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Abstract—Host-based intrusion detection systems (HIDS) are
used to monitor the internals of target systems. It is essentially
difficult to execute HIDS securely inside target systems. For
example, it is not guaranteed that HIDS can obtain correct
information from compromised systems. If HIDS is tampered
with by intruders, it would be easily disabled. So far, various
techniques have been proposed to securely execute HIDS using
the security features of processors, e.g., System Management
Mode (SMM) and SGX in Intel processors. However, strongly
secure HIDS sacrifices its manageability, whereas manageable
HIDS is less secure. In practice, it is important to achieve
not only the security but also the manageability of HIDS.
This paper proposes SSdetector for achieving both security
and manageability by combining SGX and SMM. SSdetec-
tor securely runs HIDS inside an SGX enclave, which is a
protected region inside an SGX application. Since HIDS is
developed as an SGX application, the management of HIDS
is easier. To securely obtain system information in memory,
in-enclave HIDS invokes the SMM monitor running in an
isolated execution environment created by BIOS. SSdetector
protects information passed between in-enclave HIDS and the
SMM monitor by encryption and integrity checking. We have
implemented SSdetector in UEFI BIOS and examined the
performance of HIDS collecting system information necessary
for the proc filesystem.

Index Terms—Intel SGX, system management mode, host-
based IDS, BIOS

1. Introduction

As systems become huge and complex, attacks against
systems are increasing. Since it is difficult to remove all
the vulnerabilities from systems, intrusion detection systems
(IDS) are required as countermeasures against attacks. In
particular, host-based IDS (HIDS) monitors the internal
states of a target system and notifies the symptoms of
attacks to administrators. However, it is not easy to securely
run HIDS because HIDS has to essentially run inside a
target system. For example, it is not guaranteed that HIDS
can obtain correct information from the target system after
the system is compromised. If HIDS is tampered with by
intruders inside the system, it cannot detect attacks anymore.

Various techniques have been proposed to securely run
HIDS using the security features of processors. However, all

of them have issues in either security or manageability. For
example, HIDS using System Management Mode (SMM)
in Intel processors has been proposed [1]–[4]. SMM-based
HIDS can securely monitor system information in memory
using an isolated execution environment created by BIOS.
However, it is difficult or insecure to update HIDS and
deploy new HIDS. Recently, HIDS using Intel SGX has been
proposed [5], [6]. SGX-based HIDS securely runs inside a
trusted execution environment (TEE) called an enclave. It is
more manageable than the SMM-based one, but it needs to
rely on the hypervisor to obtain memory data. This is not
secure enough because many vulnerabilities in hypervisors
have been reported [7].

To address these issues, this paper proposes SSdetector
for achieving both the security and manageability of HIDS
by combining SGX and SMM. SSdetector runs HIDS inside
an SGX enclave to prevent HIDS from being eavesdropped
on and tampered with. Since HIDS can be developed as an
SGX application running on the operating system (OS) of
the target system, the management of HIDS becomes eas-
ier. Unfortunately, in-enclave HIDS cannot directly obtain
the memory data of the target system. In SSdetector, in-
enclave HIDS invokes the SMM monitor running in BIOS
and securely obtains memory data. Since the SMM monitor
provides only common and minimum functions, it does not
need to be updated. SSdetector prevents eavesdropping and
tampering of information passed between in-enclave HIDS
and the SMM monitor by encryption and integrity checking.

We have implemented SSdetector using Intel SGX
SDK [8] and TianoCore [9], which is an open-source imple-
mentation of UEFI BIOS. In SSdetector, the SMM monitor
is invoked by triggering a system management interrupt
(SMI) and obtains requested memory data by translating
a virtual address of OS data into a physical one. We have
developed in-enclave HIDS that collects system informa-
tion from the OS memory and generates the contents of
pseudo files provided by the proc filesystem in Linux, using
LLView [10]. We conducted several experiments using SS-
detector and confirmed that our HIDS could collect system
information correctly. In addition, we measured the time
needed to collect system information and examined the
performance overhead caused by SGX, SMM, encryption,
and integrity checking.

The organization of this paper is as follows. Section 2
describes the secure execution of HIDS using general-
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Figure 1: Three examples of SMM-based HIDS.

purpose processors. Section 3 proposes SSdetector for
achieving both the security and manageability of HIDS by
combining SGX and SMM. Section 4 explains the imple-
mentation of SSdetector and Section 5 shows our experimen-
tal results. Section 6 describes related work and Section 7
concludes this paper.

