
OPERATING SYSTEM SUPPORT FOR EASY DEVELOPMENT
OF DISTRIBUTED FILE SYSTEMS

KENICHI KOURAI† SHIGERU CHIBA‡ TAKASHI MASUDA†

† Department of Information Science
University of Tokyo

7–3–1 Hongo, Bunkyo-Ku, Tokyo 113–0033, JAPAN

‡ Institute of Information Science and Electronics
University of Tsukuba

1–1–1 Tennodai, Tsukuba, Ibaraki 305–8573, JAPAN

ABSTRACT

A number of new distributed file systems have been de-
veloped, but the development of such file systems is not
a simple task because it requires the operating system
kernel to be modified. We have therefore developed the
CAPELA operating system, which makes distributed
file systems easy to develop. CAPELA allows the users
to develop a file system as an extension module sep-
arated from the kernel, and protects the kernel from
erroneous extension modules by a new fail-safe mech-
anism, called multi-level protection. The multi-level
protection can avoid unnecessary performance degra-
dation by enabling the protection level to be changed
without modifying the source code of the module. We
have implemented the CAPELA operating system on
the basis of NetBSD 1.2 and confirmed that the file
system can run more efficiently when the protection
level is lowered.

keywords: multi-level protection, fail-safe mecha-
nism, distributed file system, operating system

1 INTRODUCTION

A number of distributed file systems such as NFS [5],
AFS [6], and Coda [7] have already been developed,
and most of them are embedded in the monolithic
kernel like UNIX systems. This makes it difficult to
develop distributed file systems because it is hard to
debug the file systems in the kernel. The developers
cannot use tools like a symbolic debugger that helps
identify the cause of errors. To make matters worse,
they must reboot the computer every time an error
occurs because the operating system kernel crashes.

Many distributed file systems are therefore first im-
plemented as a user-level library that emulates the sys-
tem calls for file access and are later re-implemented in
the kernel. The emulation makes it easy for the devel-
opers to implement and debug the file system because
they do not need to modify the kernel. After the pro-
totype of the file system developed using the emulation
is implemented, they evaluate the file system experi-

mentally. Considering the results of this evaluation,
they can easily change the policy of the distributed file
system before re-implementing the file system in the
kernel. This way of development, however, makes the
burden on the developers heavy. Because of the dif-
ferences in data structure, application programming
interfaces (APIs), and timing, they must debug both
the library for the emulation and the file system em-
bedded in the kernel, and this debugging makes the
development laborious.

To solve this problem, we have developed the
CAPELA operating system, which makes distributed
file systems easy to develop. CAPELA allows the users
to develop a file system as an extension module sepa-
rated from the kernel. Because the extension module
is installed in the operating system on demand, the
users can debug their file systems without continually
rebooting the computer. CAPELA also uses a new fail-
safe mechanism, called multi-level protection, that al-
lows the users to install an extension module at various
protection levels without modifying the source code.
The users can therefore avoid performance penalties
by running the released module at a lower protection
level than that used for debugging the file system.

We have implemented the CAPELA operating sys-
tem on the basis of NetBSD 1.2. The multi-level pro-
tection has been implemented by a set of protection
managers, which provide a different level of protection.
The users can easily change the protection level of the
extension module simply by selecting one of these pro-
tection managers. Because the protection managers
provide common APIs for the file system module, the
users do not need to modify the source code of the
module when changing the protection level.

We experimented to make sure of the usefulness of
the multi-level protection and confirmed (1)that the
performance of a file system module is improved when
the protection level is lowered, (2)that the overheads
at the maximal protection level are acceptable, and
(3)that the overheads at the minimal protection level
are almost negligible compared with those of the file
system hand-crafted in the kernel.

2 CAPELA

We have developed the CAPELA operating system on
the basis of NetBSD 1.2, which makes distributed file
systems easy to develop. CAPELA allows the users to
develop a file system as an extension module separated
from the kernel so that it can be installed without re-
booting the system. To protect the operating system
kernel from erroneous modules, CAPELA provides a
new fail-safe mechanism, called multi-level protection.
The multi-level protection allows the users to change
the protection level of the extension modules according
to the stability of the file system under development.

