory region onto the GPU
address space, it pins all the memory pages so that any pages
are not paged out. At this time, all the memory pages are
locked and become in use.

To address this issue, GPUSentinel uses a special device
added to the Linux kernel. When CUDA pins the memory
pages where the device is mapped, the modified Linux
kernel neither increases the reference count of each memory
page nor locks it to prevent the page from being in use.
In addition, GPUSentinel works around the limitation of
CUDA, which allows mapping only a bit smaller amount
of memory than the size of main memory. It intercepts the
sysinfo system call and returns a bit larger size as the size
of main memory. For the details of this implementation, see
our previous paper [9].

4.2. Transparent Address Translation

To transparently translate virtual addresses of the OS
kernel into GPU addresses, LLView compiles the programs
of fault detectors using LLVM and transforms the inter-
mediate representation called bitcode. When bitcode reads
data from memory, the load instruction is used. LLView
replaces the load instruction so that bitcode invokes the
g_map function for performing address translation and ex-
ecutes the load instruction for the translated address. If the
passed address is not the virtual address of the OS kernel, the
function just returns the passed address without translation.
The threshold address is 0xffff000000000000. At that
time, bitcode accesses local memory in a GPU.

For example, let us consider the following bitcode.

%1 = load i64, i64* %jiffies
%2 = udiv i64 %1, 250

This bitcode reads the OS global variable jiffies into the
local variable %1, divides it by 250, and stores the result in
%2. LLView transforms this bitcode as follows:

%1 = bitcast i64* %jiffies to i8*
%2 = call i8* @g_map(i8* %1)
%3 = bitcast i8* %2 to i64*
%4 = load i64, i64* %3
%5 = udiv i64 %4, 250

This bitcode casts the address of jiffies to the pointer
to an 8-bit integer and stores it in %1. Using that pointer as
an argument, the bitcode invokes the g_map function and
translates the address. Then, it casts the returned address to
the pointer to the original 64-bit integer and reads the data
from the address to %4.

LLView uses the LLVM Pass framework for transform-
ing bitcode. When LLView finds the load instruction in
bitcode, it obtains the target variable and its type. Using that
information, it generates the call instruction for invoking
the g_map function and inserts that instruction just before
the load instruction. Then, it generates a new load in-
struction that reads data from the translated address, inserts
that instruction, and removes the original load instruction.
At this time, LLView rewrites all the instructions using the
local variable in which data is stored by the original load
instruction. That local variable is replaced with the new one,
whose value is stored by the new load instruction.

The g_map function first translates a virtual address into
a physical address using the page tables of the OS kernel.
Using the knowledge of the Linux kernel, LLView optimizes
this address translation in the following two cases. When a
virtual address is in the range of direct mapping of main
memory, LLView performs address translation by subtract-
ing the top address of the range from the virtual address. For
the address range in which the kernel text area is mapped,
LLView does similarly. Next, the g_map function translates
the physical address into a GPU address. For this translation,
LLView simply adds the physical address to the top GPU
address in which main memory is mapped.

To enable fault detectors to access global variables
in the OS kernel, LLView replaces the kernel variables
in bitcode with the corresponding virtual addresses used
in the OS kernel. It obtains the mapping between kernel
symbols and virtual addresses from the System.map file.
The resulting virtual addresses are translated into physical
ones by LLView. For example, the bitcast instruction for
jiffies is replaced by the Pass framework as follows:

%1 = inttoptr i64 -2113892352 to i8*

This virtual address means 0xffffffff82009000 hex-
adecimally. The bitcast instruction is changed to the
inttoptr instruction because a virtual address is dealt
with as a 64-bit integer in bitcode.

4.3. Development like OS Kernel Modules

Using LLView, developers can write programs of fault
detectors like OS kernel modules. They can reuse the source

device
code

fat
binary

host
code

modified
clang

opt/
llc

ptxas/
fatbinary

bitcode asm

clang++ fault
detector

object
file

pass

Figure 2: Compilation of a fault detector.

code of the Linux kernel, e.g., data structures, global vari-
ables, inline functions, and macros. Let us consider a fault
detector that obtains the CPU time consumed by processes.
This fault detector traverses the process list, which is a
circular list starting with the init_task global vari-
able, using the list_entry macro. During that traversal,
it obtains the system times consumed by each process
from the task_struct structure, which is defined in
sched.h. To use the Linux header files, we needed to
slightly modify some of them. For example, we had to add
the __device__ qualifier to only used inline functions.
We also replaced inline assembly code with C code because
LLView could not support assembly code.

