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ABSTRACT

Extensible operating systems enable the users to extend their functions by adding extension mod-

ules on demand. Such operating systems need a fail-safe mechanism for protecting the systems

from erroneous extension modules. However, the mechanism with the full capability of the protec-

tion has implied serious performance penalties. To address this problem, we propose a new fail-safe

mechanism called multi-level protection. It allows the users to install an extension module in the

operating system at various protection levels without changing the module, and thereby, the users

can run the module at the minimum protection level to avoid performance penalties. For example,

they can choose a higher level for an unstable module, but a lower one for a stable module. We

have implemented the CAPELA system for the multi-level protection on the basis of NetBSD.

CAPELA provides multiple protection managers of various protection levels so that the users can

choose one of the protection managers and easily change the protection level. We constructed file

system modules and network subsystem modules on top of CAPELA. Also, we confirmed that the

performance of the extension modules is improved if the protection level is lowered. When the

overheads of the maximum protection level are between 70% and 220%, compared with those of

the minimum protection level. On the other hand, the overheads of the minimum protection level

are between 1.3% and 12%, compared with those of the hand-crafted version.



論文要旨

拡張可能OSは拡張モジュールを追加することで、その機能を動的に拡張することができる。このよ

うなOSでは、拡張モジュールのエラーからOSを守るために fail-safe機構が必要とされる。しかし

ながら、十分な fail-safe機構を実現しようとすると、従来の実装技術ではシステムの性能低下が避け

られなかった。そこで我々は、新しい fail-safe機構である多段階保護機構を提案する。この機構は拡

張モジュールを、変更なしに、様々な保護レベルでOSに組み込むことを可能にする。この機能を用

いて、デバッグ時には保護レベルを高くし、デバッグが終われば保護レベルを低くするなど、必要最

低限の保護レベルで拡張モジュールを動かすことにより、システムの性能低下を回避することができ

る。我々は多段階保護機構を実現するシステム CAPELAを NetBSDを基に実装した。CAPELAで

は保護マネージャが複数用意されており、それぞれが異なる保護レベルを提供している。ユーザはこ

の保護マネージャを交換することで、拡張モジュールの保護レベルを変更することができる。我々は

CAPELA上にファイルシステム・モジュールとネットワーク・モジュールを作成した。さらに、多

段階保護機構の有効性を調べるための実験を行ない、fail-safeの機能を減らせば、その分実行性能を

改善できることを確かめた。また保護レベルを最大にしても、オーバヘッドは 70%から 220%程度で

あった。さらに保護レベルを最小にすれば、オーバヘッドは 1.3%から 12%となり、カーネルに作り

込んで手で最適化したものに近い性能が得られた。
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Chapter 1

Introduction

As the purposes of applications, particularly middlewares, get advanced, many applications are

not satisfied with traditional operating systems. The applications require rich functionality and

good performance toward operating systems so that they can do what they need as efficiently as

possible. However, it is unreasonable that operating systems possess all of the functions needed by

all applications. This is because it is impossible to foresee all functions needed by all applications

in advance, and because the operating systems with all functions become very enormous and make

the maintenance hard even if foreseeing is possible. Also, since the performance of the functions

is often improved by the developers as time goes on, operating systems should provide the facility

with which users can replace the implementation of the functions easily, so that users can receive

a benefit of the best performance.

Extensible operating systems enable users to add new functions to the operating systems or to

replace old functions with new ones on demand. The new functions are implemented as a program

called extension module, and they are installed into the operating system without rebooting the

system. In the extensible operating systems, a fail-safe mechanism is mandatory because the

system must be protected from erroneous extension modules. If the extensible operating systems

have no fail-safe mechanisms, no users would install new extension modules except sufficiently

stable modules, and, in addition, developers would be worried about debugging the extension

modules. To prevent such erroneous extension modules from destroying the operating systems,

a fail-safe mechanism should provide the ability to detect errors of the extension modules and

the ability to recover from the errors. However, there is the trade-off between fail-safety and

performance, and it is difficult to achieve both sufficient fail-safety and good performance. Many

1



microkernel operating systems like Mach [1] and many extensible operating systems like VINO [43]

sacrifice the performance for the fail-safety more or less. On the other hand, an approach using

loadable kernel modules gives up the fail-safety for the performance.

To avoid this dilemma, we propose a new fail-safe mechanism called multi-level protection [17,

18, 20, 21, 19]. It enables users to change the protection level of the extension modules without

modifying the binary code. Using the multi-level protection, users can install the extension modules

in the operating system at an appropriate protection level, depending on the stability of the

modules. For example, if an extension module is unstable, users should select a higher protection

level and then protect the operating system from errors of the extension module. But if an extension

module is stable, users should select a lower protection level and then improve the performance.

We have implemented the CAPELA operating system on the basis of NetBSD 1.3.2. CAPELA

is an extensible operating system with the multi-level protection and provides multiple protection

managers, each of which provides a different protection level. Users can select one of the protection

managers in order to change the protection level of the extension module to an appropriate one.

In the current implementation, users need to exchange the protection managers to change the

protection level. To provide different protection levels, the protection manager changes the ability

to detect errors and the ability to recover from errors. Also, to modify no binary code of the

extension modules when changing the protection level, all the protection managers provide the

same application programming interface (API).

CAPELA supports the development of file systems and network subsystems in the current

implementation. We experimented to make sure of the usefulness of the multi-level protection

on file system modules and network subsystem modules. From our experiments, we confirmed

that the performance of the extension modules is improved if the protection level is lowered. Also

the overheads of the maximum protection level are between 70% and 220%, compared with the

minimum protection level. On the other hand, the overheads of the minimum protection level are

between 1.3% and 12%, compared with the hand-crafted kernel modules.

The rest of this thesis is organized as follows. Chapter 2 explains extensible operating systems

and the needs of a fail-safe mechanism, which is the most significant facility of the extensible oper-

ating systems. Also we reviews previous approaches in terms of the fail-safety. Chapter 3 proposes

a new fail-safe mechanism called multi-level protection and mentions the practical applicability.

Chapter 4 describes the implementation of the CAPELA operating system. In this chapter, it is

2



described how the protection managers and the kernel achieve the multi-level protection. Chapter 5

measures the overheads of the multi-level protection on two file system modules and two network

subsystem modules that we have developed on top of CAPELA. Finally, Chapter 6 concludes this

thesis and suggests the future directions.
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Chapter 2

Background

2.1 Needs of a Fail-Safe Mechanism

Extending operating systems is motivated by the needs of many applications. For example, de-

velopers for database applications want to change disk I/O buffering because a traditional general

algorithm for buffering does not suit for disk access patterns of database [46]. In the field of multi-

media, the issues of CPU scheduling, memory management, and network implementation in the

current operating systems are pointed out [42]. A part of these issues would be solved by extending

the operating systems on demand.

The extension of operating systems has two purposes: rich functionality and good performance.

For rich functionality, it seems that it is sufficient for operating systems to provide several policies

necessary for various applications [5]. However, it is unreasonable that operating systems possess all

of the functions needed by all applications. This is because it is impossible to foresee all functions

needed by all applications in advance, and because the operating systems with all functions become

very enormous even if foreseeing is possible. Therefore, it is desirable that operating systems can

be extended depending on the requirements of applications. For good performance, the functions

of operating systems are often improved by the developers as time goes on. Since users can always

receive a benefit of as good performance as possible, the operating systems should provide the

facility with which users can replace the implementation of the functions easily.

In traditional operating systems like UNIX [36], it is difficult for users to extend the functions

of the operating systems. To extend them, users must apply patches to the source code of the

operating systems and recompile them, or apply patches to their binary code directly. Although

4



commercial operating systems also trend open source recently, the source code is generally expen-

sive. There are some operating systems whose source code users can get without fee like Linux,

but it is difficult to apply patches since the order applying patches and the combination of them

are often troublesome. In any cases, users must shut down the whole system when they extend

the operating systems.

To solve this problem, extensible operating systems have been developed. The extensible op-

erating systems enable users to add new functions to the operating systems or to replace old

functions with new ones on demand. The new functions are implemented as a program called

extension module, and the operating systems do not need to be rebooted when they are extended.

In the extensible operating systems, high extensibility, which indicates to what degree users can

extend the operating systems, is important because it is more useful for applications to extend the

operating systems more fine-grainly. However, the higher extensibility tends to be more difficult

to extend the operating systems for programmers. Extremely speaking, if programmers modify

the source code of the operating systems, they can do everything, but this operating system is

not easy to extend since it is very hard for most programmers. The extensible operating systems

should consider the trade-off between extensibility and ability to easily extend.

As the most significant facility of the extensible operating systems, a fail-safe mechanism is

mandatory because the extensible operating systems must be protected from erroneous extension

modules. Unlike the operating system kernel provided by operating system vendors, extension

modules are also developed by third-party vendors. Therefore it is not realistic that the operating

systems require for all extension modules to be error free. It is said that operating systems are

easy to extend when they have robustness that the whole systems do not get unstable even if

unstable extension modules are installed. Such robustness makes programmers easy to develop

new extension modules and also helps users identify which extension module is erroneous when the

operating systems get unstable after they install several modules.

To achieve the robustness, the fail-safe mechanism must provide the ability to detect errors

of extension modules and the ability to recover from the errors. The errors of extension modules

should be detected as early as possible before it has a bad influence to the rest of the operating

systems. Also, it is important that the errors are detected as accurately as possible so that users

can identify the cause of them easily. After an error is detected, the fail-safe mechanism should

recover from the error in order to prevent the operating system from its influence. The fail-safe
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mechanism needs to always prepare for recovery so that it can recover from errors at any time.

The fail-safe mechanism should detect illegal memory accesses and deadlocks and then recover

from them. There are two kinds of illegal memory accesses: hardware-trapped memory accesses

and semantically illegal data modifications. The hardware-trapped memory accesses are detected

as segmentation faults or alignment faults. The segmentation faults occur when an extension

module accesses non-allowable memory; the alignment faults occur when an extension module

accesses memory with a bad alignment. The semantically illegal data modifications are detected by

checking for the contents of the data. For example, it should be detected as errors that a reference

count becomes negative or that a pointer points to an out-of-range address. On the other hand,

the deadlocks have various solutions: prevention, avoidance, detection. The fail-safe mechanism

had better use deadlock detection so as not to decrease the utilization of system resources.

However, there is also the trade-off between fail-safety and performance. Sufficient fail-safety

tends to degrade the performance of the extension modules because the fail-safe mechanism often

involves large overheads. Considering the trade-off, many extensible operating systems have been

proposed according to the purpose, but often must give up the fail-safety or something for the

performance.

2.2 Related Work

In this section, we describe previous approaches in terms of the fail-safety.

2.2.1 User-Level Extension Modules

The microkernel operating systems like Mach [1] enables the extension modules to implement as

user-level servers. At the early stage, most subsystems like file systems and network subsystems

are included in the single UNIX server [14]. Therefore, the whole UNIX server crashes if one

subsystem crashes due to the errors although the microkernel itself are not affected. To improve

this insufficient fail-safety, Mach supporting multi-server is proposed [15]. For example, user-

level protocol servers [35] allow a new network protocol to be implemented, and errors of each

protocol server are not propagated to the rest of the operating system. An erroneous server is

simply terminated by the kernel. The multi-server system achieves sufficient fail-safety, but the

performance is sacrificed because the overheads of inter-process communication (IPC) and context

switches are large [3, 7]. The performance of this cross-domain communication has been improved
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in recent years [22].

The Chorus operating system [38, 37] allows users to download the extension modules created

as the user-level servers into the kernel without recompiling them. This approach achieves both

sufficient fail-safety at the user level and good performance at the kernel level. However, since the

communication between the extension modules and the kernel is done by IPC even at the kernel

level, the downloaded module is not enough efficient. For instance, in the read operation, the

downloaded file system is 80% slower than the file system hand-crafted in the kernel [2].