In this section, we describe the multi-level protec-
tion and how it can make a new file system easy to
develop. And we explain our implementation of the
multi-level protection in CAPELA.

2.1 MULTI-LEVEL PROTECTION

The multi-level protection enables the users to change
the protection level without modifying the source code
of the extension modules. The users need only se-
lect the appropriate protection level, considering the
trade-off between the cost of the protection and the
performance of the extension module. If they select
the highest protection level, all errors are detected and
recovered; if they select lower one, some errors are nei-
ther detected nor recovered. To keep source-level com-
patibility of the extension modules between different
protection levels, the multi-level protection provides
common APIs for the extension modules.

This reduces the difficulty of debugging a new file
system. The developers can, for example, implement
a prototype of a distributed file system almost as eas-
ily as the library for the emulation. The file system is
implemented as an extension module which is a user
process and fully protected when the protection level
is higher. The developers can therefore obtain accu-
rate error information, easily identify the causes of the
errors, and fix them. In addition, an extension module
in which an error has been detected is safely detached
by CAPELA so that it does not compromise the rest
of the operating system.

After the prototype is implemented, the developers
can decrease the protection level without modifying
the source code. Because the performance is thereby
improved, it becomes easier to run the module longer
in order to find more errors. It is generally sufficient
to detect only errors depending on timing, like dead-
locks, because in this phase of testing the distributed
file systems seem to be rather stable.

Finally, the released version of the distributed file
system developed with the multi-level protection is em-
bedded into the kernel without modifying the source
code. It can run almost as efficiently as one hand-
crafted in the kernel without any protection.

2.2 SYSTEM OVERVIEW

In CAPELA, the multi-level protection has been imple-
mented by a set of protection managers, which provide
a different level of protection. A protection manager is
a library linked to an extension module and it provides
common APIs for the module to communicate with
the kernel. These common APIs enable to execute an
extension module without modifying the source code
either in a user address space or in the kernel address
space. Also, modifying the source code is not needed
to customize the ability of other kinds of error detec-
tion and recovery. All the differences among protection
levels are absorbed by the protection managers.

CAPELA allows the users to change the protection
level of an extension module by exchanging protection
managers. In the current implementation, the users
relink the module with the protection manager which
provides a desirable protection level. After relinking,
they restart the module without rebooting the com-
puter in order to make the new protection level avail-
able.

2.3 PROTECTION MANAGER

The roles of the protection manager are module man-
agement, upcall processing, and safe manipulation of
the kernel data. For module management, the pro-
tection manager registers and unregisters an extension
module with the kernel. For upcall processing, the pro-
tection manager invokes a callback function registered
by an extension module when it receives an upcall from
the kernel. For safe manipulation of the kernel data,
the protection manager protects the kernel data from
an erroneous module by using various protection tech-
niques.

The protection manager provides an API for ma-
nipulating the kernel data like vnode. The extension
modules can access the kernel data only through this
API because the kernel data is protected by the protec-
tion manager. For example, Vref function increments
the reference count of vnode. In addition, this API en-
ables the modules to deal with a kernel data structure
of low abstraction as if it were one of high abstraction.
Consequently, complex operations of the kernel data
and dangerous pointer manipulations are hidden from
the modules.

The protection manager also provides an API for
registering callback functions. The extension modules
need to register callback functions with the protection
manager in order to receive upcalls from the kernel,
e.g. VOP READ and VOP WRITE. The protection man-
ager first receives these upcalls from the kernel and
thereafter invokes the corresponding callback function
registered. At this time, the protection manager trans-
forms the data structure passed as the arguments to
more abstract structure.

2.4 PROTECTION TECHNIQUE

The protection managers combine various techniques
shown below and implement different protection levels.
For more details, see a different article [3].