2. Secure Execution of HIDS

The requirements for securely running HIDS are (1)
HIDS can detect attacks without relying on the functions
of the target system, and (2) HIDS is not eavesdropped on
or tampered with even if attackers intrude into the target
system. When HIDS monitors the target system using the
functions of the target system, it is not guaranteed that
HIDS can obtain correct information from that system after
the system is compromised. If HIDS is tampered with by
intruders, it cannot detect attacks after that. If attackers can
eavesdrop on system information that HIDS obtains, they
could steal part of the sensitive information included in that
via HIDS.

So far, various techniques have been proposed to satisfy
these requirements using the security features of general-
purpose processors. However, they have several issues in
terms of not only the security but also the manageability
of HIDS. For example, HIDS that directly monitors the
memory of the target system using SMM has been proposed
[1]–[4]. SMM is one of the processor modes provided by
Intel processors. It is available only in BIOS and provides an
isolated execution environment, which cannot be accessed
by any systems software such as the OS. The code running
in SMM is located in the dedicated memory region called
system management RAM (SMRAM) and can be accessed
only in SMM. The SMM code is invoked by triggering a
software interrupt called an SMI. For example, an SMI can
be triggered by writing data to specific I/O ports.

HyperGuard [1] and SPECTRE [4] monitor the integrity
of the hypervisor code and the internal states of the operating
system in SMM, respectively, as depicted in Fig. 1. HIDS
cannot be attacked by intruders inside the target system.
However, it is not easy to update HIDS for supporting new
versions of OSes and deploy new HIDS because the entire
HIDS is embedded into BIOS. HyperSentry [3] securely
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Figure 2: An example of SGX-based HIDS.

runs HIDS inside the hypervisor after the handler in SMM
verifies it and disables interrupts. It is not necessary to
modify BIOS for updating HIDS, but the hypervisor needs
to be updated and rebooted. HyperCheck [2] runs only a
network driver in SMM and sends the memory data of the
target system to HIDS running at a remote host. This method
makes the management of HIDS easier, but HIDS is less
secure because it is not protected at a remote host.

Recently, HIDS that directly monitors the memory of
virtual machines (VMs) using SGX has been proposed [5],
[6]. SGX is a security feature of Intel processors and enables
an SGX application to create a trusted execution environ-
ment called an enclave inside it. The code in an enclave can
be executed securely due to the protection of a processor.
Since the digital signature of the code is verified by SGX
at the launch time, any code modified by attackers cannot
be executed in enclaves. In addition, SGX guarantees the
integrity of the enclave memory, so that attackers cannot
tamper with the code running in the enclave. Attackers
cannot also eavesdrop on data inside the enclave because
the enclave memory is encrypted.

SGmonitor [5] runs HIDS in an SGX enclave and moni-
tors the internal states of a target VM by obtaining memory
data from the VM, as illustrated in Fig. 2. In-enclave HIDS
invokes the trusted hypervisor running under the VM using a
hypercall and securely obtains the memory data of the VM.
This is because enclaves cannot directly access the mem-
ory of VMs. Intruders inside and outside the VM cannot
eavesdrop on or tamper with in-enclave HIDS. However, if
attackers can compromise the hypervisor, they can interfere
with the behavior of in-enclave HIDS. Since the hypervisor
is complex software, it has many vulnerabilities [7]. In
addition, SGmonitor can monitor only virtualized systems
because it needs the hypervisor to securely obtain memory
data.

Table 1 compares security and manageability among pre-
vious SGX- and SMM-based HIDS. To summarize, strongly
secure HIDS such as HyperGuard, SPECTRE, and Hyper-
Sentry sacrifices its manageability. In contrast, manageable
HIDS such as HyperCheck and SGmonitor tends to be less
secure. As such, all of them do not satisfy both security and
manageability. The security of HIDS is mandatory, whereas



TABLE 1: Comparison among SGX- and SMM-based
HIDS.

security manageability
SPECTRE [4] ✓
HyperSentry [3] ✓
HyperCheck [2] ✓
SGmonitor [5] ✓

its manageability is also important in practice.

