
HyperSpector: Virtual Distributed Monitoring
Environments for Secure Intrusion Detection

Kenichi Kourai
Department of Mathematical and

Computing Sciences
Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo, Japan

kourai@is.titech.ac.jp

Shigeru Chiba
Department of Mathematical and

Computing Sciences
Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo, Japan

chiba@is.titech.ac.jp

ABSTRACT
In this paper, a virtual distributed monitoring environment
called HyperSpector is described that achieves secure intru-
sion detection in distributed computer systems. While mul-
tiple intrusion detection systems (IDSes) can protect a dis-
tributed system from attackers, they can increase the num-
ber of insecure points in the protected system. HyperSpec-
tor overcomes this problem without any additional hardware
by using virtualization to isolate each IDS from the servers
it monitors. The IDSes are located in a virtual machine
called an IDS VM and the servers are located in a server
VM. The IDS VMs among different hosts are connected us-
ing a virtual network. To enable legacy IDSes running in the
IDS VM to monitor the server VM, HyperSpector provides
three inter-VM monitoring mechanisms: software port mir-
roring, inter-VM disk mounting, and inter-VM process map-
ping. Consequently, active attacks, which directly attack the
IDSes, are prevented. The impact of passive attacks, which
wait until data including malicious code is read by an IDS
and the IDS becomes compromised, is confined to within an
affected HyperSpector environment.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
distributed systems

General Terms
Design, Security

Keywords
virtual machine, virtual network, inter-VM monitoring, dis-
tributed IDS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VEE’05, June 11-12, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-047-705/0006 ...$5.00.

1. INTRODUCTION
As distributed computer systems become larger and more

complex, self-protection against attacks is becoming an in-
dispensable attribute. To achieve self-protection, distributed
systems have to monitor themselves, analyze the informa-
tion obtained, plan a defense against detected attacks, and
execute the plan [12]. Of these four steps, we focused on
self-monitoring, which is the important first step. One type
of self-monitoring system is the distributed IDS (DIDS), a
security system designed to detect suspicious activity with
a system [20]. The DIDS uses multiple IDSes to protect
a distributed system. The information they obtain is col-
lected by a designated host to analyze the characteristics of
an attack. The results are then shared among the IDSes to
enable them to work together effectively.

Needless to say, the DIDS itself must not make the moni-
tored distributed system less secure. However, the DIDS can
have insecure points that must be protected against attacks.
Attacks against an IDS are classified as active or passive.
Active attacks are those in which the attacker takes actions
designed to directly compromise an IDS. Passive attacks are
those in which the attacker generates data that contains ma-
licious code and waits until an IDS becomes compromised
when it reads the data. Passive attacks against a DIDS are
difficult to prevent because it must check all data as part of
its function. Therefore, secure intrusion detection requires
(1) protecting the IDSes from active attacks and (2) pre-
venting passive attacks against the IDSes from affecting the
protected system.

One approach is to use hardware. For example, in iso-
lated monitoring, network-based IDSes (NIDSes) are located
in hosts physically separated from the server hosts and are
connected to a physically independent network. To enable
monitoring of network packets sent from and to the server
hosts, the NIDS hosts are connected to the server hosts via
a network switch with the port mirroring feature. This pro-
tects the NIDS hosts from active attacks and confines the
impact of passive attacks to within the NIDS hosts because
the NIDSes are isolated from the servers. However, the cost
is high because a large amount of hardware is needed, e.g.
NIDS hosts, a switch for connecting them, and a switch with
the port mirroring feature. In addition, it is difficult to ap-
ply this approach to host-based IDSes (HIDSes) in terms of
security and efficiency.

Our proposed virtual distributed monitoring environment,
HyperSpector, achieves isolated monitoring without any ad-

ditional hardware, even for legacy HIDSes. HyperSpector
isolates the IDSes from the monitored servers by using vir-
tual machines (VMs) and a virtual network. The IDSes for
each host are located in a VM (IDS VM) and the servers
are located in a server VM, instead of being located in dif-
ferent hosts. The IDS VMs are connected using an inde-
pendent virtual network. To isolate multiple DIDSes from
each other, multiple HyperSpector environments can also be
created.

To enable legacy IDSes running in the IDS VM to monitor
the separated server VM securely, HyperSpector provides
three inter-VM monitoring mechanisms in a virtual machine
monitor: software port mirroring, inter-VM disk mounting,
and inter-VM process mapping. Software port mirroring en-
ables the IDS VM to capture packets sent from and to the
server VM. Inter-VM disk mounting virtually mounts the
file system of the server VM on the IDS VM to check the
integrity. Inter-VM process mapping allows the IDS VM to
probe the behavior of the processes in the server VM.

HyperSpector protects an IDS from active attacks. The
server VM prevents an attacker from compromising the IDS
VM if a server in the server VM has been compromised.
The virtual network connecting only the IDS VMs prevents
an outside attacker from sending illegal packets to the IDS
VMs. For passive attacks against an IDS, HyperSpector
confines the impact to within one HyperSpector environ-
ment. The IDS VM prevents an attacker from interfering
with the server VM. The virtual network prevents the at-
tacker of an IDS VM from sending illegal packets outside
the HyperSpector environment. With multiple HyperSpec-
tor environments, passive attacks against one DIDS do not
affect the other DIDSes. In addition, the inter-VM monitor-
ing mechanisms do not degrade security because they allow
only the IDS VM to monitor the server VM.

The rest of this paper is organized as follows. Section 2
describes the type of attacks against IDSes and previous ar-
chitectures for secure intrusion detection. Section 3 presents
HyperSpector, which can isolate IDSes from servers by using
virtual machines and a virtual network, and describes the
inter-VM monitoring mechanisms. Section 4 explains the
details of our implementation of HyperSpector. Section 5
describes our experiments for determining the security pro-
vided by using HyperSpector and the overhead it imposes.
Section 6 discusses related work and Section 7 concludes the
paper with a brief summary and a look at future work.