2.2.2 Kernel-Level Extension Modules with Protection

Since the user-level servers tend to degrade the performance, some operating systems take ap-

proaches to download the extension modules into the kernel. Several UNIX systems like NetBSD

allow users to link a loadable kernel module (LKM) with the kernel dynamically. A LKM is im-

plemented as a part of the kernel and runs very efficiently after linked with the kernel. However,

the errors due to the module can make the whole operating system crash because fail-safety is not

considered at all.

To solve the problem of LKM, some extensible operating systems like VINO [43, 44] and

DECADE [29] protect the extension modules downloaded into the kernel from the rest of the

operating system. VINO use software fault isolation [49, 45] to protect the kernel from illegal

memory accesses due to the downloaded extension modules. It also limits the maximum amount

of resources that the extension module can use at any given time and automatically releases the

resources if a certain timeout expires. To recover from errors, VINO provides a kernel transaction

system. VINO thus provides a relatively light-weight and sufficient fail-safety, but VINO entails

certain fixed overheads even if the extension modules are enough stable. For instance, the overhead

of SFI used in VINO is always from 5% to 200%, depending on applications.

DECADE protects extension modules in the kernel from each other using a 64-bit address

space, and the rest of operating system is not involved with the crash of a module. To avoid

extra overheads, the extension modules are randomly located in the huge 64-bit kernel address

space and thereby almost all illegal memory accesses are detected by a page fault trap [50]. Also

DECADE provides a mechanism for safe inter-module calls and switches the stack frames at the

call to prevent erroneous modules from inspecting the stack frame. DECADE enables the system

administrator to consider the trade-off between safety and runtime overheads and to select what
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it does for each inter-module call. The overheads of the inter-module call are from 65% to 90% of

those between modules running in a separate address space, but the overheads are large, compared

with a procedure call in the kernel.

2.2.3 Kernel-Level Extension Modules using Safe Languages

As another approach to download the extension modules into the kernel safely, several systems use

language supports. The packet filter [26] is downloaded into the kernel and multiplexes network

packets to appropriate applications. Since the packet filter uses a language specific to multiplexing

packets, it does not suit for a general use. Moreover, the safe execution of packet filter gets rather

overheads. To reduce the overheads, more efficient packet filters have been proposed. The BSD

packet filter [24] redesigns the original stack-based packet filter and is up to 20 times faster. The

dynamic packet filter (DPF) [10] uses dynamic code generation and is 10% to 50% faster than the

other fastest packet filters.

The SPIN operating system [4] allows the users to download the extension modules written in

Modula-3 [27] into the kernel. Modula-3 is a type-safe language and does not cause memory access

violation at runtime. Although Modula-3 is a general language and enables programmers to write

most functions of operating systems, the facility of type-safeness may restrict the programming or

suffer extra overheads. For example, Plexus [13] can extend network subsystems on SPIN. When

an Ethernet header is read from byte-stream data received by a network device driver, the system

must copy the header from byte-stream data so that the header can be accessed safely. To reduce

this overhead, Plexus uses safe casts which restrict the accesses to a converted type. However, since

programmers can convert the byte-stream data to any types, it is not enough safe. Additionally,

because all memory accesses cannot be checked statically, SPIN also needs runtime checks like an

array range check.

2.2.4 User-Level Library per Application

The Exokernel operating system [11, 16] or some systems using protocol library [23, 48] link the

functions of operating systems as a library with application programs. The fail-safety is sufficient

since an only application with which the library is linked is affected if the extension module

created as a library crashes. In Exokernel, almost all functions of operating systems are exported

as a library operating system to reduce the number of cross-domain. The kernel provides only the
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facilities to bind resources securely and multiplex physical devices. Programmers can modify the

library to extend functions of the operating system, but that is as difficult as directly modifying

the monolithic kernel since the abstraction is very low.
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Chapter 3

Multi-Level Protection

3.1 Observation

We believe that a sufficient fail-safe mechanism is not always necessary because we can assume

that the extension modules are not malicious like those provided by trusted vendors. In many

extensible operating systems like SPIN and VINO, every user can install new extension modules

into the operating system and therefore a part of such extension modules may be malicious or

untrusted. To prevent the operating system from being crashed even in this case, the sufficient

fail-safe mechanism is always indispensable. On the other hand, if only system administrators

can install new extension modules into the operating system, the possibility in which malicious

extension modules are installed gets very lower. In this case, it is significant that the fail-safe

mechanism allows the extension modules to be executed as efficiently as possible and, at the same

time, detects the errors of the extension modules to protect the operating system.

In addition, we believe that the protection level provided by the fail-safe mechanism should be

changed depending on the stability of the extension modules since the errors of the extension mod-

ules go on decreasing little by little. For example, the sufficient fail-safe mechanism is needed when

programmers develop a new extension module, whereas any fail-safe mechanism is not necessary

when they release it as a product.

3.2 What is Multi-Level Protection?

We propose a new fail-safe mechanism called multi-level protection. The multi-level protection en-

ables users to change the protection level of the extension modules without modifying the binary
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Figure 3.1: Consideration of the trade-off between fail-safety and performance of extension modules

by the multi-level protection.

code. Using the multi-level protection, users can consider the trade-off between fail-safety and per-

formance. The maximum protection level achieves sufficient fail-safety, but the minimal protection

level does good performance. Figure 3.1 shows this concept roughly. For example, if an extension

module is unstable, users can use a complete fail-safe mechanism, sacrificing the performance. On

the other hand, if an extension module is stable, users can use a simplified fail-safe mechanism and

then improve the performance.

The multi-level protection changes the ability to detect errors and the ability to recover from

errors in order to change the protection levels. To decrease the ability of detection, some errors may

not be detected. Also, to decrease the ability of recovery, some errors may neither be prepared for

recovery nor be recovered from. For instance, the multi-level protection can allow illegal memory

reads in order to reduce the overheads of the detection. It can also record no logs for recovery in

order to reduce the overheads of the records.

To change the protection level without modifying the binary code of the extension modules, the

multi-level protection provides an API to which the extension modules should conform. This API

hides the differences between the implementation of fail-safe mechanisms. If programmers do not

conform to this API, for example, using privileged instructions or using system calls, this facility

is lost, but that is responsible to programmers. Also, the API exports the kernel data structure

of high abstraction to the extension modules, and therefore programmers are easy to extend the

operating system although the extensibility is not very high.
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3.3 Applicability

We describe how the multi-level protection is used from the point of view of developers and users

of extension modules.

3.3.1 Easy Development

So far, in many operating systems, the extension modules like file systems have been implemented

directly in the kernel, or have been re-implemented in the kernel after they were developed as user-

level libraries that emulates system calls, and so on for debugging. The former makes developers

hard to debug the extension modules although the finished modules are very efficient. On the other

hand, the latter makes developers write the extension modules twice for the emulation libraries

and the kernel modules although debugging at the user level is easy.

This means that only a single protection level is not enough to make the extension modules

easier to develop. The protection level of the extension modules should be changed during the

development since the kinds and frequencies of errors depend on the stability of the extension

modules. For instance, the extension modules include many errors at the beginning of the debug

phase, but they are getting stable.

The multi-level protection provides appropriate fail-safety in each development phase below.

In the debug phase, the fail-safe mechanism keeps the full capability of the protection even though

this involves the maximum performance penalties. The errors are detected immediately and the

accurate information of the errors is reported to programmers. These features considerably help

programmers identify the reason of the errors and fix them. Moreover, the fail-safe mechanism can

safely terminate the erroneous modules after they crash. Due to sufficient fail-safety, programmers

can make rapid prototyping of the extension modules.

In the beta-test phase, the fail-safe mechanism does not have to keep the full capability of

the protection. Rather it should run the extension modules as fast as possible so that the test

users are satisfied with the performance to some degree. If the extension modules achieve better

performance, more test users would use them and find more errors. Since the extension modules

are expected to be fairly stable in this phase, only relaxed protection is needed. For example, it

has only to detect and recover from a few kinds of errors depending on timing such as deadlocks.

Illegal memory accesses like an access of null pointer are expected not to frequently occur.

Finally, the extension modules released as a product need the fail-safe mechanism no longer.
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Unnecessary protection is removed and they can run as almost efficiently as one directly imple-

mented in the kernel by hand.

3.3.2 Extension Modules by Third-Party Vendors

There are a number of extension modules by third-party vendors. Such extension modules may be

unstable and crash every few days since the third-party vendors may misunderstand the specifica-

tion of the extension modules and may not test the extension modules sufficiently. They include

device drivers of minor devices like a CD-ROM changer and some third-party file systems like NT

file system (NTFS) for PC UNIX, which the operating system vendors officially do not support.

Although these unstable extension modules may frequently crash, the crash is acceptable if users

seriously want to use them at any cost. However, the rest of the operating system should be kept

stable even at that time.

The multi-level protection makes it possible to safely run these unstable extension modules. The

fail-safe mechanism protects the extension modules sufficiently, and safely detaches the extension

modules from the operating system if the extension modules crash. Therefore the rest of the

operating system is not affected by erroneous extension modules.

On the other hand, many extension modules supplied by the third-party vendors are stable and

do not need the fail-safe mechanism. The multi-level protection can run stable extension modules

without any protection and eliminate the performance penalties. If there is still a possibility that

the extension modules involve errors, the multi-level protection can run the extension modules at

a lower protection level and more efficiently.
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Chapter 4

Implementation

We have implemented the CAPELA operating system on the basis of NetBSD 1.3.2 [28]. CAPELA

is an extensible operating system with the multi-level protection proposed in Chapter 3. CAPELA

is running at Intel and SPARC platforms. But since the platform dependent part is a few, CAPELA

can be easily ported to the other platforms that NetBSD 1.3.2 supports.

4.1 Overview

In the CAPELA operating system, programmers can create the extension modules as programs

independent from the kernel in order to extend the functions of the operating system. The extension

modules are driven by events hooked in the operating system kernel and achieve the functions of

new subsystems, communicating with the kernel. The communication is done through a protection

manager provided by CAPELA. A protection manager is provided per extension module and is a

gateway between the extension module and the kernel. The protection manager provides a fail-

safe mechanism, cooperating the kernel, so that the extension module can manipulate the kernel

data safely. CAPELA provides multiple protection managers, each of which provides a different

protection level to the extension modules. CAPELA enables users to exchange the protection

managers in order to change the protection level of the extension modules, and thereby implements

the multi-level protection.

The implementation of the protection managers and the kernel for the extension modules at

the user level is largely different from that for the extension modules at the kernel level. In case

that an extension module is located at the user level, it needs shared memory for communication

with the kernel. The kernel uses an upcall mechanism to invoke the extension module when hooked
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Figure 4.1: The relationship among extension modules, protection managers, and the kernel.

events occur. In case that an extension module is located at the kernel level, the communication

between the extension module and the kernel is done through the kernel memory. The invocation

from the kernel to the extension module is a direct function call. Figure 4.1 depicts the overview

of the CAPELA operating system.

4.2 Changing Protection Levels

CAPELA allows users to change the protection level of an extension module by exchanging protec-

tion managers. CAPELA provides multiple protection managers, each of which provides a different

protection level and can detect and recover from a different kind of error. Depending on the stabil-

ity of the extension module, users can select the protection manager that provides an appropriate

protection level at that time. Figure 4.2 illustrates that protection manager 3 is selected from four

protection managers that provide various protection levels.

In the current implementation, the protection managers are implemented as a user-level library

or a kernel library. The user-level library is used when the extension module is running at the user

level, whereas the kernel library is used when the extension module is running at the kernel level.

Because of this difference, users need to use two different ways to change the protection levels.
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Figure 4.2: Changing the protection level of an extension module by selecting one of protection

managers.