3. SSdetector

This paper proposes SSdetector for achieving both the
security and manageability of HIDS by combining SGX and
SMM. We trust processors and assume that SGX and SMM
provided by processors do not have any hardware vulner-
abilities. In contrast, we do not trust any software except
for code running in SGX enclaves and SMM. We configure
BIOS so that it can be updated only when administrators
can access a physical machine. Then, we focus on remote
attacks against a target system including the OS. Also, we
assume that the remote attestation server for SGX is trusted
and well-protected.

3.1. How to Combine SGX and SMM

There are two approaches to combining SGX and SMM
for secure and manageable HIDS. One approach is to apply
SGX to SMM-based HIDS. It is impossible to apply SGX to
HyperGuard, SPECTRE, and HyperSentry because an SGX
enclave cannot be created inside BIOS, the hypervisor, and
the OS. The only possible solution is to run HIDS in an SGX
enclave at a remote host in HyperCheck. This makes HIDS
more secure and keeps its manageability. However, various
network drivers still need to be implemented in SMM. This
means that the manageability of the SMM part of HIDS is
low. In addition, network communication imposes a large
overhead when HIDS obtains memory data on demand like
SPECTRE. Bulk transfer of memory data can reduce this
overhead, but the enclave page cache (EPC) used for the
SGX enclaves is a limited resource. If the EPC is used up by
bulk transfer, the performance of the SGX enclaves degrades
largely.

Therefore, SSdetector adopts the other approach, which
applies SMM to SGX-based HIDS. SSdetector runs an SGX
application for HIDS inside the target system, as illustrated
in Fig. 3. It securely executes HIDS in an SGX enclave
created in the application. Like previous SGX-based HIDS,
in-enclave HIDS cannot directly access the memory data of
the target system because memory is managed by the under-
lying OS. Therefore, SSdetector invokes the SMM monitor
in BIOS using SMIs. The SMM monitor securely runs in
SMM and just obtains requested data in memory. Since
SSdetector does not rely on the hypervisor, it can support
non-virtualized systems. Compared with the hypervisor, the
SMM monitor is much smaller and provides a narrower
interface, so that it is more difficult to attack.
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Figure 3: The system architecture of SSdetector.

3.2. Secure and Manageable HIDS

An SGX enclave prevents HIDS from being eaves-
dropped on and tampered with by using processors’ capabil-
ities. SGX encrypts enclave memory and checks its integrity.
Similarly, SMM prevents the SMM monitor from being
attacked by running it in an isolated execution environment.
SMM prevents attackers from accessing SMRAM used by
the SMM code. In addition, SSdetector protects information
passed between in-enclave HIDS and the SMM monitor. The
SMM monitor encrypts obtained memory data to prevent
attackers in the middle from eavesdropping on the data. In-
enclave HIDS detects that attackers in the middle tamper
with obtained memory data or return crafted memory data
by checking the hash value of the data and a secret key.
The key used for the encryption and integrity checking is
generated by in-enclave HIDS and is securely shared with
the SMM monitor using public key encryption.

Using remote attestation, SSdetector prevents malicious
applications from obtaining memory data by invoking the
SMM monitor using SMIs. When an SGX enclave is
launched, it is remotely attested to by the trusted attes-
tation server. If in-enclave HIDS is legitimate, it sends
the generated encryption key to the server via the secure
communication channel established by remote attestation.
The key is digitally signed using the private key of the
server. When in-enclave HIDS passes the encryption key
and its signature to the SMM monitor, the SMM monitor
verifies the signature using the public key of the server. If
the verification fails, the SMM monitor does not accept the
encryption key or return memory data.

SGX cannot prevent attackers from stopping SGX appli-
cations because they are normal processes running on top of
the OS. If attackers can obtain administrative privileges or
compromise the OS, they can easily stop HIDS with SGX
applications. To detect this type of attack, SSdetector con-
firms the correct execution of HIDS by sending heartbeats
from a remote host. If in-enclave HIDS does not respond
to a heartbeat, the remote host can notice that HIDS is
stopped by attackers. Since the heartbeats are encrypted by
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Figure 4: The detailed architecture of SSdetector.

the remote host, attackers cannot respond to the heartbeats
correctly. In addition, attackers can mount denial of ser-
vice (DoS) attacks by discarding requests from HIDS or
responses from the SMM monitor. This type of attack is
detectable by a request timeout.