GPUSentinel enables developers to write fault detectors
in C. CUDA programs consist of device code running on
GPUs and host code running on CPUs. Both are usually
written in C++. However, it is difficult to reuse the source
code of the Linux kernel written in C and compile device
code using it as C++. For example, variable names in C can
conflict with the reserved words in C++, e.g., new. C++
requires type casts that are unnecessary in C and disallows
arithmetics for void pointers.

Therefore, LLView uses a clang compiler front end
modified so that device code is compiled as C. Clang
defines specification used for compilation for each type
of program. We changed the specification used for CUDA
programs to C90 and GCC extensions. In GPUSentinel,
CUDA programs are compiled as illustrated in Fig. 2. First,
LLView compiles device code using the modified clang.
It applies our passes to the generated bitcode using opt.
Then, it creates an embeddable binary called fat binary using
ptxas and fatbinary. Finally, it compiles host code using
the original clang++ and embeds the fat binary into the
generated object file.

For several variables and functions that CUDA pro-
vides to device code, LLView provides wrapper functions
written in C. Since device code is compiled as C in
LLView, CUDA variables and functions implemented in
C++ cannot be used as is. For example, CUDA provides
the blockDim variable that returns a unique thread ID in
a GPU kernel and the threadIdx variable that returns
a thread index in a block. For them, LLView provides the
C function called get_thread_id that returns a thread
ID using that variable. For the __threadfence function
used for exclusive memory access, LLView provides the
__gs_threadfence function in C.

4.4. Detection of Kernel-level Faults

Using GPUSentinel, we have developed seven fault de-
tectors using some of the metrics proposed for systemat-
ically detecting faults that lead to system hangs [4] and
additional metrics. The metrics on CPUs are defined as
the CPU utilization consumed by the kernel (sys) and
processes (usr). For these metrics, a fault detector first
obtains the CPU times used for them per CPU from the
kernel_cpustat structure. Next, it waits for one second
by repeatedly reading the value of the clock64 register in a
GPU. Then, it obtains these CPU times again and calculates
CPU utilization. In addition, we added another metric for
timer interrupts (int) because the above two CPU times are
not updated without timer interrupts. A fault detector obtains
the value of the jiffies variable, which is incremented by
timer interrupts, and calculates the increase in one second.

The metric on CPU scheduling is defined as the num-
ber of context switches per second (cs). A fault detector
obtains the number of context switches recorded in the
rq structure and calculates the increase in one second. In
addition, we have added another metric for the number of
uninterruptible processes (sleep). A process enters the state
of uninterruptible sleep when it issues a system call that
cannot be interrupted by signals and waits for I/O. A fault
detector traverses the process list from the init_task
variable and counts the number of uninterruptible processes
by examining the task_struct structure.

The metrics on memory are defined as the amount of
free memory (memfree) and the number of swap-outs per
second (pswpout). For memfree, a fault detector obtains
the amount of free memory from the vm_stat array. For
pswpout, a fault detector first obtains the number of swap-
out events recorded per CPU in the vm_event_state
structure and calculates the increase in one second. Then, it
accumulates the increases for all the CPUs.

We have added one more metric (panic) because a
kernel panic is an explicit fault response from the kernel.
Upon a kernel panic, the kernel acquires a spinlock using the
panic_lock variable. A fault detector obtains the value
that represents whether that spinlock is locked or not.

Using the combination of these metrics, our fault detec-
tors detect system faults that are categorized into six types
by the detailed analysis of the prior work [4] and one extra
fault in Table 1. The first three system faults are related
to infinite loops. Fault F1 is defined as an infinite loop
with interrupts disabled, e.g., a deadlock with spinlocks.
The prior work uses sys, usr, and cs to detect F1, but our
fault detector for F1 monitors int because CPU utilization
cannot be obtained without timer interrupts. Then, it detects
a system fault if the value of int is zero. Fault F2 is defined
as an infinite loop with both interrupts and preemption
enabled. The fault detector for F2 monitors sys and usr
and detects a system fault if the value of sys is more than
95% and that of usr is less than 1%. Fault F3 is defined
as an infinite loop with interrupts enabled but preemption
disabled. The fault detector for F3 is similar to that for F2,

TABLE 1: Metrics used by kernel-level fault detectors.