When users change the protection level of the extension module between the user levels, they

only need to change its command line option and to restart it. In this case, relinking the extension

module with a new protection manager is not necessary because an old protection manager and new

one are involved in the same binary code. On the other hand, when users change the protection

level of the extension module between the user level and the kernel level, they need to relink

the extension module with a new protection manager. In case that users change the address

space where the extension module runs from the user level to the kernel level, users can link

the extension module with the kernel dynamically using the LKM mechanism after relinking the

extension module with the kernel library. In any case, it is unnecessary to recompile the extension

module. However, if recompiling the extension module is allowable, it can make the performance

of the extension module better, in particular, when the protection level gets the lowest.

4.3 Protection Manager

The protection manager has three kinds of responsibilities to an extension module. First of all, the

protection manager registers and unregisters the extension module to the kernel. In particular, it

safely detaches the extension module from the kernel even if the module terminates abnormally.
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Second, the protection manager plays a role of a gateway between the kernel and the extension

module. If the protection manager receives upcalls from the kernel, it invokes callback functions

of the extension module corresponding to the upcalls. Conversely, when the extension module

needs to access the kernel functions or the kernel data, the protection manager does that instead.

To play this role, the protection manager provides an API to the extension modules. Third, the

protection manager protects the kernel from errors of the extension module. Depending on the

protection level it provides, the protection manager protects the memory for the kernel data, or

replicates the kernel data.

4.3.1 API

The protection manager provides an API to which all the extension modules must conform so that

the extension modules can interact the kernel. Since all the protection managers the same API,

the protection levels of the extension modules can be changed without modifying the extension

modules. There is one API for callback functions and another for manipulation of the kernel data.

Although forcing all the modules to conform to this API may restrict the programming of the

extension modules, the advantages of changing the protection level without modification of the

extension modules outweigh the disadvantages of this restriction. If the extension modules are

malicious, the conformity to this API is not expected. However, we believe no extension modules

are malicious. The details of this API are described in Appendix A.

4.3.1.1 Callback Functions

The protection manager provides an API for callback functions invoked by upcalls from the kernel.

When an event hooked by an extension module occurs in the kernel, the kernel first notifies the

protection manager of the event as an upcall. Second, the protection manager that received the

upcall translates the arguments from data structure of low abstraction used in the kernel to one of

high abstraction used in the extension modules. Finally, the protection manager invokes a callback

function of the extension module.

To define programmers’ own callback functions, they should override methods of classes for

callback. CAPELA provides classes for callback and programmers can inherit them. For example,

FileSystem class is a class for callback on file systems. To develop a new file system, programmers

should inherit the class and override some methods such as mount() and read() if necessary.
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4.3.1.2 Manipulation of the Kernel Data

The protection manager provides an API to manipulate the kernel data because the extension

modules cannot directly access the kernel data in CAPELA for some reasons. First, this is because

the protection manager prevents the kernel data from being illegally accessed. The kernel data

is very complex since the execution efficiency is the most important and since pointers are used

very frequently. For example, mbuf has very complicated structure for both the generality and the

execution efficiency. Also, shared memory which the kernel data is put on is often protected by

the protection manager. In this case, the kernel data is accessed only after the protection manager

removes the protection of the shared memory.

The other reason is why CAPELA makes the extension modules deal with data structure of

high abstraction. The protection manager translates the kernel data structure of low abstraction to

one of high abstraction in order to hide the complexity of the kernel data structure. For instance,

programmers can manipulate a chain of mbufs asMbufChain class instead of manipulating multiple

mbufs with pointers. Also the API allows programmers only to increment and decrement a reference

count one by one.

The protection manager also provides an API equivalent to one provided by the kernel since

the extension modules running at the user level cannot directly use an API provided by the kernel.

For example, an NFS [39] server needs to access a local file system like UFS, and therefore an API

to access a local file system in the kernel is needed if the module of the NFS server is running at

the user level. To enable a UDP [30] module and a TCP [32, 6] module at the user level to access

an IP [31, 34] layer, an API for the operations to the IP layer is needed. The protection manager

issues system calls or emulates these facilities to achieve them.

4.3.2 Protection Techniques

CAPELA uses some protection techniques to detect illegal memory accesses and deadlocks. Various

combinations of these techniques enable the protection manager to provide various protection levels.

4.3.2.1 Detection of Illegal Memory Accesses

Hardware-Trapped Memory Accesses CAPELA uses switching address spaces to detect

illegal memory accesses. The extension modules are located either in a user address space or in the

kernel address space. If an extension module is located in a user address space, its illegal memory
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accesses to the kernel memory and the other processes’ memory are trapped by hardware of the

memory management unit (MMU) as illustrated in Figure 4.3. After the MMU detects such illegal

memory accesses, they are notified to the CAPELA operating system and then CAPELA can

terminate the extension module. The overheads for enabling this protection, however, are rather

large due to increasing the number of context switches and the amount of data copies between

address spaces. For instance, to pass data between an extension module at the user level and the

other user process, two context switches and two copies of the data are needed at least; whereas

only a context switch and a copy are needed at most between an extension module at the kernel

level and a user process. Also, if the extension module is a user process, CAPELA can prevent

the module from exhausting resources like CPU and memory by the limitation of the user process

mechanism.

To decrease these overheads, CAPELA also allows users to locate the extension modules in

the kernel address space. To embed an extension module into the kernel, the extension module is

linked with the kernel dynamically using the mechanism of loadable kernel module.

When an extension module are located in a user address space, the module and the kernel

use shared memory to communicate with each other. The important kernel data is put on this

shared memory and therefore destroying the memory causes CAPELA to crash or to get unstable.

To prevent the extension modules from illegally accessing the kernel data, CAPELA protects the

shared memory using the virtual memory subsystem. While the code fragments of the extension
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Smfs::write(Vnode* vp,...)
{
    ...
    uio->bulkWrite(vp,...);
    ...
}

Uio::bulkWrite(Vnode* vp,...)
{
    ...
    fs->strategy(bp);
    ...
}Smfs::strategy(Buf* bp)

{
    ...
}

module code library code

shared memory is protected.

shared memory is unprotected.

Figure 4.4: An example of changing the protection of shared memory according to the function

calls.

modules is executed, the shared memory is protected. On the other hand, while the code fragments

of the protection manager are executed, the protection is removed so that the protection manager

can access the kernel data on shared memory. That is to say, the protection of the shared memory

is removed when an extension module calls the functions of the protection manager, whereas the

shared memory is protected again when the functions are exited. Figure 4.4 depicts in which code

fragments shared memory is protected.

CAPELA allows the protection manager to select how the shared memory is protected. As

the strongest protection, the protection manager can unmap the shared memory. This enables

the protection manager to prevent the kernel data on the shared memory from being destroyed

and from being illegally read. Trapping illegal reads to the kernel data helps errors be detected

earlier although the illegal reads do not affect the system directly. As weaker protection, the

protection manager can change the protection of the shared memory to read-only. This enables

the protection manager to prevent the kernel data only from being illegally modified. In the

SPARC architecture, changing the protection to read-only is faster than unmapping the memory

and very useful because it sacrifices the ability of detection and can get better performance instead.

In the Intel architecture, however, the overheads to change the protection to read-only are almost

the same with the overheads to unmap the memory, and this protection appears to have both

lower ability of detection and poorer performance. However, in fact, because it is not necessary

to change the protection when the extension modules only read and do not modify the shared
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memory, this protection is often useful in either architecture. As the weakest protection, the

protection manager can also protect no shared memory. This leads good performance, sacrificing

the protection completely. Figure 4.5 illustrates three kinds of protections of shared memory.

Semantically Illegal Data Modifications The protection manager replicates the kernel data

and checks for the contents of replicas so that it can detect semantically illegal data modifications.

The extension modules access the replicas instead of the raw kernel data. The modifications to the

replicas are first checked and are then written back to the raw kernel data like Figure 4.6. To check

for the replicas, the protection manager uses various knowledges on the kernel data structure that

it supports. For example, the knowledges are: that the reference counts are 0 or positive, that the

size of each buffer is often limited by the minimum and the maximum, and that some data are put

on the shared memory necessarily.

CAPELA allows the protection manager to select what types of kernel data is checked and how

the kernel data is checked. For example, if users give up checking for any loops by pointers, the

protection manager does not need to traverse pointers and then the overheads of the traverse are

reduced although it is possible that the errors are detected lately or cannot be detected.
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4.3.2.2 Detection of Deadlocks

When the extension modules lock and unlock a resource, they should issue lock and wait system

call with the argument of LW LOCK and LW UNLOCK, respectively. Likewise, when they wait for a

locked resource, they should issue lock and wait system call with the argument of LW WAIT. Using

these information, the kernel of CAPELA detects whether deadlocks occur or not. Since deadlocks

are caused by the interaction not only among multiple threads in an extension module but among

multiple extension modules and the kernel, the kernel deals with the detection and recovery. The

detection and recovery in the kernel is mentioned in Section 4.4.5.

4.3.3 Other Topics

4.3.3.1 Emulation of Interrupt Level

The protection manager emulates interrupt disabling so that an upcall is not interrupted by another

upcall. In the kernel, the invocation of routines of subsystems is done from not only system calls

but also interrupt handlers. If an interrupt handler invokes a routine of a subsystem when a

system call has invoked the same routine, the integrity of the kernel states may be lost. To

prevent this, the kernel can disable interrupts by changing a CPU interrupt level. However, since

the extension modules at the user level cannot change a CPU interrupt level appropriately, the

protection manager changes an upcall enable flag in the kernel. If the protection manager needs
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to disable interrupts, it sets the upcall enable flag in the kernel, and the kernel does not issue any

upcalls while the flag is set. This is not complete emulation of an interrupt level, but enough to

run subsystems at the user level.

4.3.3.2 Thread

The protection manager uses threads so that it can process multiple upcalls which depend on each

other. For example, consider that, after an upcall which waits for a vnode of UFS is done to an

NFS module, the other upcall which waits for the same vnode to the same module is done. Since

the upcalls put data in the same stack, the growth of the stack of the former upcall destroys the

neighboring stack of the latter upcall if the former upcall continues first. Threads can prevent this

problem because each thread has an independent stack.

The threads that CAPELA provides are different from normal threads in two points. First of

all, the contexts of our threads are not switched periodically. Since each upcall should be executed

exclusively like when the functions of subsystems are executed in the kernel, context switches

between upcalls are done only when a thread yields CPU to sleep. Likewise, when a thread are

woken up by the kernel or the other thread, the thread is first entered into the runnable queue and

then switched after the current running thread terminates or sleeps. Second, our threads change

an upcall enable flag in the kernel for emulation of interrupts when the context is switched.

4.4 The Kernel

The kernel of the CAPELA operating system provides several facilities for enabling to create the

extension modules at the user level and to achieve the fail-safe mechanism.

4.4.1 Register and Unregister of Extension Modules

CAPELA provides the facility to register and unregister the extension modules. When an extension

module at the user level is registered, the protection manager issues modregist system call. In this

system call, the kernel first constructs information for the management of the extension module.

The information consists of an upcall handler, a process ID, a module name, an upcall enable

flag, the information of shared memory, and so on. The upcall handler is used when the extension

module is upcalled by events in the kernel. The process ID and the module name is used for

identifying the module. If the upcall enable flag is 0, upcalls to the extension module is disabled.
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The information of shared memory includes the address of the shared memory for communication

between the kernel and the extension module, the size, and so on. Finally, the system call invokes

a different routine for initialization depending on a type of the extension module, e.g. a file system

module, a network subsystem module, and so on.

When an extension module terminates normally or abnormally, the protection manager issues

modunregist system call. This system call first cleans up the kernel to get rid of the influence

of the extension module. This clean-up routine is the same with one for recovery described in

Section 4.4.4.

4.4.2 Shared Memory

CAPELA provides memory shared between the kernel and each extension module. System V

shared memory is provided in NetBSD 1.3.2, which is the base of CAPELA, but it is for general

use. This general shared memory allows users to limit the access right to the memory only in the

style of the UNIX access control. Therefore users can set readable, writable, and executable to

only three types of owner, group, and others. To make matters worse, checking for the access right

to the shared memory is done only once when it is mapped, and thereafter anyone can access the

memory with the specified access mode such as read-only or read-write. Such an access model is

not enough to keep shared memory safe from malicious user processes.

