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Abstract—Out-of-band VNC (OOB-VNC) enables users to re-
motely manage the systems in virtual machines (VMs) without
relying on the target systems. It directly accesses VMs’ virtual
devices, but existing clouds do not protect them sufficiently.
Therefore, secure OOB-VNC has been proposed. It runs
shadow devices outside the virtualized system and securely
accesses the shadow devices. However, users cannot use this
management method with VM migration because traditional
VM migration cannot deal with shadow devices. This paper
proposes SDmigrate, which continues secure OOB-VNC after
VMs are migrated. SDmigrate enables saving and restoring the
states of shadow devices transparently via fake devices. A fake
device communicates with the corresponding shadow device.
In addition to the internal states of a shadow keyboard, mouse,
and video card, SDmigrate deals with the external state of a
shadow video card, i.e., the video memory in a migrated VM.
We have implemented SDmigrate in Xen and confirmed that
the degradation of migration performance was negligible.

Index Terms—out-of-band VNC, VM migration, shadow de-
vice, fake device

1. Introduction

Users can run their systems using virtual machines
(VMs) in Infrastructure-as-a-Service (IaaS) clouds. To man-
age those systems, they often run VNC servers [1] inside
the VMs to access the systems in VMs remotely. Since this
method relies heavily on the target systems in VMs, clouds
provide the other management method called out-of-band
VNC (OOB-VNC). Using this method, users can access the
systems in VMs indirectly via their virtual devices, e.g.,
virtual keyboards, mice, and video cards, running outside
VMs. As a result, they can manage their systems even at
boot time and on system failures.

On the other hand, existing clouds do not protect virtual
devices sufficiently because untrusted cloud operators may
exist [2]–[6]. To protect inputs and outputs in OOB-VNC,
VSBypass [7] has been proposed. It runs the virtualized
system in a VM using nested virtualization [8]. When it
intercepts access to virtual devices, it forwards the access
to shadow devices. Shadow devices handle all the inputs
and outputs securely outside the virtualized system. Using
shadow devices, VSBypass can provide secure OOB-VNC,

which prevents information leaks to cloud operators. How-
ever, after clouds migrate their VMs to other hosts, users
cannot continue to use secure OOB-VNC. The migration
utility running inside the virtualized system cannot deal with
necessary states because shadow devices run outside it.

In this paper, we propose SDmigrate, which enables
users to continue secure OOB-VNC after clouds migrate
VMs. In SDmigrate, the migration utility can deal with not
only the normal states of a VM but also the states of shadow
devices. For this purpose, SDmigrate provides a fake device
for each shadow device in a virtualized system. Using a fake
device, the state of a shadow device is saved and restored as
that of a fake device transparently. The migration utility does
not need to be modified to support shadow devices. A fake
device and the corresponding shadow device pass the state
using shared memory securely and efficiently. The states
of shadow devices are encrypted by the shadow devices
themselves to prevent information leaks.

To migrate VMs managed by secure OOB-VNC, SD-
migrate saves and restores the internal states of a shadow
keyboard, mouse, and video card via the corresponding fake
devices. In addition, it saves and restores the external state
of a shadow video card, i.e., the video memory (VRAM)
allocated in the memory of a VM. It enables a shadow
video card to identify and share the VRAM in a VM at
the migration time. We have extended VSBypass to im-
plement SDmigrate using Xen 4.8 [9]. In SDmigrate, Xen
and KVM [10] are supported as a virtualized system, which
runs users’ VMs. Using SDmigrate, we confirmed that we
could continue secure OOB-VNC after migrating a VM.
In addition, we showed that the degradation of migration
performance was negligible.

This paper is organized as follows. Section 2 discusses
the issue of VSBypass after VMs are migrated. Section 3
proposes SDmigrate, and Section 4 provides the implemen-
tation details. Section 5 shows the degradation of migration
performance in SDmigrate. Section 6 compares SDmigrate
with previous work, and Section 7 summarizes the paper.