In SSdetector, the management of HIDS is much easier
than that of previous SMM-based HIDS. To update HIDS,
e.g., according to an OS upgrade, SSdetector just restarts an
SGX application for the HIDS. When deploying new HIDS,
SSdetector starts a new SGX application for it. Since an
SGX application runs on top of the OS as a normal applica-
tion, restarting it can easily be done without rebooting the
target host. The SMM monitor does not need to be updated
because it is common for all the HIDS. It just obtains
requested memory data and returns it to in-enclave HIDS.
Even if HIDS runs in other hosts with different hardware,
the SMM monitor does not need to be modified because it
does not depend on specific hardware such as NICs.

4. Implementation

An SGX application for HIDS consists of an enclave
and the SSdetector runtime, as illustrated in Fig. 4. In the
enclave, HIDS and the SSdetector library run. The library
provides the interface to the runtime. The runtime mediates
between in-enclave HIDS and the SMM monitor. Since it is
not protected by SGX, we assume that it can be attacked by
intruders inside the target system. We used Intel SGX SDK
2.13.3 [8] to implement an SGX application for HIDS. We
have implemented the SMM monitor in TianoCore, which
is open-source UEFI BIOS, using EDK II [9].

4.1. SSdetector Library and Runtime

When SSdetector starts an SGX application for HIDS,
the application runs the SSdetector runtime in it. Then, the

runtime creates an enclave and loads an enclave binary for
HIDS. The binary contains HIDS and the SSdetector library.
To launch in-enclave HIDS, the runtime securely invokes the
pre-registered function of the SSdetector library using an
SGX mechanism called an enclave call (ECALL). At this
time, the runtime allocates a buffer for sharing information
and passes its address to the library in the enclave. The
enclave can access the memory outside it, although the
runtime cannot access enclave memory for security. When
the ECALL function is invoked in the library, the library
starts to run the function of HIDS.

In-enclave HIDS analyzes OS data in memory to mon-
itor the target system. When it requires memory data for
OS data, it invokes the SSdetector library. Then, the library
securely invokes the SSdetector runtime running outside the
enclave using an SGX mechanism called an outside call
(OCALL). At this time, the library passes the virtual ad-
dresses of the requested OS data and the shared buffer to the
runtime. To protect the address information from attackers,
it encrypts these virtual addresses. It applies AES encryption
to a 16-byte block consisting of two 64-bit addresses. Then,
it splits the encrypted data into two 8-byte data and stores
them in two 64-bit CPU registers.

The OCALL function in the SSdetector runtime triggers
an SMI to invoke the SMM monitor in BIOS. It triggers an
SMI by writing data to the I/O port of 0xb2. To permit
this write, the SGX application runs with administrative
privileges and configures the permission using the ioperm
system call in Linux. The reason why in-enclave HIDS
invokes the SMM monitor via the runtime is that the code in
an enclave cannot trigger SMIs. Since the runtime does not
change the values of the two CPU registers where encrypted
virtual addresses are stored, the values stored by the library
are passed to the SMM monitor as they are.

When the SMM monitor is completed, encrypted mem-
ory data and the hash value of the unencrypted memory
data and the encryption key are stored in the passed shared
buffer. When the OCALL function in the SSdetector runtime
finishes, the SSdetector library also receives the data via this
buffer. Then, it decrypts the memory data and recalculates
its hash value. If the recalculated hash value is different
from the received one, it can detect tampering with either
the encrypted memory data or the received hash value.
Otherwise, in-enclave HIDS uses the received memory data
to access OS data in the target system.

The library caches the decrypted memory data inside the
enclave to reduce the number of invocations of the SMM
monitor. If memory data is kept in the cache, the SSdetector
library can return them immediately without invoking an
OCALL to the SSdetector runtime. SSdetector limits the
data size preserved in the cache. One reason is that SGX
can use the EPC of only a limited size. When the EPC is
used up, the memory access performance of the code in an
enclave largely degrades due to paging. The other reason
is that HIDS cannot timely detect attacks from stale data.
Therefore, the library evicts data in a least recently used
(LRU) fashion and removes expired data periodically.



4.2. SMM Monitor

To enable the SMM monitor to access the entire memory
of the target system, SSdetector uses UEFI BIOS instead
of traditional BIOS. UEFI BIOS runs in 64-bit mode and
can access memory that exceeds 4 GB. However, TianoCore
limits the memory region that can be accessed in SMM.
SSdetector removes this limitation so that the SMM monitor
can obtain the memory data of the target system. Specifi-
cally, TianoCore limits memory access by creating the page
tables for SMM. SSdetector extends the page tables so that
the SMM monitor accesses the entire memory. It sets up
the page tables so that read-only access is permitted to
the extended memory regions. Therefore, attackers cannot
compromise the target system even if the SMM code is
compromised.