2.4.1 ILLEGAL MEMORY ACCESS

To detect a hardware-trapped illegal memory access,
the protection manager exploits switching address
spaces. When an extension module is located in a user
space, any illegal memory accesses to the kernel mem-
ory are easily detected by hardware. The module uses
shared memory to exchange data with the kernel, but
the use of shared memory enables the module to ille-
gally access the kernel data. To prevent such illegal
memory accesses, CAPELA protects the shared mem-
ory by using virtual memory system, e.g. mmap system
call.

CAPELA allows the users to adjust the overheads
of detecting illegal memory access by selecting the use
of switching address spaces and the way of memory
protection. The users can protect the shared memory
for communication by simply changing its protection
mode to read-only with mprotect system call. They
can even protect no shared memory. To decrease the
overheads more, they can also locate an extension mod-
ule in the kernel space.

To detect semantically illegal data modification,
the protection manager replicates the kernel data,
makes the extension modules manipulate the replicas,
and writes it back to the kernel periodically. When
writing it back, the protection manager checks the data
by examining various properties of the data structure;
for example, that the reference count of data is posi-
tive or zero. CAPELA allows the users to adjust the
overheads by selecting what types of data are checked
and how the data is checked.

To recover from these illegal memory accesses,
CAPELA rolls back modified kernel data to stable
states. CAPELA uses a log in which manipulations
modifying the kernel data are recorded. On recover-
ing, CAPELA checks the log and executes the manip-
ulations reverse to those recorded in the log. CAPELA
allows the users to adjust the overheads of recording
the log and restoring the modified data by selecting
what manipulations are recorded and what data is re-
stored.

2.4.2 DEADLOCK

To detect a deadlock, CAPELA periodically checks
whether the system falls into a deadlock state. When
locking, unlocking, and waiting for resources like
vnode, the extension modules notify the system of that
and CAPELA records this information. To check for
a deadlock, CAPELA creates a wait-for-graph based

protection technique 1 2 3 4 5

memory protection
√

*
√

**
data replication

√ √ √
address space switch

√ √ √ √
logging

√ √ √ √
deadlock check

√ √ √ √

Table 1: FIVE PROTECTION LEVELS. *memory
unmap **read-only mode

on the information and checks for loops. CAPELA al-
lows the users to adjust the overheads by selecting the
interval between the checks.

To recover from a deadlock, CAPELA destroys the
loop of a wait-for-graph. CAPELA first finds out
where the loop is and then temporarily releases one
of the locks in the loop. The extension module whose
lock is forcedly released is stopped until it can obtain
the lock again.

3 EXPERIMENT

We experimented to make sure of the usefulness of the
multi-level protection. The purposes of these exper-
iments were (1)to make sure that the execution per-
formance is improved when the users change the pro-
tection level and degrade the level of fail-safety, (2)to
measure the overheads of the maximal protection level,
and (3)to measure the overheads to enable an exten-
sion module to run in the kernel address space without
modifying the source code.

We used a SPARCstation5 (MicroSPARC2/85MHz)
for the SNFS client and a PC (Cyrix 6x86/133MHz)
for the SNFS server. The client and server were con-
nected with a 10Mbps network. Each operating system
was CAPELA we developed.

We developed a file system module on CAPELA
for these experiments: Simple Network File System
(SNFS). We selected five kinds of protection managers
for our experiments. Each protection manager uses
the combinations of the protection techniques listed in
Table 1. The first level is the highest protection level
and the fifth level is the lowest protection level. For
comparison, we also implemented SNFS hand-crafted
in the kernel.

First, we measured the time needed to copy a file on
SNFS using read and write system calls. The size of
the copied file was 64KB. Next, we measured the time
needed to compile a little program using gcc. The com-
piled program is a ps program of NetBSD 1.2, which
consisted of five source files and two header files, and
which had about 2,000 lines. These results are shown
in Table 2.