2. Secure OOB-VNC

2.1. VSBypass

OOB-VNC is often used as a remote management
method for VMs in clouds. VNC clients access virtual
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Figure 1. Secure OOB-VNC provided by VSBypass.

devices running outside VMs and manage the systems in the
VMs, as illustrated in Fig. 1. They connect to VNC servers
provided by clouds and access virtual keyboards, mice, and
video cards to provide the GUI system management of the
VMs to users. However, cloud operators can easily eaves-
drop on the inputs and outputs of OOB-VNC via virtual
devices and VNC servers because existing clouds do not
protect virtual devices or VNC servers sufficiently. Cloud
operators are responsible for the daily management of the
entire virtualized system. Unfortunately, all of them are not
always trusted [2]–[6]. It is reported that insider attacks oc-
cupy 28% of cybercrimes [12] and that sensitive information
has been accessed by 35% of system administrators without
authorization [11].

For such clouds, VSBypass [7] achieves secure OOB-
VNC by providing shadow devices. Shadow devices run
outside the virtualized system, which consists of VMs and
their virtual devices. Instead of virtual devices, VSBypass
uses shadow devices for OOB-VNC. VNC clients can access
VMs via shadow devices as usual. Nevertheless, information
leaks are prevented because shadow devices outside the
virtualized system cannot be accessed by cloud operators. In
VSBypass, VMs can perform I/O to shadow devices outside
the virtualized system by using transparent passthrough.
This mechanism forwards I/O access to the corresponding
shadow devices transparently by intercepting the access that
VMs issue to virtual devices.

VSBypass trusts only the outside of the virtualized
system and does not trust the entire virtualized system. To
satisfy this assumption, it uses a technique called nested
virtualization [8]. The virtualized system runs in an external
VM, which is called the cloud VM. Users’ VMs, named user
VMs, and virtual devices used by them run in the cloud
VM. Outside the cloud VM, VSBypass provides a shadow
device for each virtual device. The hypervisor, called the
cloud hypervisor, runs the cloud VM and shadow devices.
Although nested virtualization imposes extra overhead, it
is shown that the overhead was 6–8% in some workloads
[8]. Also, various mechanisms and hardware extensions have
been proposed to reduce the overhead [13]–[17].

When an I/O instruction is executed in a user VM to a
virtual device, it is intercepted by the cloud hypervisor. It is
emulated by using the shadow device that corresponds to the
virtual device. After emulating the instructions for inputs,
the cloud hypervisor returns an input value, e.g., a keyboard

or mouse input, to the user VM. The input value is received
from a VNC client. When emulating the instructions for
outputs, the cloud hypervisor writes the specified output
value, e.g., a video output, to the shadow device. The output
value is sent to a VNC client finally. To handle direct access
to the video memory (VRAM) allocated in the memory of
a user VM, a shadow video card shares the VRAM and
detects writes to the VRAM by the VM using the function
of the cloud hypervisor. Then, it sends only the graphics
data of the modified regions to a VNC client.

2.2. VM Migration with Secure OOB-VNC

The migration utility running inside the virtualized sys-
tem can migrate a user VM from a source host to a des-
tination host. First, the migration utility in the source host
transfers the memory data of a VM to that in the destination
host. Since the memory can be updated by the execution
of the VM itself during VM migration, the migration util-
ity re-transfers updated memory data. When the amount
of memory data to be re-transferred is sufficiently small,
the migration utility suspends the VM and transfers the
remaining memory data. In addition, it transfers the states
of virtual CPUs and devices. At the destination host, the
migration utility restores the VM from the received states
and finally resumes the VM.

However, secure OOB-VNC cannot be continued after
the VM is migrated. This is because the states of shadow
devices are not transferred. Shadow devices are located
outside the virtualized system, but the migration utility runs
inside it. Therefore, the migration utility is not aware of
shadow devices. It neither saves nor restores the states of
shadow devices when a VM is migrated. This results in
inconsistent states of shadow devices at the destination host.
The migrated VM or a VNC client cannot correctly use
shadow devices. In addition, a shadow video card has an
external state, i.e., the VRAM, inside a user VM. This state
is transferred with the memory of the user VM, but a shadow
video card at the destination host cannot identify the location
of the VRAM at the resume time.