To solve this problem, we have implemented a new shared memory with fine-grain access control.

An extension module can access its own memory shared with the kernel freely. Our shared memory

appears to be the same with the general shared memory from the extension module, but it has two

different points. One is to be automatically mapped when the protection manager calls modregist

system call. Therefore our shared memory is not mapped illegally. The other point is to protect

the shared memory using shmprotect system call instead of mprotect system call. Since CAPELA

allows only the protection manager owning the shared memory to issue shmprotect system call, the

protection of our shared memory is not removed illegally.

CAPELA disables the shared memory to be accessed by the other user processes as illustrated

in Figure 4.7. It seems to be easy because CAPELA can make the other user processes not map the

shared memory of the extension module. However, it is necessary for the memory to be accessed

from the kernel even in these processes’ context. For instance, an user process issues read system

call and then the system call may access the shared memory of an extension module from the
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Figure 4.7: Shared memory with unique access control for communication between an extension

module and the kernel.

kernel. Since the kernel is permanently mapped into the high part of every process’s address space

in CAPELA, allowing the kernel to access to the shared memory simply causes to allow all the user

processes to access it. To enable only the kernel to access it, all the pages of the shared memory

is mapped as the pages inaccessible from the user address space. This is done by setting a bit of

a page table entry so that the page allows only the kernel to access. This fashion is general since

most of latest hardware have that bit.

Our shared memory has the limitation that it cannot be accessed in interrupt handlers. During

interrupts, a page table is undefined since any interrupt handlers are executed without relation to

any processes. Our shared memory can be swapped out unlike the kernel permanently resided on

physical memory, and then if a page fault occurs, it leads system crash.

Why does CAPELA use shared memory for communication between the kernel and each ex-

tension module? Many systems like Mach use IPC instead. The reason is why shared memory has

two advantages against IPC. First of all, communication using shared memory gets more efficient

than that using IPC. IPC needs to copy data from the kernel address space to an extension mod-

ule’s address space (the reverse is not always necessary), whereas shared memory needs no copy.

Second, shared memory enables to communicate complicated data structure more easily and more

efficiently. For example, shared memory allows data structure with pointers as long as the pointers
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point to the data on the same shared memory. In case of using IPC, the system must traverse

pointers and copy the data to which they point, or do that lazily when the data is needed.

Shared memory, however, has a disadvantage. Shared memory is dangerous because it can be

destroyed by an extension module owning it if the module has errors. On the other hand, IPC is

safer because the data for communication is copied from an extension module’s address space to

the kernel address space and because the extension module cannot destroy the kernel data directly.

But we believe that the dangerousness can be avoided. Our shared memory does not allow the

other user processes to access the memory illegally. Destruction of the shared memory by the

extension module owning it is prevented if the protection manager makes the protection level high

and protects the shared memory. We believe that the extension module is not malicious, and

therefore this is sufficient to avoid danger of the shared memory.

4.4.3 Upcall

When a hooked event occurs in the kernel, CAPELA issues an upcall to an extension module

hooking the event if the module is running at the user level. Exactly the upcall is received the

protection manager. Upcalls are implemented using a similar mechanism to signals. A routine for

calling an upcall handler, called trampoline code, are put on a user-level stack of every process on

initializing it like that for signals. There are two differences between upcalls and signals. From

this two points of view, we have implemented this new notification mechanism. First of all, upcalls

enable CAPELA to pass arguments to an extension module, whereas signals pass an only signal

number. Second, upcalls are a special mechanism that the only kernel can issue them, whereas

signals can be issued by not only the kernel but also all user processes and the system can be

confused.

Upcalls are done as follows:

1. When a process raises an event hooked by an extension module, CAPELA makes the process

sleep and then forces context switching to the process of the extension module to be upcalled.

Since a routine for context switching to an arbitrary process is not provided in NetBSD 1.3.2

of the base of CAPELA, we have implemented it newly.

2. An upcall routine puts an upcall handler, the arguments of the upcall and other information

for returning from the upcall on the user-level stack of the extension module. The arguments
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Figure 4.8: The movement of the control of the execution on upcall.

are allocated on the shared memory so that the extension module at the user level can access

them.

3. The upcall routine rewrites a return address from the kernel to the extension module of a

user process so that a new return address points to the trampoline code on the user-level

stack.

4. After the control of execution moves to the trampoline code, the routine invokes the upcall

handler passed by the argument.

5. After the upcall handler returns, the trampoline code issues upcallreturn system call, which

restores an original return address from the kernel and terminates the upcall.

Figure 4.8 shows the movement of the control of the execution.

Upcalls cannot be done during interrupts because it is impossible to switch the context from

an interrupt handler to the other processes, and because CAPELA does not allow an interrupt

handler to access the shared memory in order to allocate the arguments of upcalls. To avoid this

problem, CAPELA delays the upcalls that are issued during interrupts and the upcalls are done

after the interrupt handler finishes.
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4.4.4 Recovery from Illegal Memory Accesses

CAPELA has the ability to recover from an error of the extension modules so that the kernel is

not affected by the abnormal termination of erroneous modules. For the causes to make the kernel

unstable in the abnormal termination, it is considered (1)that the kernel data refers the shared

memory owned by the erroneous modules and (2)that the erroneous modules have modified kernel

states so as to get unstable.

In the former case, the kernel must modify the references to the shared memory so that the

kernel does not access non-existing memory and does not occurs a kernel fault. First of all, the

kernel removes all entries for the extension module. In the file system modules, for example, the

mount structure for the management of mount information is removed from the mount list. At the

same time, the kernel changes the vnodes for the current directory held by the process structure

if the directory is on the file systems. In the current implementation, the current directory is

changed to /. In the network subsystem modules, the protocol switch structure is removed from

the protocol switch table.

In the latter case, on the other hand, the kernel must restore the kernel states modified by the

erroneous modules so that the kernel is kept stable. To restore the kernel states, the kernel prepares

a log per extension module and records the operations with which kernel states are modified by

the extension modules in the log. In the current implementation, four operations are recorded:

increment and decrement of the reference count of vnodes, and lock and unlock of vnodes. To keep

the size of the log small, an operation recorded in the log is deleted when a new operation can

cancel out the previous operation. For instance, the increment and the decrement of the reference

count of the same vnode are cancelled out. Likewise, the lock and the unlock of the same vnode

are also cancelled out. When restoring the unstable kernel states, the kernel examines the log and

executes operations reverse to those in the log. For example, the reverse operation of the increment

of the reference count is the decrement, and that of the lock is the unlock. Figure 4.9 illustrates

the record of a lock operation in a log and the recovery based on the log.

4.4.5 Detection and Recovery of Deadlocks

CAPELA periodically checks whether the system falls into a deadlock state. When locking, un-

locking, and waiting for resources, the extension modules notify the system of that, so CAPELA

creates a wait-for-graph (WFG) on the basis of these information like Figure 4.10. Then CAPELA
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Figure 4.9: The record of operations in a log and the recovery based on the log.

checks for the WFG by examining the dependencies of resources. The algorithm for check are as

follows:

1. CAPELA marks all resources in the wait list of each thread of extension modules SL UNTOUCH.

2. For each wait list, CAPELA pushes all the resources into a stack and marks them SL INSTACK.

3. CAPELA peeks the top of the stack, and if the mark of the resource is SL EXTRACT, CAPELA

pops it from the stack, marks it SL DELETE, and repeat this operation of 3. Otherwise,

CAPELA marks it SL EXTRACT and search the thread of extension module that locks this

resource.

4. If there is no such thread, CAPELA backtracks previous operations so that all the resources

with SL EXTRACT mark on top of the stack are poped and are marked SL DELETE.

5. If such a thread exists, CAPELA examines each resource of the wait list of the thread. If

CAPELA finds out a resource with SL EXTRACT mark, there is a loop in the WFG, that is, the

system is in a deadlock state. If CAPELA finds out a resource with SL UNTOUCH, CAPELA

marks it SL INSTACK. If any resources of the wait list is not marked as SL UNTOUCH, CAPELA

backtracks.

CAPELA allows the protection manager to change the interval between checks for deadlocks.

If users want to detect deadlocks earlier and to prevent the suspension of the services by deadlock-
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ing modules as short as possible, they can make this interval shorter although this degrades the

performance of the whole system. On the other hand, if they want to decrease the overheads, they

can make the interval longer although it takes more time to detect deadlocks.

Because the occurrence of deadlocks depends on timing, CAPELA tries to resolve deadlocks

so that the deadlocking modules can continue to run. To destroy a loop in the WFG to resolve

deadlocks, CAPELA first finds out where the loop is and then temporarily releases one of the locks

in the loop. Although CAPELA should release the only lock that causes the deadlock, because

finding that lock is difficult, CAPELA releases one of locks in the loop randomly and stops the

module whose lock is released temporarily until it can obtain the lock again.

4.4.6 Special System Calls

CAPELA provides several special system calls for the protection manager to use internally. These

system calls are used to create extension modules at the user level and to achieve a part of facilities

of a fail-safe mechanism. Although not only the protection manager provided by CAPELA but

also the extension modules written by programmers can issue these system calls, we believe that

non-malicious extension modules do not do that.

modregist system call registers the process that issues this system call as an extension module

to the kernel. For the arguments, the type of the extension module, its name, an entry point for

receiving upcalls, and private data are passed. The type must be MLP FS for a file system module

and/or MLP NS for a network subsystem module in the current implementation. The name must be
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one that can identify the extension module. The private data is passed to an initialization routine

for each module type. CAPELA allows the only super user, that is the system administrators, to

use this system call so that normal user processes cannot install any extension modules illegally.

modunregist system call unregisters the extension module that issues this system call from the

kernel. In this system call, kernel states are cleaned up so that the unregistered module does not

leave a bad influence to the kernel. Since this system call allows the only process that has registered

as an extension module by modregist system call to unregister itself, the other user processes cannot

unregister any extension modules illegally.

shmalloc system call allocates the area of shared memory and returns the address. The maxi-

mum size is limited by the size of the shared memory. The only extension modules registered by

modregist system call can use this system call.

shmfree system call frees the area of shared memory indicated by the argument. If the address

to be freed does not point to the shared memory owned by the extension module, this system call

returns an error. Like shmalloc system call, this system call does not also allow to be used by

normal processes.

shmprotect system call changes the protection of shared memory. The argument is the com-

bination of PROT READ for read permission and PROT WRITE for write permission. The protection

of shared memory provided by CAPELA must be changed by this system call instead of mprotect

system call. mprotect system call does not allow to change the protection of the shared memory.

This system call are also secure because the only process owning the shared memory can use it.

upcallsuspend system call is used to wait for a signal or an upcall. On receiving a signal or an

upcall, the extension module first processes it and then return.

kernfunc system call executes kernel functions specified by the argument. Since this system call

may destroy the kernel data by the execution of kernel functions, normal user processes cannot use

it. Some examples of the defined kernel functions are as follows:

KF UCINTR This changes an upcall enable flag according to the argument.

KF WAKEUPALL This wakes up a kernel thread waiting for the identifier specified by the

argument.

KF GET NEW FSID This returns an unique file system identifier.
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KF VREF This increments a reference count of a vnode of a file system in the kernel. This is

used for NFS to access file systems in the kernel.

KF KERNFS GETATTR This returns an attribute of a vnode of a file system in the kernel.

This is used for NFS to access file systems in the kernel.

KF IP OUTPUT This calls the output routine of an IP layer.

KF SOSEND This sends a packet. The mbuf chain passed as the argument is copied to the

kernel memory so that it can be accessed in interrupt handlers of a network device driver.

KF RTALLOC This allocates a new routing table entry.