When the SSdetector runtime triggers an SMI, the SMM
monitor in UEFI BIOS concatenates two 8-byte data stored
in the two 64-bit CPU registers. Then, it decrypts the
combined 16-byte block using AES. From the decrypted
block, it extracts two 64-bit virtual addresses of OS data
and the shared buffer. Next, the SMM monitor translates
the decrypted virtual address of OS data into a physical one
and obtains the corresponding memory data. This is because
the SMM monitor needs to access the OS memory using the
physical addresses of OS data. In contrast, HIDS analyzes
the memory of the target system using the virtual addresses
of OS data. If HIDS itself has to translate a virtual address
into a physical one, it would depend on the function of the
underlying OS, which can be compromised by intruders.

Therefore, the SMM monitor securely performs address
translation. It obtains the value of the CR3 register from
the currently used processor and specifies the page tables
in the OS memory. Using the page tables, it translates the
virtual address of OS data into a physical one. Similarly,
it translates the virtual address of the shared buffer into
a physical one. Then, it reads the corresponding memory
data using the physical address of the OS data. In addition,
it calculates the hash value of the memory data and the
encryption key and stores it in the shared buffer. Finally, it
encrypts the memory data and stores it in the shared buffer.

4.3. Secure Key Sharing

The SSdetector library in the enclave generates an AES
key used for encrypting memory data. It encrypts the gen-
erated key using the RSA public key for the SMM monitor
and passes it to the SMM monitor by triggering an SMI. To
distinguish between registering the AES key and obtaining
memory data, the library writes a different value to the same
I/O port. The SMM monitor decrypts the received AES key
using its RSA private key. Since only the SMM monitor can
access this private key, attackers in the target system cannot
steal it. Attackers can access the unencrypted binary file of
an SGX application for HIDS, but only the RSA public key
is stored in that file.

TABLE 2: The nine pseudo files of the proc filesystem
generated by our HIDS.

pseudo file contents
stat kernel and system statistics
meminfo statistics about memory usage
uptime uptime of the system
tty/drivers list of tty drivers
sys/kernel/osrelease Linux kernel version
sys/kernel/pid max maximum process ID
[pid]/stat status information on the process
[pid]/status human-readable [pid]/stat
[pid]/auxv information passed to the process

4.4. HIDS Developed with LLView

Using the LLView framework [10], we have developed
in-enclave HIDS that analyzes OS data in memory. LLView
enables developers to write HIDS code that runs outside
the target OS, using the source code of the Linux kernel.
Developers can use data structures, global variables, inline
functions, and macros included in the Linux kernel headers.
LLView compiles HIDS code and generates LLVM inter-
mediate representation called bitcode. Then, it transforms
the bitcode and inserts a call to the function for obtaining
necessary memory data before all the load instructions. In
SSdetector, the function invokes an OCALL and obtains
memory data from the SMM monitor by triggering an SMI.

The developed HIDS collects system information neces-
sary for the proc filesystem in Linux. The proc filesystem
provides pseudo files and generates their contents dynami-
cally. For example, it provides information about the system,
processes, networks, and devices. This filesystem is often
used to monitor the target system in application-level HIDS
running on top of the OS. In the current implementation,
our HIDS generates the contents of nine pseudo files shown
in Table 2. These files are actually used by chkrootkit [11]
to detect various attacks.

5. Experiments

To show the effectiveness of SSdetector, we conducted
several experiments using the HIDS we have developed,
which is described in Section 4.4. In this experiment, we
ran SSdetector in a VM because it is difficult to change
the BIOS of a physical machine (PM). To create a VM
supporting SGX, we used KVM SGX v5.6.0-rc5-r2 and
QEMU SGX v4.0.0-r1, which supported SGX virtualization.
We assigned one virtual CPU and 6 GB of memory to this
VM and ran Linux 5.8.18 in the VM. As UEFI BIOS, this
VM used OVMF, which is a port of TianoCore to QEMU.
To run this VM, we used a PM with Intel Core i7-9700 and
16 GB of memory. This PM used AMI UEFI BIOS F.14.
To develop HIDS using LLView, we used LLVM 12.0.0.