3. SDmigrate

3.1. Threat Model

Our threat model is the same as that in VSBypass. We
do not trust cloud operators, who perform daily management
of the virtualized system. Cloud operators can fully control
the virtualized system. However, we trust cloud providers,
who maintain the trusted computing base (TCB). The TCB
consists of shadow devices as well as hardware and the
cloud hypervisor outside the virtualized system. Only trusted
system administrators maintain the TCB. We assume that
they do not attack the TCB. In fact, many systems adopt
such an administrative hierarchy of trusted administrators
and untrusted operators. For instance, two types of privileges
are provided in Oracle Database [18]. Eight types of admin-
istrators exist in IBM Domino [19] to restrict privileges.
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Figure 2. Transferring the states of shadow devices in VM migration.

3.2. VM Migration with Shadow Devices

SDmigrate enables continuing secure OOB-VNC using
shadow devices after clouds migrate VMs. Unlike VSBy-
pass, the migration utility can handle the states of shadow
devices, which are located outside the virtualized system.
When VM migration is started, SDmigrate first creates new
shadow devices with initial states at the destination host.
Then, the migration utility running in the source host saves
the states of shadow devices in addition to the other states
of a user VM. After that, it transfers the saved states to the
destination host. When the transferred states of the shadow
devices are received by the migration utility, the states of
the new shadow devices are restored using them. Finally,
SDmigrate stops the shadow devices at the source host.

It seems to be natural that the migration utility directly
saves and restores the states of shadow devices. However,
this design is not acceptable because the migration utility
needs to be modified. Since there are various migration
utilities, e.g., command-line and GUI tools, it is desirable
to use existing migration utilities as they are. Therefore,
SDmigrate introduces special devices called fake devices and
additionally runs them inside the virtualized system. It uses
fake devices to save and restore the states of shadow devices
transparently. It is not necessary to modify the migration
utility. Note that fake devices need to be developed for each
virtualized system.

Fig. 2 shows the overview of transferring the states of
shadow devices in SDmigrate. Like a normal virtual device,
the migration utility running in the source host tries to save
the state of a fake device. At this time, the fake device
sends a request to the corresponding shadow device and
obtains the state of the shadow device. That state is saved
by the migration utility as that of the fake device. Similarly,
the migration utility running in the destination host tries to
restore the state of a fake device like a virtual device. At this
time, the fake device sends a request to the corresponding
shadow device and restores the state of the shadow device.

It is not easy for fake devices to communicate with
shadow ones. Traditionally, the migration utility uses inter-
process communication when it saves and restores the states
of virtual devices. This is possible because virtual devices
and the migration utility run on the same operating system
(OS). However, we cannot use this communication method
between fake and shadow devices. Completely different
OSes run these devices. For these devices, a possible com-

munication method is to use a virtual network, but shadow
devices need to permit access from the network. This allows
access from not only fake devices but also untrusted cloud
operators in the virtualized system. This means that the
attack surface to shadow devices increases. For example,
shadow devices can suffer from the buffer overflow attack.
For efficiency, the virtual network imposes communication
overhead. It can take longer to save and restore the states
of shadow devices.

For efficient and secure communication between shadow
devices and fake devices, SDmigrate shares the memory of
fake devices with shadow devices. To establish such shared
memory without relying on the virtualized system in the
cloud VM, a fake device directly invokes the cloud hyper-
visor. Then, the corresponding shadow device is invoked by
the cloud hypervisor. Next, the shadow device and the fake
device share a buffer via the cloud hypervisor. Since the
shadow device just accesses the memory of the fake device,
it can avoid active attacks from untrusted cloud operators. To
prevent information leaks via the states of shadow devices,
each shadow device encrypts its state and writes it to the
shared memory.