CPU scheduling memory panicsys usr int cs sleep memfree pswpout
F1 ✓
F2 ✓ ✓
F3 ✓ ✓ ✓
F4 ✓
F5 ✓ ✓ ✓
F6 ✓ ✓
F7 ✓

but it also monitors cs. It detects a system fault if the value
of cs is less than 350 in addition to the condition for F2.

The next three system faults are related to indefinite
waits. Fault F4 is defined as an indefinite wait due to
resources not being released. The fault detector for F4
monitors sleep and detects a system fault if the value
exceeds 32. Fault F5 is defined as an indefinite wait due
to sleep while holding a lock. Since this system fault is
similar to F3, the fault detector for F5 is the same as that
for F3. To distinguish between F3 and F5, additional metrics
need to be added. Fault F6 is defined as an indefinite wait
due to abnormal resource consumption. In this paper, we
focus on memory, although there are various resources. The
fault detector for F6 monitors memfree and pswpout and
detects a system fault if the value of memfree is less than
256 MB and that of pswpout is more than 3000.

In addition, we newly define a kernel panic as fault F7.
A kernel panic is a variant of F1 in that it disables interrupts
and slowly executes loops for all the CPUs infinitely or for a
while. Therefore, it could be detected by the fault detector
for F1, but we have developed the fault detector for F7,
which monitors panic instead of int.

4.5. Identification of Root Causes

To identify the processes and kernel threads that cause
a system fault on CPUs after detecting the fault, the fault
detector calculates the detailed CPU utilization per process.
It traverses the process list and, for each process and thread,
obtains the CPU times consumed in the user space and the
kernel from the task_struct structure, respectively. If a
process has multiple threads, the fault detector accumulates
the CPU times consumed by all the threads for the process.
Then, it waits for one second and calculates CPU utilization
from the increase in one second. Finally, it sorts the mea-
sured CPU utilization of all the processes and kernel threads
in a descendant order and regards the ones with higher CPU
utilization as the root cause.

For a system fault on memory, the fault detector iden-
tifies the processes that cause the fault by calculating the
OOM scores. These scores are the values used by the OOM
killer in the Linux kernel, which enforces the termination
of a process when free memory runs out. To calculate
the OOM scores, the fault detector obtains the amounts of
consumed main memory, swap space, and page tables from
the mm_struct structure. On the basis of these values, it

TABLE 2: The detectability of system faults.

method F1 F2 F3 F4 F5 F6 F7
GPUSentinel ✓ ✓ ✓ ✓ ✓ ✓ ✓
OS-based ✓ ✓ ✓ ✓ ✓

calculates the OOM scores. Finally, it finds the processes
with the higher score and regards them as the root cause.

5. Experiments

We conducted several experiments to confirm that GPU-
based fault detectors in GPUSentinel could detect system
faults. For comparison, we used OS-based fault detectors as
existing white-box monitoring using CPUs. In addition, we
examined the performance impact of GPUSentinel on the
target system and that of the target system on GPUSentinel.
We used a PC with an Intel Xeon E5-1603 v4 processor, 8
GB of DDR4-2400 memory, and NVIDIA Quadro M4000.
We ran Linux 4.4.64 and CUDA 8.0.61.

5.1. Detectability of Kernel-level Faults

To inject kernel-level faults described in Section 4.4,
we have developed seven Linux kernel modules. For F1,
the kernel module created the same number of threads as
CPUs and caused a deadlock using two spinlocks. For F2
and F3, the same number of kernel threads as CPUs executed
an infinite loop. For F4, the kernel module inserted an
erroneous mutex lock to cause a deadlock. For F5, one
kernel thread acquired a spinlock and indefinitely slept. For
F6, the kernel module allocated 16 GB of memory. For F7,
the kernel module caused a kernel panic.

The first row in Table 2 shows which faults could be
detected by GPUSentinel. We confirmed that GPUSentinel
could detect all of the seven kernel-level faults. For F1 to
F3 and F5, GPUSentinel could accurately identify the thread
names involved in the faults as the root causes.

In addition to fault injection, we caused the actual fault
reported in Kernel.org Bugzilla [11] by mounting the special
XFS disk image. In Linux 4.4, we could mount it, but we
suffered from a deadlock and got stuck when accessing the
target directory. After we accessed that directory using more
than 32 processes, GPUSentinel could detect fault F4.