5.1. Behavior of HIDS in SSdetector

We ran our HIDS in an SGX enclave using SSdetector.
To examine the correctness of collected system information,
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Figure 5: The four combinations of SGX and SMM.

the HIDS showed the generated contents of the pseudo files
only in this experiment. For comparison, we obtained the
contents of the corresponding pseudo files directly from the
proc filesystem. As a result, the contests were the same
between our HIDS and the original proc filesystem except
for slight differences. We confirmed that our HIDS could
collect correct system information from the memory of the
target system via the SMM monitor.

5.2. Overhead of Using SGX and SMM

We measured the time needed to collect all the necessary
system information in our HIDS. Compared with SSdetector
using both SGX and SMM (Fig. 5(a)), we conducted this
experiment for (1) the system using SGX only (Fig. 5(b)),
(2) the one using SMM only (Fig. 5(c)), and (3) the one
without SGX or SMM (Fig. 5(d)). For the systems without
using SGX, the HIDS directly invoked the SSdetector run-
time, instead of invoking OCALLs. For the systems without
using SMM, the HIDS obtained memory data by accessing
the device driver installed into the OS, instead of triggering
SMIs. Note that these systems without using SGX and/or
SMM are less secure than SSdetector.

Fig. 6 shows the time for collecting system information.
To focus on the overhead of using SGX and SMM, we dis-
abled encryption or integrity checking for data protection in
this experiment. Compared with no SGX/SMM, SSdetector
took 5.1x longer to collect system information. The variance
in SSdetector was quite large due to using SGX. The SGX
performance was unstable in a VM, although it was stable
in a PM. This is probably because of the implementation of
SGX virtualization.
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Figure 6: The collection time of system information.
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Comparing SGX only and no SGX/SMM, it is estimated
that the overhead due to using SGX is 564 ms. This occupies
52% of the time taken in SSdetector. The breakdown of this
overhead is 1148 invocations of OCALLs and the execution
of the HIDS in the enclave. In contrast, it is estimated that
the overhead due to using SMM is approximately 499 ms,
comparing SMM only and no SGX/SMM. This occupies
46% of the time taken in SSdetector. The breakdown of this
overhead is 1148 invocations of SMIs and the execution of
the SMM monitor in BIOS. From these results, both SGX
and SMM degrade the performance of HIDS almost equally.

5.3. Overhead Estimation in a PM

The above results can be different in a PM because SGX
and SMM are virtualized in a VM. For SGX, OCALLs
can be affected by SGX virtualization. To examine the
differences between a VM and a PM, we measured the
execution time of an OCALL in both environments. In
this experiment, we did nothing in the invoked OCALL
function. As shown in Fig. 7(a), the execution time of
an OCALL was only 0.54 µs faster in a PM. Since our
HIDS needs 1148 OCALL invocations to collect necessary
system information, it is estimated that the overhead could
be reduced by 0.62 ms. Compared with the execution time
of the HIDS, this reduction is negligible.
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For SMM, one of the largest factors that cause perfor-
mance differences is SMIs. We measured the execution time
of an SMI in a VM and a PM. In this experiment, we did
nothing in the invoked SMM code. As shown in Fig. 7(b),
the execution time of an SMI in a PM was 0.52 ms faster
than in a VM. For a total of 1148 SMIs, it is estimated that
the overhead could be reduced by 597 ms. This reduction
is 84% of the time for SMM only and occupies 55% of
the time taken in SSdetector. As a result, SSdetector would
take only 2.3x longer than the system using no SGX/SMM
to collect system information, as shown in Fig. 8. Another
large factor is the execution performance in SMM. Since
the SMM execution is slower than the normal one [3] but
does not suffer from virtualization overhead in a PM, the
execution time of the SMM monitor would change in a PM.
This investigation is our future work because we could not
execute the SMM monitor in a PM.

5.4. Detailed Overhead of SGX and SMM

To examine the overhead of using SGX and SMM in
further detail, we measured the time needed to individually
generate the contents of each pseudo file. Fig. 9 shows
the collection time of system information for each pseudo
file. The pseudo files starting from [pid] mean the system
information corresponding to the process whose ID is [pid].
The shown collection time is the average of 286 processes
running in the target system. Note that the sum of all the
collection times is larger than the total collection time shown
in Section 5.2. This is because obtained memory data was
cached inside the enclave when the HIDS generated all the
pseudo files consecutively.