In addition to restoring the states of shadow devices, SD-
migrate needs to share the VRAM in the migrated user VM
with a new shadow video card again at the destination host.
However, this is not easy because the VRAM is identified
by trapping memory-mapped I/O executed at the boot time
of a user VM. This memory-mapped I/O is not executed at
the resume time. To identify the VRAM without memory-
mapped I/O, SDmigrate saves and transfers the address and
size of the VRAM as an additional state of a shadow video
card. At the destination host, SDmigrate has to translate the
address of the VRAM in the user VM into that in the cloud
VM using the extended page tables (EPT) of the user VM.
To obtain the EPT without memory-mapped I/O, SDmigrate
traps the configuration of the EPT and records the address
of the EPT in advance.

4. Implementation

We have extended VSBypass to implement SDmigrate.
As illustrated in Fig. 3, SDmigrate uses the hypervisor of
Xen 4.8.0 [9] as the cloud hypervisor. SDmigrate uses Dom0
in Xen as the cloud control VM and runs shadow devices
in it. SDmigrate uses DomU in Xen as the cloud VM and
runs an existing virtualized system in it. In the current
implementation, SDmigrate supports Xen and KVM [10] as
virtualized systems. For Xen, the virtualized system consists
of the guest hypervisor, the guest control VM, and user
VMs. The migration utility, virtual devices, and fake devices
run in the guest control VM. For KVM, the virtualized
system consists of the guest hypervisor running inside the
Linux kernel and user VMs. The migration utility and fake
devices run on top of the kernel. In addition, SDmigrate
runs a proxy VM as DomU when a user VM is created.
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Figure 3. The system overview of SDmigrate using Xen as a virtualized
system in the cloud VM.

4.1. Shadow Devices

Shadow devices are created as virtual devices of proxy
VMs. Like normal virtual devices, we have implemented
shadow devices in QEMU running in the cloud control
VM. We assign only the minimum amount of resources to
proxy VMs and use them only for providing shadow devices.
When a user VM executes an I/O instruction, that instruction
causes a VM exit to the cloud hypervisor. Then, the cloud
hypervisor checks the port number specified for I/O-mapped
I/O or the memory address specified for memory-mapped
I/O. If that is a target of transparent passthrough, the cloud
hypervisor sends an I/O request to the corresponding shadow
device. When the request handling is completed, the cloud
hypervisor executes a VM entry to the user VM.

To handle direct access to the VRAM of a user VM,
a shadow video card shares the VRAM and uses the log-
dirty mechanism provided by the cloud hypervisor. This
mechanism is originally used for the guest hypervisor to
detect such direct access. Similarly, a shadow video card
registers the VRAM region in a user VM to the log-dirty
mechanism, which protects the registered memory region
in a read-only manner. If a user VM writes data to the
region, that write causes a VM exit to the cloud hypervisor
and that access is recorded in it. Then, a shadow video
card obtains the recorded information and identifies updated
memory regions.

4.2. Fake Devices

Fake devices are created as virtual devices of a user
VM. Like normal virtual devices, we have implemented fake
devices in QEMU running in the cloud VM. A fake device
just forwards requests for saving and restoring the state to
the shadow device corresponding to it. When the state of
a shadow device is saved, a fake device prepares a buffer
and shares it with the corresponding shadow device. When
the fake device sends a request to the shadow device, the
shadow device collects its own state and stores it in the
shared buffer. That state is received by the fake device using
the buffer. Then, the migration utility obtains that state via
the fake device. Next, it transfers the obtained state to the
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Figure 4. Communication between fake and shadow devices.

migration utility running in the destination host. Using the
received state, the migration utility restores the state of the
fake device. The fake device does not change its state but
stores the restored state in the shared buffer. Finally, the
shadow device restores its state after it receives the state
from the shared buffer.