The results of two experiments mean that the per-
formance of SNFS is improved when the protection
level is made lower. The first level takes 2.2 times

1 2 3 4 5
hand-
crafted

cp(ms) 1,272 1,154 795 705 516 515
gcc(s) 26.66 25.64 22.56 20.21 16.83 16.82

Table 2: THE TIME NEEDED TO EXECUTE A
PROGRAM IN SNFS OF EACH PROTECTION
LEVEL.

as much time as the fifth level, and the performance
is rather degraded. It is acceptable, however, for de-
bugging the SNFS module. In more practical circum-
stances like compilation of a program, the first level
takes 1.6 times as much time as the fifth level, and the
performance is good enough even for normal use.

Comparing SNFS of the fifth level with SNFS hand-
crafted in the kernel, SNFS of the fifth level incurs
the overhead of about 0.1%. This overhead is for en-
abling the SNFS module to run in the kernel space
without modifying the source code. We think that the
causes of this overhead are excess function calls, copies
for transforming data structure, and so on. This re-
sult means that the performance of the SNFS module
implemented using multi-level protection is almost as
good as that of SNFS hand-crafted in the kernel if the
protection level of the module is the lowest and the
module is embedded in the kernel.

4 RELATED WORK AND CONCLU-
SION

The microkernel operating systems such as Mach [1]
provide complete fail-safety. Since an extension mod-
ule is implemented as a user process, the errors due to
the module are not propagated to the rest of the oper-
ating system. However, the performance is sacrificed
because the overheads of interprocess communication
and context switches are large.

The extensible operating systems such as SPIN [2]
and VINO [8] alleviate the difficulty of debugging dis-
tributed file systems by allowing the users to install an
extension module into the kernel on demand. These
systems provide a certain fixed level of fail-safety us-
ing type-safe language Modula-3 [4] and software fault
isolation [9], respectively, but it is not appropriate in
all phases of the development of file systems.

This paper has described the CAPELA operating
system, which makes distributed file systems easy to
develop. In CAPELA, a new file system is imple-
mented as an extension module and the kernel is pro-
tected from errors of the module. Unnecessary per-
formance degradation can be avoided by using a new
fail-safe mechanism, called multi-level protection, to
change the protection level. We have implemented the
CAPELA operating system and confirmed the useful-

ness of the multi-level protection by some experiments.
The multi-level protection is so far implemented

only for file systems, but distributed file systems often
require the customization of network protocols. We
will therefore apply the multi-level protection to net-
work subsystems.

REFERENCES

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach:
A New Kernel Foundation for UNIX Development.
In Proceedings of the USENIX 1986 Summer Con-
ference, pages 93–112, 1986.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, S. Chambers, and
C. Eggers. Extensibility, Safety and Performance
in the SPIN Operating System. In Proceedings 15th
ACM Symposium on Operating Systems Principles,
pages 267–284, 1995.

[3] K. Kourai, S. Chiba, and T. Masuda. Operat-
ing System Support for Easy Development of Dis-
tributed File Systems. Technical Report TR-98-01,
Department of Information Science, University of
Tokyo, 1998.

[4] G. Nelson. System Programming with Modula-3.
Prentice Hall, 1991.

[5] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
and B. Lyon. Design and Implementation of the
Sun Network Filesystem. In Proceedings of the
USENIX 1985 Summer Conference, pages 119–130,
1985.

[6] M. Satyanarayanan, John H. Howard, D. A.
Nichols, R. N. Sidebotham, A. Z. Spector, and
M. J. West. The ITC Distributed File System:
Principles and Design. In Proceedings of the 10th
ACM Symposium on Operating Systems Principles,
pages 35–50, 1985.

[7] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, and D. C. Steere. Coda:
A Highly Available File System for a Distributed
Workstation Environment. IEEE Transactions on
Computers, 39(4):447–459, 1990.

[8] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith.
An Introduction to the Architecture of the VINO
Kernel. Technical Report TR–34–94, Harvard Uni-
versity Computer Science, 1994.

[9] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient Software-Based Fault Isolation.
In Proceedings of the 14th Symposium on Operating
Systems Principles, pages 203–216, 1993.