Fig. 10 shows the number of SMIs triggered while our
HIDS generated the contents of each pseudo file. For the
pseudo files starting from [pid], the average time is shown
for each process. The sums of the numbers of triggered SMIs
for [pid]/stat, [pid]/status, and [pid]/auxv are 888, 771, and
330, respectively. Compared with the results of Fig. 9, it
is shown that the collection time for each pseudo file is
proportional to the number of triggered SMIs.
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Figure 9: The collection time of system information for each
pseudo file.
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Figure 10: The number of triggered SMIs.

As opposed to the results in Fig. 6, the collection time
for each pseudo file in SMM only was 5-123% longer than
in SGX only. When the HIDS generated all the pseudo files,
the time in SMM only was rather 9% shorter. This might be
related to the instability of SGX virtualization. In addition,
the overhead of SSdetector was up to 33x larger than the
system using no SGX/SMM, depending on pseudo files.
To generate all the necessary pseudo files, [pid]/stat and
[pid]/status are dominant because there are many processes.
For these pseudo files, SSdetector was only 3x slower.

5.5. Overhead of Data Protection

To examine the overhead of encryption and integrity
checking for data protection, we compared the time for
collecting system information for all the pseudo files with
or without data protection. Compared with SSdetector with
both encryption and integrity checking, we measured the
time in (1) the system with encryption only, (2) the one with
integrity checking only, and (3) the one with no protection.
SSdetector used AES-CBC with a 128-bit key for encryption
and SHA-256 for integrity checking. The reason why we
used AES-CBC is that the Crypto package in EDK II
supported only that as AES modes of operation.
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Figure 12: The performance enhancement of data protection
by CPU support.

Fig. 11 shows the collection time in these four systems.
The overhead due to encryption was 1.75 seconds, which
occupies 39% of the time taken in SSdetector. Similarly,
the overhead due to integrity checking was 1.71 seconds,
which occupies 38% of the time taken in SSdetector. From
these results, it is shown that the time for data protection
occupies 77% of the collection time in SSdetector. This is
4.2x longer than the collection time for no data protection.

This overhead of data protection could be reduced by
using existing CPU support. Currently, SSdetector uses only
the AES-NI instruction set in an SGX enclave. The SMM
monitor does not use hardware encryption support. This is
because the implementation of the Crypto package in EDK
II did not use AES-NI. According to our experiment, AES-
NI improved the performance of AES-CBC with a 128-
bit key by 3.6x, as shown in Fig. 12(a). Furthermore, if
the SMM monitor uses AES-XTS with a 128-bit key, the
encryption performance could be further improved by 4.2x.
Therefore, the encryption overhead could be reduced to 0.17
seconds.

Also, we measured the performance of SHA-256 in an-
other PC with Intel Core i7-12700, which supports the SHA
Extensions [12]. Since the SHA Extensions improved the
performance by 3.8x, as shown in Fig. 12(b), the overhead
of integrity checking could be reduced to 0.45 seconds. As
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Figure 13: The possible reduction of the overhead of data
protection by full CPU support.
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Figure 14: The overhead of data protection in collecting
system information for each pseudo file.

a result, the collection time in SSdetector could be reduced
to 2.29 seconds by fully utilizing CPU support, as shown in
Fig. 13. This is only 1.6x longer than the system with no
data protection.

To examine the overhead due to data protection in detail,
we measured the generation time of the contents of each
pseudo file with or without data protection. Fig. 14 shows
the collection time for each pseudo file. The overhead due
to data protection was 23% at maximum, compared with
the system with no protection. This overhead was 77% and
much larger when SSdetector collected all the system infor-
mation, as shown in Fig. 11. One of the possible reasons
is that it takes longer to collect a small amount of system
information even without data protection. If this is the case,
the overhead due to data protection is relatively small.

6. Related Work

SMM-based HIDS. HyperGuard [1] checks the integrity
of the hypervisor by obtaining its code from memory. It
runs the entire HIDS in BIOS, so that BIOS has to be
updated whenever HIDS is updated. Updating BIOS requires
the reboot of the target system. SPECTRE [4] triggers
SMIs using a hardware timer and analyzes the memory



of the hypervisor, the OS, and applications using semantic
information. Like these systems, running the entire HIDS
in SMM largely affects the performance of both HIDS and
the target system because SMM is slow and stops the entire
target system.