4.3. Interaction between Shadow and Fake Devices

When the state of a shadow device is saved or restored,
the cloud hypervisor is invoked by a fake device using
the vmcall instruction, as illustrated in Fig. 4. When this
instruction is executed in the guest control VM, it causes
a VM exit. For this instruction, a fake device stores two
parameters in CPU registers. One is the virtual address of
a buffer used to store the state of a shadow device, and the
other is the size of the buffer. A fake device uses the mmap
system call to allocate an anonymous memory page to the
buffer. It also uses the mlock system call to pin the page so
that the buffer is paged out to swap space.

Upon the VM exit, the cloud hypervisor performs the
address translation to enable a shadow device to access the
buffer of the fake device. The fake device uses a virtual
address, but a shadow device requires the corresponding
physical address. The cloud hypervisor first accesses the
virtual CPU of the cloud VM and reads the CR3 register.
This register contains the address of the page tables. Then,
the cloud hypervisor traverses the page tables. As a result,
the virtual address of the buffer is translated into the physical
one.

Next, the cloud hypervisor invokes the shadow device
corresponding to the fake device. To achieve this, a special
I/O request is sent to QEMU running in the cloud control
VM. For the requests to shadow devices, QEMU uses ded-
icated I/O port numbers to distinguish them from normal
requests. The port number is also used to determine the type
of shadow device. Each I/O request consists of a request
type, the physical address of the buffer, and the buffer size
in addition to a port number. The request type is either save
or restore. When the request is completed by the shadow
device, the cloud hypervisor returns the size of the saved or
restored state to the fake device.

4.4. Save/Restore of Internal States

For saving and restoring the state of a shadow device,
SDmigrate leverages the interface provided by QEMU. Tra-



TABLE 1. THE STATES OF SHADOW DEVICES.

device type state
keyboard 4 registers, 4 internal states, and a queue

(1 register and 1 internal state when necessary)
mouse 1 register, 10 internal states, and a queue
video card 324 registers, 9 internal states, a color palette,

PCI configuration registers, and PCI IRQ states

ditionally, VM migration uses this interface to transfer the
state of a VM to another host. VM checkpointing also uses it
to save the state to a disk. Therefore, the traditional QEMU
can handle the state of a VM only for network sockets
or files. In SDmigrate, we have added a new interface to
QEMU. Using this interface, our QEMU can handle the
state of a VM for memory. When the state of a shadow
device is saved, QEMU stores the state in a buffer of a fake
device. When the state is restored, QEMU reads the state
from the buffer.

For secure OOB-VNC, SDmigrate saves and restores the
states of a shadow keyboard, mouse, and video card. Table 1
shows the list of the saved and restored states. When the
states of shadow devices are saved, each shadow device
reads the device registers and collects the other internal
states. Then, it encrypts the collected states using the AES
algorithm and writes the encrypted states to the buffer of a
fake device. When the states of shadow devices are restored,
each shadow device sets the saved state to its own device
registers and the other internal states. At this time, the saved
state is decrypted using AES.

4.5. Save/Restore of External States

To emulate the virtual video card of a user VM, a shadow
video card shares the memory region used for the VRAM
of that VM, as illustrated in Fig. 5. Since a shadow video
card is created as a virtual video card of a proxy VM, it
usually accesses the VRAM in the proxy VM. Therefore, it
unmaps that VRAM and re-maps the VRAM in a user VM.
To re-map that VRAM, SDmigrate needs to first identify
its physical address used in the user VM and then translate
the address into the one used in the cloud VM. Since it
is difficult to identify the address of the VRAM at the
resume time, SDmigrate embeds this external state into the
internal state of a shadow video card and transfers it to the
shadow video card at the destination host. For the address
translation, SDmigrate needs the EPT of a user VM, which
is created by the guest hypervisor.