5.2. Comparison with OS-based Fault Detection

To show the advantage of GPU-based fault detection, we
compared our fault detectors in a GPU with OS-based ones.
We have developed OS-based fault detectors that monitor
the same metrics as the ones used in GPUSentinel. These
detectors were created as Linux kernel modules and were
driven by timer interrupts. It should be noted that we needed
to modify the Linux kernel to additionally export several
kernel variables to the modules. This means that it may not
be easy to develop new fault detectors if these modules need
kernel variables that are not exported. In GPUSentinel, fault
detectors can access any kernel variables.

Copy
Scale
Add
Triad

ba
nd

w
id

th
 (G

B/
s)

0

5

10

15

20

of GPU threads
0 256 512 768 1024

(a) STREAM on CPUs

w/o STREAM
w/ STREAM

th
ro

ug
hp

ut
 (M

B/
s)

0

20

40

60

80

of GPU threads
0 256 512 768 1024

(b) Fault detector in a GPU

Figure 3: The mutual impact of a CPU-based application
and a GPU-based fault detector.

The second row in Table 2 shows which faults could be
detected by the OS-based fault detectors. These fault detec-
tors could detect system faults except for F1 and F7. Since
F1 and F7 disabled interrupts, timer-driven fault detectors
were not invoked.

5.3. Performance Overhead

Since GPUSentinel accesses main memory to monitor
OS data, we examined the impact on a memory-intensive
application and a fault detector. As a memory-intensive
application on CPUs, we ran the STREAM benchmark [12]
in the target system. In a GPU, we ran a memory-intensive
fault detector that continues to copy OS data from main
memory to GPU memory using transparent DMA.

First, we examined the impact of the fault detector on
the performance of STREAM. Fig. 3(a) shows the mem-
ory bandwidths for four operations in STREAM. As the
number of GPU threads increased, the memory bandwidths
decreased. For 1024 threads, the overhead reached up to
33%, but actual fault detectors do not just obtain OS data
from main memory as in this experiment. Therefore, the
performance degradation of memory-intensive applications
in the target system could be much smaller in practice.

Next, we examined the impact of STREAM on the
performance of the fault detector in a GPU. Fig. 3(b) shows
the throughput of copying OS data in the fault detector when
we increased the number of GPU threads. As the number
of GPU threads increased, the fault detector was affected
more largely by the memory pressure of STREAM. The
performance degradation was negligible for one thread but
20% for 1024 threads. However, this is also the worst case.

6. Related Work

SHFH [4] classifies the root causes of system faults into
six types and detects system faults using only minimum
performance metrics. The real-time user process monitors
the system in a lightweight manner during normal operation.
When the process detects symptoms of a system fault, the
kernel module investigates the system state in further detail.

However, SHFH cannot detect system faults that make the
OS kernel completely hang.

Falcon [3] runs spies in various layers of the system.
Then, lower-layer spies monitor higher-layer ones to enable
fine-grained fault detection. However, Falcon can detect only
a crash failure by black-box monitoring. To obtain more
information on system failures, Pigeon [5] runs sensors in
system components. Panorama [6] can detect failures by au-
tomatically inserting report-detection code into applications.
Since these frameworks depend on target components, they
are easily affected by component failures.

Backdoors-based remote healing [13] enables a remote
monitor to accurately detect system faults in a target system.
The target OS periodically stores the OS state in a memory
region called a Sensor Box (SB), while the remote monitor
obtains the state from the SB using RDMA. However,
the SB is not reliable because it strongly depends on the
monitored OS. In addition, it requires modification to the
target OS.

When the target system runs in a VM, monitoring
systems can obtain the internal state from the outside of
the VM using VM introspection (VMI) [14]. Vigilant [15]
monitors hypervisor-level event counters and detects system
faults such as system hangs. HyperTap [16] monitors system
events that cause VM exits and detects system faults using
hardware architectural invariants. Unlike GPUSentinel, these
systems do not analyze OS data in memory.

For security, various mechanisms have been proposed
to securely monitor the target system. They could also be
used for reliable fault detection. Copilot [17] monitors the
integrity of the OS kernel using an ARM evaluation board
on a dedicated PCI card. HyperCheck [18] runs a network
driver in System Management Mode (SMM) of processors.
It transfers memory data to a remote host using the driver
and checks the integrity of the hypervisor. HyperSentry [19]
communicates with a target host using IPMI and runs a
monitoring agent inside the target hypervisor using SMM.

7. Conclusion

This paper proposes GPUSentinel for reliable and accu-
rate fault detection by running fault detectors in GPUs. To
detect system faults, GPUSentinel monitors OS data in main
memory from GPUs using LLView. Using GPUSentinel, we
have developed seven fault detectors and confirmed that they
could detect system faults successfully. One of our future
work is to support other types of system faults. Another
direction is to detect faults in the hypervisor of a virtualized
system running VMs.