HyperSentry [3] verifies a management agent in SMM
and runs it inside the hypervisor. Therefore, the hypervisor
needs to be rebooted whenever a management agent is
updated. To securely run the agent, it disables interrupts
and stops all but one CPU core. Therefore, the target system
completely stops for a longer time as the time taken in HIDS
increases. In SSdetector, the target system stops only while
the SMM monitor obtains memory data.

HyperCheck [2] just transfers memory data to a remote
host in SMM, whereas HIDS at the remote host moni-
tors received memory data. This can suppress performance
degradation due to SMM, but the security of the HIDS is
not guaranteed. In addition, it is necessary to develop a
network driver running in SMM per NIC. SSdetector needs
to develop only SGX applications for HIDS. The SMM
monitor does not need to be updated because it is common
for HIDS.

SGX-based IDS. SGmonitor [5] runs HIDS in an SGX
enclave and obtains the memory data of VMs via the hy-
pervisor. It can also monitor the virtual disks of VMs by
running filesystems in an enclave. SCwatcher [6] enables
existing HIDS to run in an enclave using SCONE [13] or
Occlum [14], which is an execution environment for SGX. It
provides the proc filesystem in an enclave so that HIDS can
obtain the system information in a VM using the existing
interface. These systems need to trust a relatively large
hypervisor and limit the target to virtualized systems. In
contrast, SSdetector trusts only small BIOS and can monitor
non-virtualized systems.

Not only HIDS but also network-based IDS (NIDS)
using SGX has been proposed. S-NFV [15] protects Snort
by storing only part of its internal states in an enclave. The
states can be accessed only by the code running in the same
enclave, which is invoked by secure API from the outside of
the enclave. This can protect information on network flows.
SEC-IDS [16] can run Snort with almost no modification in
an enclave. To run existing Snort in an enclave, it uses the
Graphene-SGX library OS [17]. It achieves almost the same
performance as Snort without SGX by efficiently obtaining
network packets using DPDK. However, in-enclave Snort
could not detect attacks correctly if packets are tampered
with while the Snort obtains them. In SSdetector, attackers
cannot tamper with memory data while HIDS obtains it,
thanks to SMM and data protection.

Systems Using Both SGX and SMM. SSdetector is the
first system that combines SGX and SMM for HIDS, but
several systems using SGX and SMM have been proposed
for other purposes. Scotch [18] provides accurate and trans-
parent resource accounting for clouds. It tracks the resources
consumed by each VM in SMM whenever a context switch
and an I/O interrupt occurs. Then, it relays the accounting
information to the SGX enclave to securely analyze it later.

Aurora [19] enables the code in an SGX enclave to

securely use devices such as clocks and NICs. When an
enclave accesses such devices, it invokes the SMM code by
triggering an SMI. The SMM code runs a device driver to
access the device. The enclave and the SMM code exchange
encrypted data via shared memory. Thus, a secure path is
established between them. In SSdetector, the SMM code
accesses system memory instead of devices.

KShot [20] enables kernel patches to be lively applied to
the OS kernel without trusting the OS or the patch system.
It securely downloads kernel patches in an enclave, pre-
processes them, and stores it in the reserved memory. Then,
it invokes the SMM code, which applies the patches to the
kernel by dynamically rewriting the kernel memory.

7. Conclusion

This paper proposes SSdetector for achieving both the
security and manageability of HIDS by combining SGX
and SMM. SSdetector executes HIDS in an SGX enclave
securely and makes the management of HIDS easier by
running as an SGX application. It invokes the SMM monitor
in BIOS to securely obtain the memory data of the target
system using encryption and integrity checking. The infor-
mation passed between in-enclave HIDS and the SMM mon-
itor is protected by encryption and integrity checking. We
confirmed that our HIDS could collect system information
necessary for the proc filesystem. In addition, we showed
that the overhead due to using SGX, SMM, encryption, and
integrity checking was not small but could be reduced. by
using full CPU support in PMs.

One of our future work is to run various HIDS using
SSdetector. It is necessary to run existing HIDS in an SGX
enclave using the library OS, as proposed in SCwatcher [6].
If HIDS performs time-consuming attack detection in addi-
tion to the collection of system information, the overhead of
SSdetector could be reduced. In addition, we need to reduce
the overhead of encryption and integrity checking using
AES-NI in the SMM monitor and the SHA Extensions. Also,
we would like to apply SSdetector to PMs and show the
actual overhead.
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