To find the EPT of a user VM at the resume time,
the cloud hypervisor traps a write of an EPT pointer to
the virtual machine control structure (VMCS), which is
performed by the guest hypervisor. VMCS is a data structure
used by Intel VT-x. This write is at least done at the boot and
resume times of a user VM. Since a VM exit does not occur
in this event by default, the cloud hypervisor configures the
VM-exit control fields in the VMCS. Upon this VM exit,
the cloud hypervisor records the address of the EPT. After
that, a shadow video card issues a newly added hypercall to
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Figure 5. Re-sharing the VRAM of a user VM.

the cloud hypervisor and obtains information on the pages
used for the VRAM in the user VM. At this time, the cloud
hypervisor translates the guest physical address of each page
in the user VM into the host one using the recorded EPT.
Finally, it maps these pages by invoking a hypercall to the
cloud hypervisor and shares the VRAM with the user VM.

For KVM, this mechanism alone does not work well
because the EPT is expanded and shrunk on demand. Until
the VRAM is accessed by a user VM, the EPT does not have
entries for the pages used for the VRAM. This means that
the cloud hypervisor cannot always translate the physical
address of the VRAM. To address this issue, we have
slightly modified the QEMU and the guest hypervisor inside
the virtualized system. The modified QEMU issues a new
hypercall to the guest hypervisor and pre-allocates all the
pages used for the VRAM by causing page faults. Then, the
guest hypervisor immediately invokes the cloud hypervisor
and translates the physical address of the VRAM before the
EPT is shrunk. Since this modification is only for memory
pre-allocation, no new security issues arise.

5. Experiments

We conducted experiments to show the usefulness of
SDmigrate. In addition to SDmigrate, we used the traditional
system with single virtualization, that with nested virtual-
ization, and VSBypass. We created a cloud VM with two
virtual CPUs and 3 GB of memory and a proxy VM with
two virtual CPUs and 1 GB of memory. We used Xen 4.4.0
and KVM with QEMU 2.4.1 as virtualized systems running
in the cloud VM. In the cloud VM, we created a user VM
with two virtual CPUs. We changed the memory size of the
user VM between 256 MB and 2 GB. To run these VMs,
we used two identical PCs with an Intel Xeon E3-1226 v3
processor, 8 GB of memory, and Gigabit Ethernet.

5.1. Secure OOB-VNC after VM Migration

To show that SDmigrate can continue secure OOB-
VNC after a VM is migrated, we performed VM migration
while we used secure OOB-VNC. First, we connected to the
VNC server running in the cloud control VM using a VNC
client. Then, we performed login to the user VM via the
VNC client. When we used secure OOB-VNC, transparent
passthrough redirected the access to the user VM. Next,
we performed the migration of the user VM. When the
virtualized system was Xen, we migrated a VM using the



TABLE 2. THE SAVED SIZE OF THE STATES OF SHADOW DEVICES.

shadow device size (bytes)
shadow keyboard 288
shadow mouse 304
shadow video card 1408

xl command with the migrate subcommand in the guest
control VM. When KVM was used, we migrated a VM with
the virsh command with the migrate subcommand. After
the VM was migrated, we connected the VNC client to the
VNC server running in the cloud control VM again at the
destination host. In VSBypass, we could not continue access
to the user VM using secure OOB-VNC. In SDmigrate, in
contrast, access to the user VM was continued.

5.2. Performance of Saving and Restoring States

We saved and restored the states of a shadow keyboard,
mouse, and video card and investigated the performance. In
this experiment, we directly saved and restored the states of
these shadow devices without using fake devices. First, we
measured the size of the saved states of the shadow devices.
As shown in Table 2, the sizes were about 300 bytes for
a shadow keyboard and mouse, whereas the size was 1.4
KB for a shadow video card. Even the size of these states
was 2.0 KB in total. This was negligible compared with
the memory size of a user VM. These sizes were the same
regardless of the virtualized system running in the cloud
VM because shadow devices are virtual devices provided
for proxy VMs.