KF SOSETUPCALL This sets an upcall handler for a socket. The upcall is done when the

socket receives packets.

logctl system call controls the log for recovery. If the argument is RECLOG CHECK, the ker-

nel checks for the log to examine whether the kernel is unstable or not. If the argument is

RECLOG ROLLBACK, the kernel checks for the log and rolls back if the kernel is unstable. If the

size of the log is not zero, it is determined that the kernel states is unstable.

lock and wait system call notifies the kernel of locking, unlocking, waiting for, and waking up

on resources of the kernel such as vnode. When LW LOCK for locking and the pointer to a resource

are passed as the arguments, the kernel inserts the pointer in the lock list. The pointer inserted in

the lock list is removed when this system call is issued with the arguments of LW UNLOCK and the

same pointer. On the other hand, when LW WAIT for waiting for and the pointer to a resource, the

kernel inserts the pointer in the wait list. The pointer inserted in the wait list is removed when this

system call is issued with the arguments of LW WAKEUP or LW WAKEUP ALL and the same pointer. In

addition, waking up on resources are also done from wakeup routine in the kernel.

4.4.7 Other Topics

4.4.7.1 Insertion of Check Code

To protect the kernel from erroneous modules, code for check is inserted in the kernel. The code is

mainly inserted in the head of kernel functions, and checks for the validity of the arguments. This

validity check examines if the addresses that the arguments point to are safe. That an address is

safe means that it points to the kernel memory or shared memory of existing extension modules.
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If the validity check fails, the functions return an error if possible. The overheads of the check is

almost negligible since the comparison of addresses takes less time than the execution of a function

in many cases.

4.4.7.2 Optimized Memory Allocation

The kernel provides an optimized memory allocation routine for the extension modules at the

kernel level. Our extension modules allocate and destroy more memory than ones hand-crafted in

the kernel from the beginning because they frequently use temporary instances of classes, which are

data structure of high abstraction. Since the memory allocation routine has rather large overheads,

it becomes performance bottleneck. To solve this problem, the kernel allocates memory of a fixed

size before the extension modules start, and does not use the general memory allocation routine.

If the memory gets short, the kernel allocates more memory again for the extension modules.

4.5 Examples of Extension Modules

CAPELA allows users to extend the operating system every subsystem. The extension modules are

therefore relatively course-grain. We believe, however, that the suppression of extensibility makes

it easier to extend the operating system. If programmers want to change only a part of a subsystem,

they can create a new extension module that delegates the execution to the original subsystem

for the same routines. In the current implementation, CAPELA supports the development of file

systems and network subsystems.

4.5.1 File System Module

The file systems are one of subsystems that are developed the most. Since the file systems affects

the system performance largely, it is meaningful to improve the file systems and to develop new

file systems. In particular, distributed file systems such as AFS [40] and Coda [41] are researched

recently. CAPELA helps developers create such distributed file systems as well as local file systems.

In the current implementation of CAPELA, the file systems are implemented on top of the

virtual file system (VFS) [25]. The file system modules serve the applications while they are

mounted on directories. When they are mounted, FileSystem::mount method is called and then it

prepares for the file systems. When they are unmounted from the directories, FileSystem::unmount

method is called and then it cleans up the file systems. The most primitive operations for file
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systems are read and write of files. When a file is read, FileSystem::read method is called. This

method should read the contents of the file into a file buffer and copy it to a universal I/O buffer.

Conversely, when a file is written, FileSystem::write method is called. This method should copy

the contents of a universal I/O buffer to a file buffer and write it to a file on a physical device.

Additionally, the file system modules should support changing a directory, getting a file status,

getting directory entries, creating a file at least.

In distributed file systems, some of file operations like read and write are delegated to the

server. The server performs requested operations to the local file system like UFS. Since the server

may modify the states of the local file system in the kernel, the kernel records accesses to the local

file system in a log, preparing an unexpected accident.

Programmers must develop a mount(8) program specific to their file system. The mount pro-

gram should pass the unique name to identify the file system as an argument. The name is the

same with one used when the file system module is registered to the kernel, and is used to find out

a file system to be mounted. Also, the mount program can pass private data to FileSystem::mount

method of the file system. The starting four bytes of the private data must be the size of the data

because the data is copied between a process of the mount program and one of the file system

module if the module is a user process.

4.5.2 Network Subsystem Module

The network subsystems are indispensable to recent operating systems. When programmers de-

velop a new distributed file system, they often want to develop a new network protocol so that the

distributed file system can communicate between clients and servers most efficiently. As a more

close example to us, the present IP version 4 is being changed IP version 6 in order to prepare for

the shortage of IP address in the near future.

In the current implementation of CAPELA, the network subsystems are implemented on top

of an IP layer. The network subsystem modules serve the applications while they are bound to

a socket. When they are bound to a socket, NetworkSystem::attach method is called and then it

prepares for the network protocol. When they are detached from a socket, NetworkSystem::detach

method is called and then it cleans up the network protocol. The most primitive operations for

network subsystems are send and receive of packets. When a packet is passed from a socket layer

above, NetworkSystem::send method is called. This method should divide a packet if necessary,
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attach a protocol header, and call an output routine of an IP layer. Conversely, when a packet is

received on a network device driver, NetworkSystem::input method is called. This method should

control sequence of packets if necessary, and append it to a socket buffer. The data in a socket

buffer is read by recv system call.
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Chapter 5

Experiments

We experimented to make sure of the usefulness of the multi-level protection. We have three

purposes in the experiments. The first purpose is to make sure that the execution performance is

improved when users lower the protection level of the extension modules. The second is to measure

the overheads of the maximum protection level. These overheads are not too important because

the maximum protection level is used on debugging, but it is significant that the overheads are not

too large. The third purpose is to measure the overheads of the minimum protection level. These

overheads is caused by making the API of multiple protection managers same, and it is considered

that the multi-level protection enables the extension modules to be efficient if these overheads are

enough small.

For the experiments, we used two PCs, which have a Pentium II processor running at 400MHz.

Each PCs was equipped with 128MB of RAM and a 10Mbps Ethernet. All experiments with net-

work were made between two machines on the same Local Area Network (LAN). All measurements

were done using the CAPELA operating system.

Since it would have been too difficult to experiment with all combinations of the protection

techniques our system provides, we selected five characteristic combinations, listed in Table 5.1,

and experimented with them. These combinations can detect the errors on memory protection

listed in Table 5.2. We call the combination yielding the highest protection level the first level and

call the combination yielding the lowest level the fifth level.

The first level locates the extension modules in user address spaces, protects shared memory

from illegal memory reads and writes, and replicates the kernel data. The second level is different

from the first level in that it protects shared memory only from illegal writes. The third level does
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Protection technique 1st 2nd 3rd 4th 5th

Shared memory protection
√
*

√
**

Kernel data replication
√ √ √

Address space switch
√ √ √ √

Table 5.1: Five characteristic combinations of protection techniques. (*Unmap shared memory

**Change the protection of shared memory to read-only)

Type of error 1st 2nd 3rd 4th 5th

Illegal reads on shared memory
√

Illegal writes on shared memory
√ √

Semantically illegal data modifications
√ √ √

Illegal accesses to the kernel data
√ √ √ √

Table 5.2: Detectable errors on memory protection at each protection level.

not protect shared memory, but illegal accesses to shared memory may be able to be detected by

checking for the replicated kernel data. The fourth level does not even replicate the kernel data,

so illegal accesses to shared memory cannot be detected at all. However, it still receives a benefit

of the protection as a user process at least. Finally, at the fifth level, the extension modules are

embedded into the kernel without any protection. The extension modules at this level are exactly

the same with ones hand-crafted in the kernel from the beginning except the overheads for using

the same API among all protection levels.

For comparison, we have also measured hand-crafted version of extension modules in the kernel.

These extension modules have exactly the same performance with subsystems in NetBSD 1.3.2,

which has the traditional monolithic kernel.

5.1 File System Module

We have developed two file system modules: SMFS (Simple Memory File System) and SNFS

(Simple Network File System). SMFS is a RAM disk, whose files reside in memory. The block

size that SMFS can read and write from the memory at a time is 512 bytes. SNFS is a simplified

37



NFS [39], which consists of some clients and a server and communicates between the client and

the server using remote procedure call (RPC) [47]. The RPC is done using UDP, and the block

size that SNFS can read and write with RPC at a time is 512 bytes. The server reads and writes

real files from a local file system UFS.

5.1.1 File Copy

We measured the time needed to copy a file on our file system. Since copying a file is one of the

most fundamental operations to file systems, we can obtain the potential overheads of each of the

protection techniques used in CAPELA. A file was copied from our file system to the same file

system. The size of the copied file was 64KB and the block size for each read and write system call

was 8KB. In SNFS, the client communicated with the server through a 10Mbps network.

Figure 5.1 and Figure 5.2 show the results of this experiment. These two figures mean that

the performance of the file systems is improved when the protection level is lowered. The reason

that the second level suffers larger overheads than the first level is probably why changing the

protection of memory pages often takes more time than unmapping memory pages.

The ratio of the overheads of each protection level to the fifth level is described in Table 5.3.

In SMFS, the first level is 211% slower than the fifth level; and in SNFS, the first level is 70%

slower. These overheads are not small and the performance is rather degraded, but we think that

it is acceptable for debugging the file systems. The overheads of the fifth level to the hand-crafted

version are 3.7% and 1.4% in SMFS and SNFS, respectively, so they are almost negligible.

Since the above measurements were done just after booting computers, any caches like a file

buffer cache and a vnode cache almost never hit. When all the contents of a file to be copied

were cached and other caches were also hot, the result of the measurements on SMFS was like

Table 5.4. For all protection levels, the penalties due to cache miss reduce, so the apparent ratio

of the overheads increases. The first level is 640% slower than the fifth level, and the fifth level is

1st 2nd 3rd 4th 5th

SMFS 3.11 3.26 1.94 1.62 1.00

SNFS 1.70 1.74 1.25 1.09 1.00

Table 5.3: The ratio of the overheads to the fifth level in SMFS and SNFS.
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Figure 5.1: The time needed to copy a 64KB file on SMFS and the breakdown of the overheads.
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Figure 5.2: The time needed to copy a 64KB file on SNFS through a 10Mbps network and the

breakdown of the overheads.

39



1st 2nd 3rd 4th 5th hand-crafted

SMFS (hot cache) 29.1 30.8 14.1 10.4 4.0 3.3

Table 5.4: The time needed to copy a 64KB file on SMFS (hot cache). (msec)

1st 2nd 3rd 4th 5th hand-crafted

SNFS (localhost) 284 282 149 114 67.6 63.4

Table 5.5: The time needed to copy a 64KB file on SNFS without network. (msec)

18% slower than the hand-crafted version.

In SNFS, for comparison, we also measured the time needed to copy a 64KB file at a single host

because debugging of network file systems is often done at a single host. The server and the client

communicated without using Ethernet. Table 5.5 shows the result. The first level is 350% slower

than the fifth level, and the fifth level is 6.3% slower than the hand-crafted version. The overheads

are larger than SNFS through network, but we think that they are not too large to debug a SNFS

module.

5.1.2 Compile

We measured the time needed to compile a small program on our file system. Since compiling a

program is one of the most frequently used applications, we can obtain the realistic overheads of

our approach. The program consists of five source files and two header files of the C language and

had about 2,000 lines. We compiled the program using gcc 2.7.2.2. But temporary files were put

on the local file system.

Figure 5.3 and Figure 5.4 show the results of this experiment. In practical circumstances like

this experiment, the first level is 16% and 19% slower than the fifth level in SMFS and SNFS,

respectively. The performance is good enough even for normal use. In addition, the overheads of

the fifth level to the hand-crafted version are just 3.1% and 1.4% in SMFS and SNFS, respectively,

and are enough small. Also, in SNFS without network for comparison, the overheads of each

protection level are almost as efficient as in SNFS through network. (Table 5.6)
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Figure 5.3: The time needed to compile ps program on SMFS.
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Figure 5.4: The time needed to compile ps program on SNFS through a 10Mbps network.
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1st 2nd 3rd 4th 5th hand-crafted

SNFS (localhost) 2.21 2.31 1.95 1.90 1.82 1.79

Table 5.6: The time needed to compile ps program on SNFS without network. (sec)

5.2 Network System Module

We have developed two network subsystem modules: SUDP (Simple User Datagram Protocol)

and STCP (Simple Transmission Control Protocol). SUDP and STCP are exactly the same with

UDP [30] and TCP [32, 6], respectively, except that control operations have not implemented.