2. OBSTACLES TO SECURE INTRUSION
DETECTION

To secure a distributed computer system against attack
by using a DIDS, each IDS must resist attacks against itself
because if an IDS is compromised, the attacker can attack
the rest of the host without being detected. Even if the at-
tacker cannot take over high privileges, the attacker can still
steal sensitive information from the server monitored by the
IDS. If the attacker then restarts the IDS after invalidating
some policies, the administrator will have trouble detecting
the penetration.

2.1 Types of Attacks
Attacks against IDSes are classified as either active or

passive. In active attacks, the attacker takes actions directly
against an IDS. IDSes can be attacked via a compromised

server in the same host (local active attacks). In many cases,
it is easier to attack servers than IDSes because servers must
accept requests from anonymous users. Therefore, the first
target of an attacker is usually a server. Once an attacker
compromises a server, the next target is usually the IDSes
monitoring the server because if the attacker fails to stop the
monitoring, the attack will soon be detected. To stop the
IDSes, the attacker may try to terminate the IDS processes
or may rewrite policy files used by IDS programs so as to
invalidate the IDS functions.

Also, IDSes can be attacked via the network from the In-
ternet or compromised server hosts (remote active attacks).
When multiple IDSes are used, each one communicates with
various hosts to facilitate cooperation. For example, an IDS
may receive commands or monitoring policies from a central
server or may transfer its log to a central server. In some
configurations, the network ports used for these communi-
cations may be open to the outside. In Counterpane [4], the
distributed computer system needs to communicate with an
external security operation center. In Big Brother [18], the
vulnerability allowed a remote attacker to read arbitrary
files [5]. Even if the IDSes do not communicate with the
outside, the network ports are open to the whole distributed
system at least. Therefore, if a server in the system is com-
promised by an attack, the network ports of the IDSes can
be attacked via the compromised server.

Passive attacks, on the other hand, are attacks in which
the attacker carefully crafts data so as to compromise the
IDSes and waits until an IDS reads the data for monitoring
purposes and thereby becomes compromised. A typical ex-
ample of this type of attack is one designed to exploit buffer
overflow vulnerabilities. For NIDSes, the attacker can send
carefully crafted packets to servers so that the NIDSes are
compromised when they analyze the packets [3]. Such at-
tacks against NIDSes can be done both from the Internet
and via hosts compromised in a distributed system. For
HIDSes, the attacker can create a file with a carefully crafted
name so that the HIDSes are compromised when they ex-
amine the file [6]. Passive attacks are more difficult to pro-
tect against than active attacks because IDSes must, in the
course of their operation, read data from external sources in
order to monitor the servers. Therefore, it is important to
confine the impact of such attacks.

2.2 Isolated Monitoring
Isolated monitoring can be used to resist such attacks.

In this approach, multiple NIDSes are located in Figure 1.
Each NIDS is located in a host different from the one it is
monitoring. Although the number of NIDS hosts may be less
than that of the server hosts, many NIDS hosts are needed
in a large distributed system. The server and NIDS hosts
are connected to a front-end switch with the port mirroring
feature and the switch is connected to the Internet. The
server hosts are connected to normal ports, and the NIDS
hosts are connected to mirroring ports. The port mirroring
feature duplicates packets sent from and to the server hosts
and forwards them to the appropriate NIDS hosts. In Cisco
switches, this feature is called the switched port analyzer.
This feature enables the NIDSes to monitor packets sent
from and to the server hosts from remote hosts. In addition,
each NIDS host has an extra network interface card (NIC)
and is connected to a back-end switch.

With such isolated monitoring, local active attacks against

server
host

NIDS
host

front-end
switch

back-end
switch

Internet

server
host

server
host

NIDS
host

NIDS
host

port mirroring

Figure 1: Isolated monitoring using NIDSes.

NIDSes via compromised servers are prevented since servers
cannot access the file systems and processes of NIDS hosts
directly. NIDS hosts are also protected from remote active
attacks. An attacker cannot directly send packets to NIDS
hosts through the mirroring ports in the front-end switch
because the mirroring ports support only monitoring. More-
over, the NIDS hosts can communicate with the other NIDS
hosts only through the back-end switch, so an attacker can-
not send packets to the network of NIDS hosts. The impact
of a passive attack is confined within the affected DIDS.
Even if an NIDS host is compromised, it cannot attack the
server hosts and hosts in the Internet because it cannot send
packets to a mirroring port in the front-end switch, which is
connected to the servers and the Internet. Active attacks are
thus prevented and the impact of passive attacks is confined.

However, this isolated monitoring increases the amount of
hardware such as an NIDS host and a network switch. As
the amount of hardware increases, the management cost also
increases. Moreover, a costly switch with the port mirroring
feature is needed, and half of the network ports are reserved
for monitoring. Although it is possible to use an inexpen-
sive dumb hub, which enables packet monitoring, it causes a
performance bottleneck due to the shared bus architecture.
In addition, if there are multiple DIDSes and the adminis-
trator would like to localize the impact of passive attacks
to only one, even more hardware is needed to locate each
NIDS in a different host.

Moreover, it is difficult to use isolated monitoring when
there are legacy HIDSes. Legacy HIDSes cannot run in hosts
separated from the server hosts because they are designed to
monitor file systems, processes, the operating system, etc.
in the same host. To enable HIDSes to monitor server hosts
from other hosts, the Backdoors architecture has been pro-
posed [2]. Using Backdoors, a distributed computer system
can be protected by locating HIDSes like NIDSes in Figure 1.
While Backdoors does not need the port mirroring feature
in the front-end switch, a programmable NIC is needed for
each server host to transfer monitored data.