Next, we measured the time needed for saving and
restoring the states. We saved and restored the states of
the shadow devices 10 times and obtained the average time
with the standard deviation. Fig. 6(a) shows the measured
time when we used Xen as a virtualized system. The time
basically depended on the size of the state but was not
proportional to that. For example, the size of the state of
a shadow video card was much larger than the others, but
the save time just increased slightly. This means that the
fixed processing time was long for saving and restoring the
state of a shadow device. That includes the invocation of the
cloud hypervisor and the communication between the cloud
hypervisor and QEMU in the cloud control VM. The total
save and restore times of these three shadow devices were
1.2 ms and 1.3 ms, respectively.

Fig. 6(b) shows the time when we used KVM as a
virtualized system. The save time of each shadow device
was almost the same as when we used Xen. However, the
restore time was 81 µs shorter on average. In total, the
restore time was reduced to 0.9 ms. This is probably caused
by the difference in the scheduling algorithm between Xen
and KVM.

5.3. Performance of VM Migration

We investigated the performance of migrating a user
VM. SDmigrate ran three shadow devices for secure OOB-
VNC. It transferred their states to the destination host. For
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Figure 6. The save/restore time of the states of shadow devices.

VSBypass, the states of these shadow devices were not
transferred. We changed the amount of memory assigned
to a user VM between 256 MB and 2 GB. We measured
the migration time, which is the time taken to execute the
migration command at the source host. In addition, we
measured the downtime, which is from stopping a user VM
at the source host to resuming it at the destination host. For
each memory size, we migrated a user VM 5 times.

Fig. 7 shows the average and the standard deviation
of the migration time when Xen and KVM were used
as virtualized systems, respectively. The migration time in
SDmigrate was increased only by 482 ms in Xen and 29 ms
in KVM, compared with VSBypass. The larger the memory
size was, the smaller this impact on the migration time was
because the migration time depended on the memory size of
a VM. The overhead was 4.0-5.7% even when the memory
size was 256 MB. For 2 GB of memory, that was negligible.
Compared with the traditional system with nested virtualiza-
tion, the average increase in migration time was 2.0 seconds
in Xen and 140 ms in KVM. This included the overhead
of VSBypass because SDmigrate was implemented on top
of VSBypass. The overhead of nested virtualization caused
the difference between Xen and KVM. This overhead is
shown in the performance difference between the traditional
systems with single and nested virtualization. The overhead
in KVM was much smaller than in Xen.

Fig. 8(a) shows the average and standard deviation of
the downtime when Xen and KVM were used as virtualized
systems, respectively. The downtime in SDmigrate was 73
ms longer than that in VSBypass when we used KVM.
This is probably because of handling the states of shadow
devices in SDmigrate. In contrast, the downtime was 62 ms
shorter on average when we used Xen. However, it was
63 ms longer on average than that in nested virtualization.
These reasons are under investigation, but the performance
degradation was small.

6. Related Work

A shadow device in SDmigrate is similar to a
passthrough device of VMs. A passthrough device is a
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Figure 7. The migration time in SDmigrate.
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Figure 8. The downtime in SDmigrate.

virtual device used to improve I/O performance by directly
accessing hardware. In contrast, a shadow device directly
accesses virtual hardware, which is provided to the vir-
tualized system by using nested virtualization. However,
migrating VMs that use passthrough devices is difficult
because passthrough devices strongly depend on physical
hardware. For passthrough NICs, several systems have been
proposed to migrate VMs.

The bonding drivers inside VMs are useful for migrating
VMs that use passthrough NICs [20]. In this migration
method, a passthrough NIC is bonded to a paravirtual NIC
using the Linux bonding driver. Before a VM is migrated, it
hot-unplugs the passthrough NIC and thereby the bonding
driver automatically uses the paravirtual NIC. Since the VM
uses only the paravirtual NIC at this time, it can be easily
migrated. After the VM is migrated, the passthrough NIC is
hot-plugged, so that the bonding driver uses it again. This
can be easily applied only by a configuration change in a
VM, but the network downtime occurs on hot-unplugging.