Acknowledgments

This work was partially supported by JST, CREST
Grant Number JPMJCR21M4, Japan. These research results
were partially obtained from the commissioned research
(No.05501) by National Institute of Information and Com-
munications Technology (NICT), Japan.

References

[1] Digital Commerce 360, “The Potential Cost of Amazon’s Prime Day
Miss? $72 Million,” https://www.digitalcommerce360.com/2018/07/
17/the-potential-cost-of-amazons-prime-day-miss-72-million/, 2018.

[2] A. Beekhof, “Pacemaker,” https://clusterlabs.org/pacemaker/.

[3] J. Leners, H. Wu, W. Hung, M. Aguilera, and M. Walfish, “Detecting
Failures in Distributed Systems with the Falcon Spy Network,” in
Proc. Symp. Operating Systems Principles, 2011, pp. 279–294.

[4] Y. Zhu, Y. Li, J. Xue, T. Tan, J. Shi, Y. Shen, and C. Ma, “What is
System Hang and How to Handle it,” in Proc. Int. Symp. Software
Reliability Engineering, 2012, pp. 141–150.

[5] J. Leners, T. Gupta, M. Aguilera, and M. Walfish, “Improving Avail-
ability in Distributed Systems with Failure Informers,” in Proc. Conf.
Networked Systems Design and Implementation, 2013, pp. 427–442.

[6] P. Huang, C. Guo, J. Lorch, L. Zhou, and Y. Dang, “Capturing and
Enhancing in Situ System Observability for Failure Detection,” in
Proc. Conf. Operating Systems Design and Implementation, 2018,
pp. 1–16.

[7] The LLVM Foundation, “The LLVM Compiler Infrastructure,” https:
//llvm.org/.

[8] NVIDIA Corporation, “CUDA Toolkit Documentation v8.0,” https:
//docs.nvidia.com/cuda/archive/8.0/, 2017.

[9] Y. Ozaki, S. Kanamoto, H. Yamamoto, and K. Kourai, “Detecting
system failures with gpus and llvm,” in Proc. Asia-Pacific Workshop
on Systems, 2019, pp. 47–53.

[10] Intel, Hewlett-Packard, NEC, and Dell, “Intelligent Platform Man-
agement Specification Second Generation v2.0,” 2004.

[11] W. Xu, “Bug 200027 - Kernel Hangs When Mouting a Crafted XFS
Image,” Kernel.org Bugzilla, 2018.

[12] J. McCalpin, “STREAM: Sustainable Memory Bandwidth in High
Performance Computers,” https://www.cs.virginia.edu/stream/.

[13] A. Bohra, I. Neamtiu, P. Gallard, F. Sultan, and L. Iftode, “Remote
Repair of OS State Using Backdoors,” in Proc. Int. Conf. Autonomic
Computing, 2004.

[14] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection
Based Architecture for Intrusion Detection,” in Proc. Network and
Distributed Systems Security Symp., 2003, pp. 191–206.

[15] D. Pelleg, M. Ben-Yehuda, R. Harper, L. Spainhower, and
T. Adeshiyan, “Vigilant: Out-of-band Detection of Failures in Virtual
Machines,” SIGOPS Operating Systems Review, vol. 42, no. 1, pp.
26–31, 2008.

[16] C. Pham, Z. Estrada, P. Cao, Z. Kalbarczyk, and R. Iyer, “Reliability
and Security Monitoring of Virtual Machines Using Hardware Ar-
chitectural Invariants,” in Proc. Int. Conf. Dependable Systems and
Networks, 2014, pp. 13–24.

[17] N. Petroni, Jr., T. Fraser, J. Molina, and W. Arbaugh, “Copilot –
a Coprocessor-based Kernel Runtime Integrity Monitor,” in Proc.
USENIX Security Symp., 2004.

[18] J. Wang, A. Stavrou, and A. Ghosh, “HyperCheck: A Hardware-
assisted Integrity Monitor,” in Proc. Int. Symp. Recent Advances in
Intrusion Detection, 2010, pp. 158–177.

[19] A. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. Skalsky, “Hy-
perSentry: Enabling Stealthy In-context Measurement of Hypervisor
Integrity,” in Proc. Conf. Computer and Communications Security,
2010, pp. 38–49.