Although the Backdoors architecture isolates the HIDSes

server
VM

server
VM

server
VM

front-end
switch

Internet

host

virtual network

IDS
VM

IDS
VM

IDS
VM

monitor

HyperSpector environments

Figure 2: HyperSpector architecture.

from the servers, it is not secure enough because HIDS hosts
can suffer remote active attacks. Since they must be con-
nected to normal ports in the front-end switch to receive
monitored data from the server hosts, illegal network pack-
ets can be delivered to HIDS hosts from, for example, the
Internet. Also, if an HIDS host suffers a passive attack and
becomes compromised, it can be used to attack server hosts
and hosts in the Internet. Moreover, to monitor server hosts
from HIDS hosts, the server hosts must export monitoring
interfaces to the network, making them insecure. In addi-
tion, the performance of the HIDSes can be degraded when
receiving a large amount of data such as the contents of all
files from server hosts.

3. HYPERSPECTOR
Our proposed virtual distributed monitoring environment,

HyperSpector, overcomes the disadvantages of isolated moni-
toring. Using virtual machines and a virtual network, it can
perform isolated monitoring without any additional hard-
ware. With its secure monitoring mechanisms, HyperSpec-
tor achieves the same level of security as hardware-supported
isolated monitoring, even when legacy HIDSes are being
used, as long as HyperSpector itself does not have any vul-
nerabilities.

3.1 Architecture
As illustrated in Figure 2, HyperSpector runs the IDSes

and servers for each host in isolated VMs. HyperSpector can
also run each IDS in a different VM so that one IDS does not
affect the other IDSes in the same host. These VMs run on
top of the base system, which does not use network. Each
VM provides independent network system space, file system
space, and process space and is isolated from the other VMs
and the base system. Our VM for IDSes is called an IDS
VM, and our VM for servers is called a server VM. An IDS
VM can monitor the server VM in the same host without
using a physical network. Unlike with isolated monitoring,
extra network ports in the front-end switch are not required

for this. Moreover, the NIDSes do not also need a costly
front-end switch with the port mirroring feature. Even if
the IDSes need to monitor a large amount of data sent from
and to the server VM, the data can be transferred from
the server VM to the IDS VM efficiently without passing
through the front-end switch.

A virtual network is used to connect the IDS VMs among
different hosts. It is constructed above the base network,
such as a LAN, and requires no extra hardware. If one host
contains multiple IDS VMs, multiple virtual networks are
constructed for each IDS VM. The virtual network is isolated
from the server VMs. Illegal packets received from outside
the virtual network are discarded by message authentica-
tion. The IDS VMs cannot send packets outside the virtual
network and cannot change their network configuration so
as to communicate with the other hosts without using the
virtual network.

A HyperSpector environment consists of the IDS VMs
among different hosts and the virtual network connected
them. It is used for running a DIDS and independent of the
rest of the system. To isolate multiple DIDSes from each
other, multiple HyperSpector environments can be created.

3.2 Attack Resistance
HyperSpector protects IDSes from active attacks. First,

the server VM prevents an attacker from attempting local
active attacks against the IDS VM or the base system in the
same host after compromising a server. An attacker cannot
access file systems and processes outside the server VM even
if root privileges are obtained in the server VM. Second,
remote active attacks against the IDS VM are prevented
by the virtual network, which connects only the IDS VMs.
The virtual network denies access from any server VM and
from any host outside HyperSpector. Therefore, the IDS
VM cannot receive illegal network packets from outside the
virtual network.

HyperSpector confines the impact of passive attacks to
within one HyperSpector environment. Even if an attacker
succeeds in a passive attack against an IDS, the IDS VM pre-
vents the attacker from interfering with the file systems and
processes of the server VM and the base system in the same
host. However, the attacker can attack IDS VMs on the
other hosts in the same HyperSpector environment because
the compromised IDS VM can communicate with them us-
ing the virtual network. The attacker cannot attack hosts
outside the HyperSpector environment because only the vir-
tual network connecting the IDS VMs can be used. Hyper-
Spector prevents the attacker from sending packets without
using the virtual network. In addition, the attacker cannot
extend the virtual network to connect it to the attacker’s
host. In any case, if an IDS VM is compromised by a pas-
sive attack, the administrator can restart the HyperSpector
environment including it easily since it is isolated from the
rest of the system.

The impact of passive attacks can be mitigated by using
multiple HyperSpector environments. For example, the ad-
ministrator can configure two HyperSpector environments,
one for the NIDSes and one for the HIDSes. Even if an
attacker manages to compromise a server by an active at-
tack and one of the HyperSpector environments by a passive
attack, the IDSes in the uncompromised environment can
continue intrusion detection.

base network

server VM

virtual network

IDS VM

NIDS
process

BPF
device

software port mirroring

virtual
network
interface

virtual
switch

outside network

VMM

Figure 3: Network monitoring using the virtual
switch with the software port mirroring feature.

3.3 Inter-VM Monitoring Mechanisms
As described above, HyperSpector completely isolates the

IDSes and servers by using virtual machines and a virtual
network. To enable legacy IDSes in the IDS VM to moni-
tor the servers, mechanisms are needed that provide inter-
faces to legacy IDSes and provides secure monitoring be-
tween the IDS and server VMs. HyperSpector satisfies both
requirements by providing three inter-VM monitoring mech-
anisms, which are called software port mirroring, inter-VM
disk mounting, and inter-VM process mapping, in a virtual
machine monitor (VMM).

3.3.1 Software Port Mirroring
As illustrated in Figure 3, the server VM network, the

IDS VM network, and the outside network are connected
to the virtual switch in the VMM. When the virtual switch
receives a network packet, it delivers the packet to the ap-
propriate VM. The virtual switch does not deliver packets
sent between the IDS VM and the server VM.