5.2.1 Round-Trip Latency

Round-trip latency reflects the overhead induced by a protocol when it transfers a packet from

sender to receiver. We sent a packet with data of 1 byte and measured the time needed from sending

a packet to receiving a packet to obtain round-trip latency. We repeated sending and receiving a

packet 1,000 times and divided the elapsed time by 1,000 to obtain an average round-trip latency.

Figure 5.5 and Figure 5.6 show the results of this experiment. These two figures mean that the

performance of network subsystems is improved when the protection level is lowered. The ratio

of the overheads of each protection level to the fifth level is described in Table 5.7. In SUDP, the

first level is 182% slower than the fifth level; and in STCP, the first level is 220% slower. These

overheads of the maximum protection are, we think, acceptable for debugging. The overheads of

the fifth level to the hand-crafted version are 12% and 2.8%. It is considered that the overheads in

SUDP are a little large because the send and input routines of SUDP are small and the overheads

for using the same API relatively get large.

For comparison, we also measured round-trip latency in SUDP and STCP at a single host

1st 2nd 3rd 4th 5th

SUDP 2.82 2.79 1.68 1.56 1.00

STCP 3.20 2.72 1.55 1.39 1.00

Table 5.7: The ratio of the overheads to the fifth level of round-trip latency in SUDP and STCP.
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Figure 5.5: Round-trip latency in SUDP through a 10Mbps network and the breakdown of the

overheads.
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Figure 5.6: Round-trip latency in STCP through a 10Mbps network and the breakdown of the

overheads.
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1st 2nd 3rd 4th 5th hand-crafted

SUDP (localhost) 1,152 1,079 419 355 103 74

STCP (localhost) 1,851 1,564 594 520 141 101

Table 5.8: Round-trip latency in SUDP and STCP without network. (µs)

without network. Table 5.8 shows the results. Both the overheads for the maximum protection

and for using the same API are rather large. This is because this measurement is the worst case

that it sends only one byte.

5.2.2 Throughput

Throughput is the other indicator to measure the execution performance of network subsystems.

Throughput indicates how much data is sent using a protocol per unit time. We did not measure

throughput for SUDP because it depends on the windowing and acknowledgment strategies. STCP

uses the same strategies with TCP, but SUDP does not provide the strategies like UDP. We

calculated throughput from the time needed from sending packets of total 1MB to receiving all the

packets. The buffer size of both send and recv system calls is 8KB.

Figure 5.7 shows the result of this experiment. Throughput of each protection level is near the

hand-crafted version. The overheads for the maximum protection are 10% and those for using the

same API are only 1.3%. However, when the packet transfer is done without network, throughput

is very low as shown in Table 5.9. Throughput of the first level is one tenth of that of the fifth

level, and that of the fifth level is still 35% lower than that of the hand-crafted version.

1st 2nd 3rd 4th 5th hand-crafted

STCP (localhost) 19.0 21.3 51.8 72.9 194 262

Table 5.9: Throughput in STCP without network. (Mbps)

5.2.3 SNFS with SUDP

We measured the performance of SNFS, which we have developed as a file system module, with

SUDP instead of UDP. Network file systems are one of the most usual and important applications
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Figure 5.7: Throughput in STCP through a 10Mbps network.

of datagram protocol, so we can obtain practical overheads of SUDP from this experiment. We

measured the time needed to copy a 64KB file on SNFS with SUDP. A file was copied from SNFS to

the same SNFS, and the block size for each read and write system call was 8KB. We experimented

using SNFS of the fifth level, which is embedded into the kernel.

Figure 5.8 shows the results of this experiment. Through a 10Mbps network, the first level is

75% slower than the fifth level, and the fifth level is 2.7% slower than the hand-crafted version.

These overheads are enough small for the purpose of each protection level. The result of this

experiment without network is shown in Table 5.10.

We also measured for SNFS of the fourth level, which is running at the user level. The results

are shown in Table 5.11. From this result, it is confirmed that the interaction between the two

1st 2nd 3rd 4th 5th hand-crafted

SNFS/5 (localhost) 336 312 140 115 47 42

Table 5.10: The time needed to copy a 64KB file on SNFS of the fifth level with SUDP without

network. (msec)
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10Mbps network.

1st 2nd 3rd 4th 5th hand-crafted

SNFS/4 (Ethernet) 517 526 400 351 297 290

SNFS/4 (localhost) 341 350 212 157 87 81

Table 5.11: The time needed to copy a 64KB file on SNFS of the fourth level with SUDP. (msec)

user-level modules can work properly, and that the overheads do not increase dramatically.

5.2.4 FTP with STCP

We measured the file transfer rate using FTP [33] with STCP instead of TCP. FTP is one of the

most frequently used applications of data-stream protocol, so we can obtain practical overheads of

STCP from this experiment. We received a 1MB file by get command of FTP and measured the

transfer rate.

The results are shown in Figure 5.9. Like throughput of STCP, influences due to the overheads

for the maximum protection level and for using the same API are small when a file is transfered

through a 10Mbps network. The transfer rate of the first level is 16% lower throughput than that
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Figure 5.9: The file transfer rate of FTP with STCP through a 10Mbps network.

1st 2nd 3rd 4th 5th hand-crafted

FTP (localhost) 2.24 2.47 5.76 7.77 16.0 19.4

Table 5.12: The file transfer rate of FTP with STCP without network. (MB/sec)

of the fifth level, and that of the fifth level is only 1.3% lower than that of the hand-crafted version.

The result of this experiment without network is shown in Table 5.12.

5.3 Source Code Translation

At the fifth level, which is the lowest protection level, the overheads of some of our extension

modules are not enough small due to the overheads for using the same API and for modifying

no binary codes of the extension modules among protection levels. The details of the overheads

are extra memory allocation for instances of classes, dispatches of virtual functions of the C++

language, extra function calls by the fact that inline extraction is impossible, and so on.

If the extension modules are allowed to translate the source codes and recompile them, these

overheads are reduced. To translate source codes, preprocessing of source codes is generally used.
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Macro is very helpful to preprocess source codes for programs of the C language, but it is not

enough powerful for C++ programs because C++ method invocation is difficult to be translated

by macro. Therefore OpenC++ [8] is useful to translate source codes of C++ programs. Using

OpenC++, we can translate C++ classes of higher abstraction to the kernel data structure. This

reduces the overheads of runtime translation between them. For example, the following code

fraction

int Smfs::write(Vnode* vp, Uio* uio, int ioflag, Ucred* cred)

{

uio->bulkWrite(vp, DEV_BSIZE, size, cred);

}

int Uio::bulkWrite(Vnode* vp, int blksize, int filesize, Ucred* cred)

{

}

is translated to

int Smfs::write(struct vnode* vp, struct uio* uio, int ioflag,

struct ucred* cred)

{

Uio_bulkWrite(uio, vp, DEV_BSIZE, size, cred);

}

int Uio_bulkWrite(struct uio* uio, struct vnode* vp, int blksize,

int filesize, struct ucred* cred)

{

}

We have translated the source code of the SUDP module and the SMFS module. But we

have done the translation by hand within the limits of OpenC++. For the SUDP module, we

measured latency when sending 1 byte packet through a 10Mbps network. For the SMFS module,

we measured the time needed to copy a 64KB file with all caches hot.

48



294

5th

279

translated

263

hand-
crafted

Latency (us)

0

100

200

300

Figure 5.10: Comparison of the latency in SUDP after source code translation.

The results are shown in Figure 5.10 and Figure 5.11. The translated SUDP module is 5.4%

faster than SUDP of the fifth level, and the overheads are 6.1% compared with the hand-crafted

one. For the SMFS module, the translated module is 10% faster than the hand-crafted one. It is

considered that this is due to CPU caches. In fact, when L1 and L2 caches of CPU are not used,

the hand-crafted SMFS module is 4% faster than the translated one. These results indicate that

source code translation makes the extension modules almost as efficient as hand-crafted ones.
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Chapter 6

Conclusion

6.1 Summary

We proposed the multi-level protection, which enables users to install the extension modules at

various protection levels without modifying the binary code. Users can change the protection level

depending on the stability of the extension modules. We have implemented the CAPELA operating

system, which is an extensible operating system with the multi-level protection. CAPELA provides

multiple protection managers, each of which provides a different protection level, and allows users

to change the protection level of the extension modules by exchanging the protection managers.

From some experiments, we confirmed that the performance of the extension modules is improved

if the protection level is lowered. Also, when the protection level is maximum, the overheads is

not too large to debug the extension modules. On the other hand, when the protection level is

minimum, the overheads is enough small to use them normally. As a result, it is considered that

the multi-level protection can support debugging erroneous extension modules and make stable

modules run efficiently.

6.2 Future Directions

• Kernel-level extension modules with protection
CAPELA should allow the extension modules to run at various protection levels at the kernel

level as well as at the user level. In the current implementation, the extension modules

embedded in the kernel run without any protection. However, since the differences between

the user level and the kernel level are large, it is useful for debugging to enable users to change
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the protection level at the kernel level. For instance, if the extension modules run with the

least protection in the kernel, the fail-safe mechanism may be able to detect timing-critical

errors other than deadlocks. DECADE [29] allows users to protect the extension modules in

the kernel and to change the protection levels to some degree, and then we believe that we

can use that framework for our purpose.

• Automatic change of protection levels
It is convenient for CAPELA to change the protection levels of the extension modules de-

pending to the stability automatically. To achieve this facility, there are two problems to

be solved. One is that CAPELA exchanges the protection managers without restarting the

extension modules. When the extension modules continue to run at the user level after the

protection level is changed, CAPELA must keep integrity of kernel data in regard to data

replication. If replication is stopped, all replicas must be written back to the raw kernel data.

Conversely, if replication is continued, all the kernel data must be replicated. When the ad-

dress space where the extension modules are located changes between a user address space

and the kernel address space, CAPELA must migrate the code and data of the extension

modules.

The other problem is when CAPELA changes the protection levels of the extension modules.

If CAPELA lowers the protection level in spite of an unstable module, the module would

make the whole system crash. But if CAPELA does not change the protection level in

spite of a stable module, the system performance would not be improved. We believe that

this problem can be solved using statistics information of the extension module only when

users desire changing the protection level automatically. If an extension module runs for a

longer time than certain threshold without detecting any errors, CAPELA should lower the

protection level. On the other hand, if an extension module crashed, CAPELA should start

the module with a higher protection level next time.

• Reducing the overheads for interaction between extension modules
The extensible operating systems suffer the overheads for interaction between their functions

since each function is modularized and that prevents efficient communication between each

other. For example, disk I/O buffers and network buffers have different data structure each

other, and therefore extra copies are needed between the two data structure. Some techniques
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have been proposed for the optimization specific to particular fields [9, 12]. We believe that

such inefficiency is generally solved by technologies of source code translation. The source

code translation enables different data structure to be dealt transparently. The translation

fundamentally requires recompilation of extension modules, but we think that it can be done

dynamically when the modules are installed in the operating systems.
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Appendix A

API Reference

The following API is one provided by the protection manager. Programmers of the extension

modules should conform to the API so that they can change the protection level of the extension

modules without modifying the binary code.

A.1 API for Callback Functions

API for callback functions is invoked to execute the functions of the extension modules by the

kernel. All the methods are virtual functions, and programmers should override them if necessary.