Instead of the bonding driver, the network plugin archi-
tecture (NPA) [21] is also used inside VMs to migrate VMs
that use passthrough NICs. It enables network drivers to add
and remove plugins. Before a VM is migrated, the plugin
of a passthrough NIC is removed and that of a paravirtual
NIC is added. After the VM is migrated, the plugin of
a passthrough NIC is used again. This switching time is
shorter than that in the bonding driver, but it is necessary to
modify network drivers largely. In addition, NPA supports
only SR-IOV NICs.

The transparent migration of VMs that use passthrough
NICs is also achieved by using shadow drivers [22]. A
shadow driver is used to record access to a network driver.
During VM migration, it processes requests to the network
driver, instead of a real driver. At the destination host, it
redirects the recorded requests to a real driver after a new
network driver starts. However, using a shadow driver needs
large modifications to the hypervisor and the guest OS inside
a VM.

CompSC [23] enables the device registers of passthrough
NICs to be restored completely after a VM is migrated.
This is difficult in general because there are registers whose
values are erased after reads, that are read-only, and that
result in some actions to NICs after writes. CompSC solves
this problem by recording access to passthrough NICs in
the network driver at the source host and replaying it at
the destination host. In addition, it performs emulation in
the hypervisor and also restores statistical information. In
SDmigrate, the states of shadow devices can be completely
saved and restored because shadow devices are virtual de-
vices.

SRVM [24] restores the minimal states that are needed
to run passthrough NICs, instead of restoring the complete
states. It first finds memory regions where packets are stored
by NICs. Then, it obtains these packets from the found
regions and forwards them to the destination host. It is not
necessary to modify the guest OS in a VM because it is
implemented only in the hypervisor. However, it requires
SR-IOV NICs in the passthrough mode.



USShadow [25] supports VM migration for a secure
virtual serial console, which is used to manage a VM by
accessing its serial console via a shadow serial device.
It is similar to SDmigrate, but a shadow serial device is
very simple and has a state of only 16 bytes. In contrast,
SDmigrate deals with the states of more complex shadow
devices, whose size is 2 KB in total. For a shadow video
card, it deals with the external state, i.e., the VRAM, in
addition to the internal one. The contribution of this paper
is to show that VM migration is possible with secure OOB-
VNC, which is much more popular than a virtual serial
console in real clouds.

For the system with nested virtualization, fast commu-
nication between the guest and cloud control VMs is used
in Xen-Blanket [14]. Xen-Blanket runs the Blanket driver
in the OS of the guest control VM. The driver invokes
the guest hypervisor using a hypercall and the hypervisor
communicates with the cloud control VM. In SDmigrate,
in contrast, a process in the guest control VM bypasses the
guest hypervisor and directly invokes the cloud hypervisor.
Then, the cloud hypervisor communicates with the cloud
control VM. The design policy of Xen-Blanket is to modify
only the virtualized system inside the cloud VM, whereas
that of SDmigrate is not to modify the virtualized system.

7. Conclusion

In this paper, we proposed SDmigrate, which continues
to use secure OOB-VNC after VMs are migrated. SDmigrate
runs fake devices in the virtualized system to save and
restore the states of shadow devices transparently. Fake
devices securely and efficiently communicate with the cor-
responding shadow devices outside the virtualized system.
SDmigrate deals with the states of a shadow keyboard,
mouse, and video card for secure OOB-VNC. In addition
to the internal states, it deals with the external state of a
shadow video card, i.e., the VRAM. We have implemented
SDmigrate in Xen and confirmed that we could continue to
use secure OOB-VNC after a VM was migrated. Also, it is
shown that the degradation of migration performance was
negligible.

Our future work is that SDmigrate supports various
virtualized systems for running in the cloud VM. Currently,
SDmigrate supports Xen and KVM as virtualized systems.
Both use QEMU as a device emulator. Since our implemen-
tation depends on QEMU, we need to show that SDmigrate
can be applied to other types of virtualized systems without
using QEMU, e.g., Hyper-V.
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