The software port mirroring feature in the virtual switch
enables the IDS VM to capture all the packets that the
server VM sends and receives. In addition to being con-
nected to a normal port in the virtual switch, the IDS VM
is connected to a mirroring port via a virtual network in-
terface. All the packets sent from and to the server VM
are duplicated and forwarded to the mirroring port in the
virtual switch. They are then transferred to the virtual net-
work interface in the IDS VM. The IDS VM captures the
forwarded packets using a legacy packet filter device, such
as a Berkeley packet filter (BPF). For efficiency, if the IDS
VM is not monitoring the virtual network interface, pack-
ets are not forwarded. If multiple IDS VMs are using their
virtual network interfaces, packets are forwarded to those
IDS VMs. Instead of using software port mirroring, the net-
work interface of the IDS VM can be set to the promiscuous
mode. However, doing so imposes higher overhead because
the IDS VM receives not only packets sent from and to the
server VM but also those sent from and to the IDS VMs.

Software port mirroring allows the IDS VM to only mon-
itor the server VM. A virtual network interface cannot be
created in the server VM, so the server VM cannot capture

server VM IDS VM

HIDS
process

file
system

inter-VM
disk mounter

shadow
file system

request
forwarding

read
request

VMM

VMM
interface

Figure 4: File system monitoring using the inter-
VM disk mounter.

packets sent from and to the IDS VM. Moreover, the mirror-
ing ports in the virtual switch can only be used for forward-
ing packets sent to the normal ports; all packets directly sent
to the mirroring ports are discarded by the virtual switch.
Therefore, even if an IDS VM is compromised by a passive
attack, the attacker cannot send packets to the server VM
via a mirroring port. On the other hand, if the IDS VM is
compromised, the attacker can view sensitive information in
the server VM by using this monitoring mechanism. How-
ever, even if the attacker manages to do this, the information
cannot be sent outside the HyperSpector environment due
to the use of virtual machines and a virtual network.

3.3.2 Inter-VM Disk Mounting
Inter-VM disk mounting enables the IDS VMs to check

the integrity of the file system of the server VM. The IDS
VM cannot locally mount the disk of the server VM directly
because the disk used by the server VM is not accessible
to the IDS VM. Also, the IDS VM cannot mount the file
system of the server VM using the network file system such
as NFS because the IDS VM cannot communicate with the
server VM directly. We thus developed an inter-VM disk
mounter running outside the VMs. The mounter virtually
mounts the file system of the server VM on the IDS VM as
a shadow file system. The IDS VM can mount the shadow
file system on an appropriate directory.

The inter-VM disk mounter mediates between the moni-
tored file system of the server VM and the shadow file system
of the IDS VM, as illustrated in Figure 4. When the IDSes
in the IDS VM access files or directories in the shadow file
system via legacy system calls such as read, the IDS VM
forwards the access request to the mounter using its VMM
interface. The mounter forwards the request to the VMM
interface of the server VM. The server VM handles the re-
quest and returns the response to the IDS VM.

Inter-VM disk mounting allows the IDS VM to only mon-
itor the file system of the server VM. A mount request to
the IDS VM from the server VM is denied by the mounter.
Requests that will result in modification of the file system
such as write requests are denied even if they are issued by
the IDS VM. Therefore, the attacker of a compromised IDS

IDS VM

HIDS
process

inter-VM
process mapper

shadow
process

request
forwarding

trace

VMM

wakeup
notification

server VM

process

VMM
interface

wakeup

Figure 5: Process monitoring using the inter-VM
process mapper.

VM cannot rewrite the file system of the server VM via the
shadow file system.

3.3.3 Inter-VM Process Mapping
Inter-VM process mapping enables the IDS VM to probe

the processes in the server VM, performing process tracing
and getting process status. The IDS VM cannot monitor the
processes in the server VM directly because the two VMs
have different process spaces. We thus developed the inter-
VM process mapper running outside the VMs. The mapper
maps the processes in the server VM to the IDS VM as
shadow processes. The IDS VM allocates local identifiers to
the shadow processes and the mapper manages the mapping
between the process identifiers in the IDS VM and the server
VM.

The inter-VM process mapper mediates between the mon-
itored processes in the server VM and the shadow processes
in the IDS VM, as illustrated in Figure 5. For example,
if an IDS sends a trace request to a shadow process via a
legacy interface such as the ptrace system call or the proc
file system, the IDS VM forwards the request to the mapper
using the VMM interface. The mapper translates the pro-
cess identifier into the corresponding one in the server VM
and sends the translated request to the VMM interface of the
server VM. The server VM handles the request and returns
the response to the IDS VM. If a traced process in the server
VM issues a system call, the process stops the execution and
notifies an IDS process in the IDS VM. This notification is
forwarded to the VMM interface in the server VM, to the
inter-VM process mapper, and to the VMM interface in the
IDS VM. The IDS VM looks up the IDS process tracing
the corresponding shadow process and wakes it up so that
the IDS process can obtain information on the system call
issued by the target process.

Inter-VM process mapping allows the IDS VM to only
monitor the processes in the server VM. Shadow processes
are not created in the server VM. Access requests to pro-
cess identifiers that are not registered in the inter-VM pro-
cess mapper are denied. The IDS VM is allowed to only
read the registers and memory of the shadow processes, so
the attacker of a compromised IDS VM cannot rewrite the

base network

server VM IDS VM 1

HIDS
process

server
process

network
system

IDS VM 2

NIDS
process

virtual network

virtual
switch

kernel

file
system

base system

inter-VM
process mapper

inter-VM
disk mounter

VMM

Figure 6: Host implementation of HyperSpector.

memory of the processes in the server VM. In addition, for
process tracing, the IDS VM is allowed to control the pro-
cesses in the server VM through the corresponding shadow
processes. An IDS can stop and continue the execution of
a traced process. To avoid an illegally long stop of a target
process, the mapper forces execution to continue if a stopped
process is not continued by the IDS within a certain time.
This timeout mechanism mitigates the impact of denial of
service attacks by compromised IDSes.