A.1.1 FileSystem class

All file system modules must inherit this class.

void init()

This is invoked to initialize the file system. It is used to initialize global data for the file

system.

int mount(Mount* mp, const String& path, FsOption* opt, Nameidata* ndp, Proc* p)

This is invoked to mount the file system. The argument path indicates a directory on which

the file system is mounted. Specific data for the file system is passed by opt, whose structure

is defined by mount(8) program for the file system. In this method, programmers should

create the root vnode and private data of the file system.

int start(Mount* mp, int flags, Proc* p)

This is invoked after mount().
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int unmount(Mount* mp, int mntflags, Proc* p)

This is invoked to unmount the file system. In this method, programmers should call vflush()

for mp to remove all vnodes in the vnode list of the file system, and then free the root vnode

and private data of the filesystem, if necessary.

int statfs(Mount* mp, Statfs* sbp, Proc* p)

In this method, programmers should set statistics information of the file system to sbp.

int root(Mount* mp, Vnode** vpp)

In this method, programmers should set a pointer to the root vnode to *vpp. A reference

count of the root vnode must be increased.

int vget(Mount* mp, int num, Vnode** vpp)

In this method, programmers should set to *vpp a pointer to a vnode whose has a node

number of num. A reference count of the vnode must be increased.

int sync(Mount* mp, int waitfor, Ucred* cred, Proc* p)

In this method, programmers should make all vnodes in the vnode list of the file system

synchronize using fsync().

int fhtovp(Mount* mp, struct fid* fhp, MbufChain* nam, Vnode** vpp, int* exflags,

Ucred** credanon)

In this method, programmers should translate a file handle fhp to a vnode and set a pointer

to it to *vpp. This is basically used in network file systems.

int vptofh(Vnode* vp, struct fid* fhp)

In this method, programmers should translate a vnode vp to a file handle fhp. This is basically

used in network file systems.

int quotactl(Mount* mp, int cmds, uid t uid, caddr t arg, Proc* p)

This is invoked by quotactl system call. The high 24-bit of cmds indicates a quota main

command: Q QUOTAON (enable quotas), Q QUOTAOFF (disable quotas), Q GETQUOTA (get limits

and usage), Q SETQUOTA (set limits and usage), Q SETUSE (set usage), and Q SYNC (sync disk

copy of the file system’s quotas). The low 8-bit of cmds indicates the type of quota: a user

quota or a group quota.

int access(Vnode* vp, mode t mode, Ucred* cred, Proc* p)

In this method, programmers should check an access right of a file specified by the vnode vp.
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int getattr(Vnode* vp, Vattr* vap, Ucred* cred, Proc* p)

In this method, programmers should set an attribute of a file specified by the vnode vp to

vap.

int setattr(Vnode* vp, Vattr* vap, Ucred* cred, Proc* p)

In this method, programmers should change the vnode vp according to the new attribute

vap. For example, if the size is changed, they should call truncate(). if the access time or the

modified time is changed, they should call update().

int lock(Vnode* vp)

In this method, programmers should set a flag for lock if necessary. The flag is often in private

data structure of the vnode vp.

int unlock(Vnode* vp)

In this method, programmers should clear a flag for lock if necessary.

int islocked(Vnode* vp)

In this method, programmers should check whether a flag for lock is set if necessary. If the

vnode is locked, return 1; otherwise, return 0.

int advlock(Vnode* vp, caddr t id, int op, struct flock* fl, int flags)

This is invoked to do advisory locks. Advisory locks mean that locks are enforced for only

processes that request locks; whereas locks enforced for every process without choice are said

to be mandatory locks.

int lookup(Vnode* dvp, Vnode** vpp, CompName* cnp)

In this method, programmers should look up a pathname specified by cnp and set a pointer

to a vnode looked up to *vpp. The argument dvp is the vnode of a directory on which the

file system is mounted. If the lookup successes, return 0; otherwise, return ENOENT. But if the

lookup fails and the lookup operation is for CREATE or RENAME, return EJUSTRETURN.

int open(Vnode* vp, int mode, Ucred* cred, Proc* p)

This is invoked to open a file specified by the vnode vp. In this method, programmers should

do something specific to the file system if necessary.

int close(Vnode* vp, int fflag, Ucred* cred, Proc* p)

This is invoked to close a file specified by the vnode vp. In this method, programmers should

do something specific to the file system if necessary.
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int create(Vnode* dvp, Vnode** vpp, CompName* cnp, Vattr* vap)

This is invoked to create a file. The argument dvp is the vnode of a directory to create a new

file. The argument cnp holds the name of a newly created file. The attribute of the file is

passed by vap. In this method, programmers should set a pointer to a newly created vnode

to *vpp.

int remove(Vnode* dvp, Vnode* vp, CompName* cnp)

This is invoked to remove a file by unlink system call. The argument vp is the vnode for

a removed file and dvp is the vnode for a parent directory of the file. The argument cnp

indicates the name of a file to be removed. In this function, programmers should call vrele()

to dvp and vp.

int read(Vnode* vp, Uio* uio, int ioflag, Ucred* cred)

This is invoked by read and readv system calls to read data from a file. In this method, pro-

grammers should copy the buffer of the vnode vp to uio. They may be able to use bulkRead()

for uio.

int write(Vnode* vp, Uio* uio, int ioflag, Ucred* cred)

This is invoked by write and writev system calls to write data to a file. The argument uio

holds data to be written. The size is returned by getResident() for uio. If the append flag

IO APPEND is set in the argument ioflag, programmers should append data to the end of a file

specified by the vnode vp. In this method, programmers should copy data of uio to the buffer

of the vnode vp. They may be able to use bulkWrite() for uio.

int bwrite(Buf* bp)

This is invoked to write the contents of the buffer bp to a file. Programmers can call only

bwrite() for bp.

int strategy(Buf* bp)

This is invoked to read from or write to a file. If the read flag B READ is set, programmers

should read from a file to the buffer bp; otherwise, they should write the contents of buffer bp

to a file. They can read from or write to devices, memory, network, and so on.

int bmap(Vnode* vp, daddr t bn, Vnode** vpp, daddr t* bnp, int* runp)

In this function, the logical block number bn should be translated to the physical block number

and a pointer to it is set to *bnp.
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int truncate(Vnode* vp, off t length, int flags, Ucred* cred, Proc* p)

This is invoked to change the length of a file. The argument length indicates a new length

of a file. The argument vp is the vnode for a file whose size is changed. If IO SYNC is set in

the argument flags, programmers should make the change in a synchronous mode. In this

method, programmers should allocate some disk blocks filled with zero if length is larger than

the length of the file. Otherwise, they should free some disk blocks and fill the contents of

the partial block following the end of the file with zero.

int fsync(Vnode* vp, Ucred* cred, int waitfor, Proc* p)

In this method, programmers should make dirty buffers on the vnode vp synchronize.

int update(Vnode* vp, struct timespec* access, struct timespec* modify,

int waitfor)

In this method, programmers should change an access time and a modified time of a file

specified by vp.

int inactive(Vnode* vp)

This is invoked to inactivate the vnode vp so that it is not used. In this method, programmers

should write dirty buffer back by vgone() for vp if necessary.

int reclaim(Vnode* vp)

This is invoked to reuse the vnode vp. In this method, programmers should call cachePurge()

and freePrivateData() for vp.

int abortop(Vnode* dvp, CompName* cnp)

This is invoked to abort an operation of the file system due to errors. In this method,

programmers should free memory for the pathname of cnp using freePathname() for cnp if

HASBUF is set and SAVESTART is not set in a flag of cnp.

int mkdir(Vnode* dvp, Vnode** vpp, CompName* cnp, Vattr* vap)

This is invoked to make a new directory. The argument dvp is the vnode for a directory where

a new directory is made. cnp indicates the new directory name to be created and vap holds

the attribute of a new directory, e.g. access permission. In this method, programmers should

set a pointer to a vnode for a new directory to *vpp.
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int rmdir(Vnode* dvp, Vnode* vp, CompName* cnp)

This is invoked to remove a directory. The argument dvp is the vnode for a directory where

a directory is made. vp is the vnode to be removed and cnp indicates the directory name to

be removed.

int readdir(Vnode* vp, Uio* uio, Ucred* cred, int* eofflag, off t* cookies,

int ncookies)

This is invoked by getdent system call to read a block of directory entries. In this method,

programmers should copy directory entries from the vnode vp for a directory to uio and should

set 1 to eofflag if all entries have been read.

int link(Vnode* dvp, Vnode* vp, CompName* cnp)

This is invoked to make a hard link to a file. The argument dvp is the vnode for a directory

where a hard link is created. vp is the vnode for an existing file to which a hard link is made.

cnp indicates the new file name for a hard link. In this method, programmers should make

sure that dvp and vp are on the same mount point, and should create a new file for a hard

link.

int symlink(Vnode* dvp, Vnode** vpp, CompName* cnp, Vattr* vap, char* target)

This is invoked to make a symbolic link. The argument dvp is the vnode for a directory

where a symbolic link is created. cnp indicates the new file name for a symbolic link and vap

holds the attribute of a new file for a symbolic link. target is the string used in creating the

symbolic link. In this method, programmers should create a new file for a symbolic link and

write target to the file.

int readlink(Vnode* vp, Uio* uio, Ucred* cred)

This is invoked to read the contents of a symbolic link. The argument vp is the vnode for a

symbolic link to be read. In this method, programmers should copy the contents to uio.

int mknod(Vnode* dvp, Vnode** vpp, CompName* cnp, Vattr* vap)

This is invoked bymknod andmkfifo system calls in order to create a special file. The argument

dvp is the vnode of a directory to create a new file. The argument cnp holds the name of a

newly created file. The attribute of the file is passed by vap. In this method, programmers

should set a pointer to a newly created vnode to *vpp.
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int ioctl(Vnode* vp, u long command, caddr t data, int fflag, Ucred* cred, Proc* p)

This is invoked by ioctl and fcntl system calls. The arguments command and data are passed

by system calls. fflag is O RDONLY, O WRONLY, and so on.

int pathconf(Vnode* vp, int name, register t* retval)

This is invoked by fpathconf system call. The argument name is PC NAME MAX, PC PATH MAX,

and so on. In this method, programmers should set the return value to retval.

A.1.2 NetworkSystem class

All network subsystem modules must inherit this class. In the current implementation, program-

mers can write network protocols over IP such as UDP and TCP.

void init()

This is invoked to initialize the network subsystem. It is used to initialize global data for the

network subsystem.

int attach(Socket* so, long proto, Proc* p)

This is invoked by socket and accept system calls. In this method, programmers should create

a new protocol control block using allocateInPcb() for so.

int detach(Socket* so, Proc* p)

This is invoked by close system call. In this method, programmers should destroy the protocol

control block returned by getInPcb() for so using the destructor for the protocol control

block.

int bind(Socket* so, SockAddr* nam, Proc* p)

This is invoked by bind system call. The argument nam indicates the local address to be

bound to a socket so. In this method, programmers should call bind() for the protocol control

block returned by getInPcb() for so.

int listen(Socket* so, Proc* p)

This is invoked by listen system call. In this method, programmers should call bind() if the

local port has not been allocated yet. Next, they should change the protocol state to a listen

state.
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int connect(Socket* so, SockAddr* nam, Proc* p)

This is invoked by connect system call. The argument nam indicates the address of a socket

with which so is connected. In this method, programmers should call bind() if the local port

has not been allocated yet. Next, they should call connect for the protocol control block

returned by getInPcb() for so.

int disconnect(Socket* so, Proc* p)

This is invoked by close system call. In this method, programmers should close the socket so

soon if the connection is not established. If SO LINGER is set for the socket option and the

linger interval is 0, they should close the socket after they send pending data. Otherwise,

they should make the socket a disconnecting state using setDisconnecting(), flush the receive

buffer of the socket, and then close the socket.

int accept(Socket* so, SockAddr* nam, Proc* p)

This is invoked for a newly created socket so by accept system call. In this method, program-

mers should set the address of the socket with which so has been connected to nam using

setPeerAddr() for the protocol control block returned by getInPcb() for so.

int shutdown(Socket* so, Proc* p)

This is invoked by shutdown system call. In this method, programmers should make the

socket so a state where the socket cannot send more packet, and close it.

int recvd(Socket* so, long flags, Proc* p)

This is invoked when a packet is received with PR WANTRCVD set in the protocol. In this

method, programmers can send an acknowledgment to the received packet.

int send(Socket* so, MbufChain* m, SockAddr* nam, MbufChain* ctrl, Proc* p)

This is invoked by send, sendto, and sendmsg system calls. The argument m is the data

to be sent and nam indicates the address to which the data is sent. In connection-oriented

protocols, nam is NULL. In this method, programmers should call connect() for the protocol

control block returned by getInPcb() for so if nam is not NULL. Next, they should attach a

protocol header to m and call IP::output() to pass the packet to a lower layer.

int recvOOB(Socket* so, MbufChain* m, long flags, Proc* p)

This is invoked to read out-of-band data present on the socket so. In this method, program-

mers should copy the data to m.