4. IMPLEMENTATION
We have implemented HyperSpector in our Persona oper-

ating system, which is based on FreeBSD 4.9. As illustrated
in Figure 6, each host in HyperSpector consists of a base
system, IDS VMs, a server VM, and a VMM. In our im-
plementation, we assume (1) that the kernel is not compro-
mised and (2) that the base system, which is not affected
by the VMs and is not connected to any network, is not
compromised. In this section, we first describe the imple-
mentation of the IDS and server VMs and then describe the
implementation of the inter-VM monitoring mechanisms in
the kernel-level VMM.

4.1 IDS VM
The IDS VMs were implemented by extending the port-

space [15]. The portspace is not a heavy-weight VM that
emulates hardware; rather, it provides only an indepen-
dent namespace for a file system, a network system, and
processes. Such virtualization makes the IDS VMs secure
enough because we assume that the kernel is developed care-
fully so that it cannot be compromised. Here, we give an
overview of the extended portspace. Further details of the
implementation of the original portspace are described in
[15].

4.1.1 Network Virtualization
A virtual network is implemented using IPsec tunneling.

To allow only a specific IDS VM to use certain IPsec tun-
nels, an IDS VM provides an independent network system
that includes tunnel interfaces, IPsec databases, a routing
table, and protocol control blocks. The tunnels can be ac-
cessed only through the tunnel interfaces bound to a specific

IDS VM. The databases store the tunnel information used
by the IDS VM. The routing table contains network routes
used only in the virtual network to which the IDS VM is
connected. The protocol control blocks bind sockets to ar-
bitrary ports to run new network services in the IDS VM
without interfering with the other IDS VMs, the server VM,
and the base system even if they use the same IP address.

Among these network elements of an IDS VM, the tunnel
interfaces and the IPsec databases can be configured only in
the base system so that a fixed configuration of the virtual
network is enforced even if the IDS VM or the server VM is
attacked. To specify the target IDS VM from the base sys-
tem, the administrator uses the setportspace system call.
This call allows the process issued and its descendants to
configure the tunnel interfaces and the IPsec databases of
the specified IDS VM. For convenience, we developed a util-
ity that uses this system call and configures a virtual net-
work easily.

4.1.2 File System Virtualization
Subdirectory /.filespace/<id> (<id> identifies an IDS

VM) is dedicated to an IDS VM to provide an isolated file
system. This subdirectory is translated to the root directory
of the IDS VM by using the chroot mechanism. Persona al-
lows an IDS VM to use the file system of the base system by
using the union file system so that an IDS VM can use stan-
dard binaries and libraries without installation. The union
file system enables a subdirectory to be mounted above the
existing file system in such a way that both directory trees
remain visible. Persona mounts /.filespace/<id> of the
base system on / of the corresponding IDS VM by using the
union mount mechanism. Since mounting a subdirectory on
/ is not allowed in the original FreeBSD implementation, we
modified the mechanism so that such mounting is allowed
only for the IDS VM. We also modified the mechanism so
that the mount operation described above is applied only to
the target IDS VM, not to the whole system.

This virtualization using the union file system achieves
both security and convenience. Since processes in the IDS
VM always write files to /.filespace/<id>, the IDS VM
cannot affect the base system. The processes can read a file
from the file system of the base system as long as the file is
not overwritten in the IDS VM. This does not degrade the
security level of the IDS VM due to our assumption that the
file system of the base system is not compromised.

4.1.3 Process Virtualization
The processes in the IDS VM are mainly regular FreeBSD

processes. Each has an independent address space and a
unique identifier in the host. They use a virtualized file
system and a virtualized network, and they can see only
the processes inside the same IDS VM. This is achieved by
limiting the interactions between processes in the host. A
process can send messages to and receive messages from only
processes running in the same IDS VM, using inter-process
communication, shared memory, and signals.

The administrator enters a particular IDS VM from the
base system by using Persona’s swportspace system call.
This call moves the process issued to the specified IDS VM
once the process is authenticated. This call is not exploitable
by attackers because it can only be issued from the base
system, which we assume cannot be compromised from the
VMs in the same host or from outside the host.

4.2 Server VM
The server VM is also implemented based on the port-

space. While the virtualization of the file system and pro-
cesses is the same as for the IDS VM, the server VM neither
virtualizes the network system nor uses a virtual network.
Instead, it uses the base network so that it can provide ser-
vices to the public Internet. All the packets not received by
any virtual networks are delivered to the server VM by the
virtual switch.

4.3 VMM
The VMM contains the virtual switch, the inter-VM disk

mounter, and the inter-VM process mapper. The virtual
switch sends the packets from the VMs to the outside net-
work directly. It also delivers packets from the outside net-
work to the appropriate VM based on the security parameter
index in the IPsec header. The value of the index is unique
to each virtual network. If a packet has no IPsec header,
it is delivered to the server VM. Since the virtual switch
does not rely on the IP address for routing, all the VMs in
the same host can use the same IP address. This enables
the administrator to create multiple HyperSpector environ-
ments without having to assign a new IP address to each
VM in the same host. To achieve software port mirroring
in the virtual switch, the Persona kernel maps the network
interface of the server VM to the virtual network interface of
the appropriate IDS VM. If an NIDS in the IDS VM opens
a BPF device to that interface, Persona copies the packets
sent from and to the server VM to that interface. In other
words, as long as a BPF device is not opened, no packets
are copied.

In our implementation, the inter-VM disk mounter in the
VMM, the shadow file system of the IDS VM, and the mon-
itored file system of the server VM reside in the same ker-
nel. Therefore, inter-VM disk mounting is implemented
efficiently. When an HIDS process in the IDS VM reads
data from a file in the shadow file system, the data is read
from the disk of the server VM into buffer cache in the ker-
nel. Since the buffer cache is shared between VMs, the IDS
VM can use it without any copying. Overhead is generated
only by indirect accesses to the monitored file system via
the shadow file system, which is automatically mounted on
/.serverfs in the IDS VM.

Like inter-VM disk mounting, inter-VM process mapping
is also implemented efficiently because the inter-VM pro-
cess mapper in the VMM, the shadow processes in the IDS
VM, and the monitored processes in the server VM reside
in the same kernel. Therefore, the process information is
shared between VMs, and an HIDS process can get the con-
tents of the registers and memory of a monitored process
via the corresponding shadow process without any copying.
In addition, all processes except the shadow processes have
unique identifiers in the host, and each shadow process uses
the same process identifier as the corresponding process in
the server VM. It is therefore not necessary for the inter-
VM process mapper to translate process identifiers between
VMs.

5. EXPERIMENTS
We performed experiments to evaluate the secureness of

HyperSpector and to measure the overhead imposed. We
used two HyperSpector environments, as illustrated in Fig-
ure 7. For host A and the external host, we used PCs, each

server
VM

server
VM

IDS
VM

IDS
VM

IDS
VM

IDS
VM

HyperSpector 1

HyperSpector 2

external host

host A host B

Figure 7: System configuration for experiments.

Table 1: Results of port scanning.

source
target

external host server VM IDS VM 1

external host – http unreached
server VM – http unreached

IDS VM 1 unreached unreached ftp
IDS VM 2 unreached unreached unreached

with a single 3.0 GHz Pentium 4 processor. For host B,
we used a PC with a single 2.8 GHz Pentium 4 processor.
Each of these three PCs had 1 GB of memory and an Intel
Pro/100+ NIC. The PCs were connected via a 100Base-T
Ethernet switch.

5.1 Secureness
To evaluate the secureness of HyperSpector, we examined

the impact of active and passive attacks against IDSes.

5.1.1 Network Security
To evaluate the resistance to attacks made through the

network, we scanned the network ports using the nmap port
scanning utility [10]. The inetd daemon with ftp service en-
abled was executed in every IDS VM, while the httpd server
was being run in every server VM. First, active attacks were
initiated directly from outside by performing port scanning
from the external host on the two IDS VMs in HyperSpec-
tor 1. Second, active attacks via a compromised server were
initiated by performing port scanning from the server VM of
host A on the two IDS VMs in HyperSpector 1. Third, after
an IDS VM of host A in HyperSpector 1 was compromised
by a passive attack, active attacks were initiated by perform-
ing port scanning from that IDS VM on the external host,
the two server VMs, and the other IDS VM in HyperSpector
1. Finally, active attacks between IDS VMs in the two Hy-
perSpector environments were initiated by performing port
scanning from the IDS VM of host A in HyperSpector 2 on
the two IDS VMs in HyperSpector 1.

Table 1 shows the results of the port scanning. IDS VM
1 means the IDS VMs in HyperSpector 1. The results of
port scanning from the external host and the server VM
show that the IDS VMs were not compromised by active
attacks because the attacker could not reach the ftp service
provided by IDS VM 1. The results of port scanning from
IDS VMs 1 and 2 show that the attacker of the compromised
IDS VM could not attack other than the IDS VMs in the
same HyperSpector environment because IDS VM 2 could

not reach any services provided by the external host, the
server VM, or IDS VM 1.

In addition, to evaluate the secureness of software port
mirroring, we attempted to capture network packets using
the tcpdump utility in the server VM. We found that tcp-
dump in the server VM could not capture any packets from
the IDS VMs. This means that the server VM cannot sniff
communication in HyperSpector environments.

5.1.2 File System Security
To evaluate the resistance to attacks against file systems,

we checked the independence of file systems when we de-
stroyed the file system of the server VM and two IDS VMs
in host A. For the server VM, we deleted all files and direc-
tories in the server VM and then compared the file system
with those of the IDS VMs and the base system before and
after the deletion. For the IDS VMs, we performed the dele-
tion and compared the file system with those of the server
VM, the other IDS VM, and the base system. The number
of deleted files and directories was 204,706. In both experi-
ments, no files or directories were deleted in other than the
VM where the deletion was performed. To evaluate the se-
cureness of inter-VM disk mounting, we attempted to delete
files and directories of the shadow file system in an IDS VM,
but were unable to delete any files or directories. These re-
sults show that the server VM and the IDS VMs cannot
change file systems in other VMs.

5.1.3 Process Security
To evaluate the resistance to attacks against processes,

we examined process visibility using the ps command. We
executed inetd in the two IDS VMs and httpd in the server
VM in host A. In the server VM, only the httpd processes
were visible. This means that the attacker of a compromised
server VM cannot access processes in the IDS VMs. In each
IDS VM, not only the inetd process but also the httpd pro-
cess were visible. The latter are designed to be visible to
enable the IDS VM to monitor the server VM. To evaluate
the secureness of inter-VM process mapping, we first sent a
signal to the httpd of a shadow process from the IDS VM by
using the kill system call. Next, we attempted to modify
the httpd process by using the ptrace system call. Both at-
tempts were denied, meaning that the server and IDS VMs
cannot attack processes in other VMs.

5.2 Overhead
HyperSpector incurs overhead due to monitoring of the

server VM by the IDS VMs. We measured this overhead for
three legacy IDSes.

5.2.1 Snort
Snort [19] is a typical NIDS for detecting network-level

attacks. Snort sniffs network packets and compares them
with attack patterns to detect attacks.

We measured the performance of Snort running in the IDS
VM of host A. We used the drop rate of network packets as
the performance indicator. We used Snort version 2.0.1 and
1,779 Snort rules, which are included in the Snort package.
To impose various loads on Snort, we sent 1-byte UDP pack-
ets from the external host to host A at various rates. For
comparison, we measured the performance of Snort running
in the base system of host A. As shown in Figure 8, when
the rate was about 150,000 packets per second, the drop

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 0 50000 100000 150000

dr
op

 r
at

e
(%

)

packets/sec

HyperSpector
base system

Figure 8: Packet drop rate with Snort.

 0

 2000

 4000

 6000

 8000

 10000

 0 1 2 3 4 5 6 7 8

re
qu

es
ts

/s
ec

requested file size (KB)

isolated monitoring
base system

HyperSpector

Figure 9: Performance of thttpd with Snort.

rate of Snort running in the IDS VM was about 3%. As the
network load is higher, the drop rate in the IDS VM was
higher than in the base system by 0.5 to 0.7%.

Next, we measured the performance of the thttpd 2.23
beta1 web server [17] when it was monitored by Snort in
various configurations. We located thttpd and Snort (1) in
the base system of host A, (2) in the server and IDS VMs
of host A, respectively, using HyperSpector, and (3) in host
A and host B, respectively, based on isolated monitoring.
To measure the performance of thttpd with Snort, we used
the ApacheBench benchmark [1] in the external host. The
results are shown in Figure 9. Comparing HyperSpector
with the base system, the overhead was 7.5% at maximum
and decreased as the requested file size increased. Compar-
ing HyperSpector with isolated monitoring, thttpd running
in HyperSpector slowed down by 30% when the requested
file size was zero. This is because thttpd in isolated moni-
toring does not suffer any overhead due to Snort. However,
when the requested file size exceeded 2 KB, the overhead was
less than 7%. This means that the tradeoff between Hyper-
Spector and isolated monitoring is additional hardware and
performance.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

ch
ec

k
tim

e
(s

ec
)

file change rate (%)

HyperSpector
base system

Figure 10: Time for integrity checking in Tripwire.

5.2.2 Tripwire
Tripwire [14] is a typical HIDS for checking the integrity

of file systems. Tripwire stores the state of the file system in
a database before attacks and periodically compares it with
the current state.

First, we measured the overhead due to initializing the
Tripwire database for the file system of the server VM in host
A. The measurement was done for the shadow file system, on
which the file system of the server VM is virtually mounted.
For comparison, we also measured the time for database
initialization using the file system of the base system. We
used Tripwire version 2.3.1 and 133 rules. The number of
files and directories examined based on the rules was 54,885.
The initialization time was 48 seconds for the base system
and 53 seconds for HyperSpector. Comparing these two, the
overhead of HyperSpector was 10.4%.

Next, we measured the time for integrity checking of file
systems in the base system and HyperSpector of host A.
Figure 10 shows that the overhead due to HyperSpector was
17 to 26%. It increased with the file change rate. This
overhead is considered to be for the union file system used
in the server VM for ease of use.

5.2.3 Truss
Truss is a standard command that traces system calls is-

sued by processes. Strictly speaking, truss is not an IDS
because it does not detect intrusions, but we used it to esti-
mate the overhead of tracing system calls between VMs. In
this experiment, the thttpd web server was run in the server
VM of host A, and truss was executed in an IDS VM of
host A. Truss traced the system calls issued by the thttpd.
To measure the performance of thttpd as traced by truss,
we used the ApacheBench benchmark in the external host.
For comparison, we also measured the performance when
both thttpd and truss were executed in the base system. As
shown in Figure 11, the overhead for tracing the system calls
was 0.8 to 7.3%.

6. RELATED WORK
Several architectures that locate servers in a VM and ID-

Ses in the base system have been proposed for isolating
servers from IDSes in a host [8, 11]. ReVirt [8] enables an
IDS in the base system to record the execution of the VM

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8

re
qu

es
ts

/s
ec

requested file size (KB)

base system
HyperSpector

Figure 11: Performance of thttpd traced by truss.

at the hardware level. Livewire [11] enables IDSes in the
base system to monitor the state of the operating system in
the VM in addition to the state of the VM. In these archi-
tectures, the VM protects IDSes running in the base system
from local active attacks via compromised servers. However,
these architectures do not assume the DIDS, where multiple
IDSes communicate with each other. IDSes running in the
base system can be compromised by remote active attacks.
Moreover, if an IDS is compromised by a passive attack,
the attacker can attack IDSes and servers in other hosts in
addition to compromising the VM.

For secure distributed computing, virtual machines and
virtual networks should be combined. Figueiredo et al. pro-
posed an architecture that uses both to isolate each exe-
cution environment in Grid computing [9]. It enables un-
trusted programs to be executed securely and provides in-
dependent virtual machines and a virtual network for Grid
users, but does not provide any monitoring mechanisms.
The personal network we previously reported uses virtual
machines and virtual networks to enable the user to securely
use multiple networks in the user’s host [15]. Unlike Hyper-
Spector, the personal network does not provide monitoring
mechanisms, and it allows the user to extend the personal
network freely.

Isolated monitoring separates servers from IDSes by us-
ing additional hardware. Isolated monitoring for NIDSes is
achieved by using network taps, instead of a switch with the
port mirroring feature. A network tap is hardware inserted
in a network cable between a server and a switch. It splits
and copies signals in the cable and sends them to NIDS
hosts. The pros and cons of using network taps are almost
the same as those of using a switch with the port mirroring
feature. As described in Section 2.2, Backdoors [2] enables
HIDSes to monitor a server host from another host. The
key feature of Backdoors is that the operating system in
a server host is not responsible for transferring monitored
data to an HIDS host. Monitored data is transferred by a
programmable NIC in the server host even if the operating
system is compromised.

As another monitoring architecture for NIDSes, the ad-
ministrator can locate the NIDS host at the edge of the
distributed system. The NIDS host captures all packets
sent from and to the distributed system. However, since the

NIDS host is exposed to the Internet in this architecture, an
attacker can easily compromise it.

Many commercial IDSes, such as Counterpane [4], divide
their functions between monitoring and analyzing. Only
monitoring is done in the target distributed system; the log
data are transferred to a security operation center. The
center analyzes the data and alerts the distributed system
if an intrusion is detected. Although these IDSes outsource
the difficult analysis of intrusion detection, they do not make
the monitoring process itself secure.

To implement the IDS and server VMs, we extended the
portspace; however, VMs that have already been developed
are available to which we can add the inter-VM monitor-
ing mechanisms and enforce the use of a virtual network.
FreeBSD jail [13] extends the chroot mechanism so that it
can virtualize a network space and a process space to some
extent. Cloneable network stacks [22] provide independent
network stacks from the network interface layer to the appli-
cation layer and provide independent file systems based on
chroot. Zap [16] introduces a pod abstraction, which pro-
vides a virtualized view of the operating system to a group
of processes. These VMs are light-weight like our IDS and
server VMs. On the other hand, VMware [21] and UML [7]
are heavy- and middle-weight VMs that can run different
operating systems. Although these VMs can prevent at-
tacks to their operating system kernels, their overheads for
program execution and inter-VM monitoring are larger.

7. CONCLUSION
We have proposed a virtual distributed monitoring en-

vironment called HyperSpector. HyperSpector isolates an
IDS from the servers it monitors without using any addi-
tional hardware, even for legacy HIDSes. To isolate IDSes
and servers inside a host, the IDSes are located in an IDS
VM and servers are located in a server VM. To isolate the
networks used by the IDSes and servers, the IDS VMs are
connected to a virtual network. The IDS VM can moni-
tor the server VM using inter-VM monitoring mechanisms:
software port mirroring, inter-VM disk mounting, and inter-
VM process mapping. Using such virtualization technolo-
gies, HyperSpector protects a DIDS from active attacks and
confines the impact of passive attacks to within the affected
HyperSpector environment.

One of our future directions is to support active moni-
toring such as integrity checking by port scanning. Active
monitoring requires taking actions against the server VM,
e.g. by sending it probe packets, but it is difficult to distin-
guish these actions from attacks. We plan to develop a filter
that allows only strictly restricted interactions between the
IDS VM and the server VM.

Also, it is important to protect the HyperSpector envi-
ronment from denial of service attacks. If an attacker sends
a flood of network packets to a server VM, an NIDS in the
IDS VM of the same host can become overloaded and al-
most disabled. As a result, the attacker can compromise
the server VM without the intrusion being detected. To
prevent such attacks, sufficient resources must be allocated
to the IDS VM to enable it to run the IDSes properly under
heavy loads.

Another direction is to automatically detect when a Hy-
perSpector environment has been compromised by a passive
attack. Although HyperSpector can confine the impact of
passive attacks to within one HyperSpector environment,

a compromised environment cannot guarantee the correct-
ness of intrusion detection. We should be able to detect the
misbehavior of the environment by monitoring the resource
usage.

8. REFERENCES
[1] Apache HTTP Server Project. Apache HTTP server

benchmarking tool. http://www.apache.org/.

[2] A. Bohra, I. Neamtiu, P. Gallard, F. Sultan, and
L. Iftode. Remote repair of operating system state
using Backdoors. In Proceedings of the 1st IEEE
International Conference on Autonomic Computing,
pages 256–263, 2004.

[3] CERT. Multiple vulnerabilities in snort preprocessors.
CERT Advisory CA-2003-13.

[4] Counterpane Internet Security, Inc. Counterpane.
http://www.counterpane.com/.

[5] CVE. CAN-1999-1462. http://www.cve.mitre.org/.

[6] CVE. CAN-2004-0536. http://www.cve.mitre.org/.

[7] J. Dike. A user-mode port of the linux kernel. In
Proceedings of the 4th Annual Linux Showcase &
Conference, 2000.

[8] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen.
ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. In Proceedings of
the 5th Symposium on Operating Systems Design and
Implementation, pages 211–224, 2002.

[9] R. Figueiredo, P. Dinda, and J. Fortes. A case for
Grid computing on virtual machines. In Proceedings of
the 23rd IEEE Conference on Distributed Computing
Systems, pages 550–559, 2003.

[10] Fyodor. The network mapper.
http://www.insecure.org/nmap/.

[11] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In Proceedings of the Network and
Distributed Systems Security Symposium, pages
191–206, 2003.

[12] P. Horn. Autonomic computing: IBM perspective on
the state of information technology.
http://www.research.ibm.com/autonomic/, 2001.

[13] P. Kamp and R. Watson. Jails: Confining the
omnipotent root. In Proceedings of the 2nd
International SANE Conference, 2000.

[14] G. Kim and E. Spafford. The design and
implementation of Tripwire: A file system integrity
checker. In Proceedings of the 2nd ACM Conference
on Computer and Communications Security, pages
18–29, 1994.

[15] K. Kourai, T. Hirotsu, K. Sato, O. Akashi, K. Fukuda,
T. Sugawara, and S. Chiba. Secure and manageable
virtual private networks for end-users. In Proceedings
of the 28th Annual IEEE Conference on Local
Computer Networks, pages 385–394, 2003.

[16] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of Zap: A system for
migrating computing environments. In Proceedings of
the 5th Symposium on Operating Systems Design and
Implementation, pages 361–376, 2002.

[17] J. Poskanzer. Tiny/turbo/throttling HTTP server.
http://www.acme.com/software/thttpd/.

[18] Quest Software. Big Brother systems and network
monitor. http://www.quest.com/bigbrother/.

[19] M. Roesch. Snort – lightweight intrusion detection for
networks. In Proceedings of the 13th USENIX System
Administration Conference, pages 229–238, 1999.

[20] S. Snapp, J. Brentano, G. Dias, T. Goan, T. Grance,
L. Heberlein, C. Ho, K. Levitt, B. Mukherjee,

D. Mansur, K. Pon, and S. Smaha. A system for
distributed intrusion detection. In Proceedings of the
COMPCON, pages 170–176, 1991.

[21] VMware, Inc. VMware. http://www.vmware.org/.

[22] M. Zec. Implementing a clonable network stack in the
FreeBSD kernel. In Proceedings of the USENIX 2003
Annual Technical Conference, pages 137–150, 2003.