66



int sendOOB(Socket* so, MbufChain* m, SockAddr* nam, MbufChain* ctrl, Proc* p)

This is invoked to send the out-of-band data m by send, sendto, and sendmsg system calls.

Currently, this method is supported only by connection-oriented protocols. In this method,

programmers should attach a protocol header to m and call IP::output().

int sockAddr(Socket* so, SockAddr* nam, Proc* p)

This is invoked to the local address of the socket so. In this method, programmers should set

the address to nam using setSockAddr for the protocol control block returned by getInPcb()

for so.

int peerAddr(Socket* so, SockAddr* nam, Proc* p)

This is invoked to the address with which the socket so is connected. In this method, pro-

grammers should set the address to nam using setPeerAddr for the protocol control block

returned by getInPcb() for so.

int abort(Socket* so, Proc* p)

This is invoked to abort sending packets. In this method, programmers should drop pending

packets.

int control(Socket* so, u long cmd, caddr t data, Proc* p)

This is invoked to process protocol specific ioctl by ioctl and fcntl system calls. The arguments

cmd and data are passed by system calls. In this method, programmers can call Ip::control().

int sense(Socket* so, struct stat* ub, Proc* p)

This is invoked by fstat system call. In this method, programmers should set the socket status

to ub.

int connect2(Socket* so, Socket* so2, Proc* p)

This is invoked by socketpair system call. In this function, programmers should connect so

and so2 if necessary.

int input(MbufChain* m, int hlen)

This is invoked when the IP layer receives a packet. The argument m is the packet with an

IP header, IP options, and a header and options of this protocol. hlen indicates the length

of the IP header and IP options. In this method, programmers should trim all headers and

options and chain it to the receive buffer of the socket. The socket is returned by getSocket()

for the protocol control block which is looked up by InPcb::lookup() from the IP addresses

and ports of the source and the destination.
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void* ctlinput(int cmd, SockAddr* sa, void* data)

This is invoked to process control information from lower layers. The argument cmd is the

command, for example, PRC IFDOWN for interface transition or PRC REDIRECT HOST for host

routing redirect. sa is the address in the lower layer.

int ctloutput(int op, Socket* so, int level, int optname, MbufChain*& mp)

This is invoked to process control information by setsockopt and getsockopt system calls. The

argument level indicates the layer to process control information. op is PRCO SETOPT to set an

option or PRCO GETOPT to get an option. optname indicates the name of the option and mp

indicates the value of the option to be set. In this method, programmers should process control

information if level indicates this protocol, e.g. IPPROTO TCP for TCP. They should set the

value contained by mp to the option if op is PRCO SETOPT, whereas they should set mp to the

value of the option. If level does not indicate this protocol, they should call Ip::ctloutput().

void drain()

This is invoked when memory is in short supply. In this method, programmers should free

memory as much as possible.

void sysctl(int* name, u int namelen, void* oldp, size t* oldlenp, void* newp,

size t newlen)

This is invoked by sysctl system call.

void sysFastTimeout()

This is invoked every 200 miliseconds.

void sysSlowTimeout()

This is invoked every 500 miliseconds.

void soUpcall(Socket* so)

This is invoked when the socket so is woken up for read by input() and so on. In this method,

programmers can read packets without blocking by receive() for so.

A.2 API for Manipulating the Kernel Data

We describe an API for manipulating the kernel data in the current implementation. Basically, we

explain all methods, but the description of some methods are omitted. Also, the below is an API

necessary for developing sample modules, and is not complete.
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A.2.1 Common

The following classes are commonly used in every subsystem module.

A.2.1.1 System class

This is the class for the whole system.

struct timeval getCurrentTime()

This is a static method. This returns the current time in the timeval format.

struct timespec getCurrentTimeSpec()

This is a static method. This returns the current time in the timespec format.

int sleep(caddr t id, int priority, const char* msg)

This is a static method. This makes the current thread of the extension module sleep with

the priority priority until it is woken up on id by wakeup(). msg is used for debugging.

void wakeup(caddr t id)

This is a static method. This wakes up the thread of the extension module made slept by

sleep() on id.

void timeout(void (*ftn)(void *), void* args, int msec)

This is a static method. This creates a new thread that executes the function ftn with the

argument args and makes it sleep for msec miliseconds.

A.2.1.2 Interrupt class

This is the class for handling the level of interrupts.

void disableSoftNet()

This disables interrupts from protocol stacks.

void enableAll()

This enables interrupts by disabling function like disableSoftNet().

A.2.1.3 Proc class

This is the class for handling a process. This class is currently used only for an identifier and has

no methods.
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A.2.1.4 String class

This is the class for handling strings.

methods: getChar, substring, length, compare

A.2.1.5 PList class

This is the class for handling a pointer list.

methods: head, tail, size, insertHead, insertTail, remove, removeHead, removeTail

This class has an internal class Iterator. It is used to traverse the list.

methods: head, tail, prev, next, current, insertBefore, insertAfter, remove

A.2.1.6 List class

This is the class for a special list. Programmers cannot directly use or inherit this class.

methods: head, hasNode, insertHead, remove

This class has an internal class Iterator. The methods are the same with PList class.

A.2.1.7 TailQueue class

This is the class for a special tail queue. Programmers cannot directly use or inherit this class.

This class has the same methods with List class, but the internal algorithm is different.

A.2.1.8 CircleQueue class

This is the class for a special circular queue. Programmers cannot directly use or inherit this class.

This class has the same methods with List class, but the internal algorithm is different.

A.2.2 File System

The following classes are used in file system modules.
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A.2.2.1 Mount class

This is the class for handling the mount structure per file system.

void setPrivateData(void* data) const

This sets the file system specific data to data.

void setFlags(int flag)

This sets the bits of flag in the flag. The type of the flag is MNT RDONLY for a read-only file

system, MNT LOCAL for a local file system, and so on.

VnodeList* getVnodeList() const

This returns the list of vnodes that the file system has.

void getNewFsid(const String& name)

This generates a new identifier of the file system from name and sets it to the structure for

statistics information of the file system.

Vnode* getNewVnode()

This creates a new vnode and return it. The vnode is inserted in the vnode list. To create a

new vnode, programmers cannot use the constructor of Vnode directly.

int vflush(Vnode* skipvp, int flags)

This removes all vnodes in the vnode list except skipvp. If FORCECLOSE is set in flags, the

vnode is written back. For skipvp, the root vnode of the file system is often specified.

Mount* getVfs(fsid t* fsid)

This is a static method. This returns the mount structure of the file system identified by

fsid.

others: getPrivateData, freePrivateData, getStatfs, clearFlags, checkFlags

A.2.2.2 Statfs class

This is the class for handling the statistics information of the file system.

void setName(const String& name)

This sets the name of the file system to name. The length of the name must be less than 16.

void setPath(const String& path)

This sets the directory on which the file system is mounted to path. The length of the

pathname must be less than 90.
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void setFsName(const String& fsname)

This sets the file system specific name to fsname. For example, fsname is a hostname from

which the file system is mounted for NFS.

void setFlags(short flags)

This sets the bits of flags in the flag. The type of the flag is the same with one of Mount

class.

void setBlockSize(long size)

This sets the data block size to size.

void setIOSize(long size)

This sets I/O block size to size. This size is often the same with the data block size.

void setBlockNum(long size)

This sets the number of total data blocks to size.

void setFreeBlockNum(long size)

This sets the number of free data blocks to size.

void setAvailBlockNum(long size)

This sets the number of available data blocks to size.

void setNodeNum(long size)

This sets the number of total file nodes to size.

void setFreeNodeNum(long size)

This sets the number of free file nodes to size.

long getFsid() const

This returns a part of the identifier for the file system.

long getFullFsid() const

This returns the full identifier for the file system.

others: getName, getPath, getFsName, getFlags, changeFlags, getBlockSize, getIOSize,

getBlockNum, getFreeBlockNum, getAvailBlockNum, getNodeNum, getFreeNodeNum

A.2.2.3 Vnode class

This is the class for handling the file node.

void setPrivateData(void* data)

This sets the file system specific data for this vnode to data.
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void setType(enum vtype type)

This sets the type of this vnode. For example, VREG is for a regular file, VDIR is for a directory,

and so on.

void setTag(enum vtagtype type)

This sets the tag type of this vnode to type. The tag type stands for the type of file systems.

void setFlags(u long flag)

This sets the bits of flag in the flag. The type of the flag is VROOT for the root vnode, and so

on.

int getUseCount() const

This returns the reference count for the number of users that are open for reading and/or

writing. Use vref(), vput(), and vrele() if you want to increment or decrement this count.

int getNumOutput()

This returns the number of writes in progress.

int getWriteCount() const

This returns the reference count for the number of writers which reference the vnode.

int getHoldCount() const

This return the reference count for the number of pages and buffers which are associated with

the vnode.

void lock()

This sets the lock flag.

void wait(int priority = -1, const char* msg = "")

This makes the current thread sleep until wakeup() is called for the vnode. priority and msg

are passed to System::sleep().

void wakeup()

This wakes up the thread made sleep by wait() for the vnode.

void vref()

This checks that the reference count of users is positive and then increments it.

void vput()

This calls FileSystem::unlock() and then calls vrele().
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void vrele()

This decrements the reference count of users. If the count gets 0, it calls FileSys-

tem::inactive().

void vhold()

This increments the reference count of pages and buffers.

void holdRele()

This checks that the reference count of pages and buffers is positive and then decrements it.

int vget(int lockflag)

This increments the reference count of users and calls FileSystem::lock() if lockflag is 1.

int vinvalBuf(int flags, Ucred* cred, Proc* p)

This flushes out and invalidate all buffers associated with the vnode. If V SAVE is set, this

calls FileSystem::fsync() and calls FileSystem::bwrite() for buffers with the flag B DELWRI.

void vclean(int flags)

This disassociates the file system from the vnode. If DOCLOSE is set in flags, this calls vinval-

Buf() and FileSystem::close(). This calls FileSystem::inactivate() if necessary, and then calls

FileSystem::reclaim().

void vgone()

This calls vclean with the argument of DOCLOSE.

void cachePurge()

This flushes the cache for the vnode.

void vwakeup(Buf* bp)

This updates outstanding I/O count and does wakeup if requested.

int vaccess(mode t file mode, uid t uid, gid t gid, mode t acc mode, Ucred* cred)

const

This checks for the access right of the vnode.

BufList* getCleanList() const

This returns the list of clean buffers associated with the vnode.

BufList* getDirtyList() const

This returns the list of dirty buffers associated with the vnode.
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int lookup(Nameidata* ndp)

This looks up the pathname. Programmers should pass ndp whose vnode for a starting

directory and component name are set.

others: getPrivateData, freePrivateData, getType, getTag, clearFlags, checkFlags, getMount,

getDevice, unlock, isLocked, isWaiting, incrUseCount, decrUseCount, incrNumOutput,

decrNumOutput, decrHoldCount, destroy

A.2.2.4 VnodeList class

This is the class for a list of vnodes. The methods are the same with List class.

A.2.2.5 Vattr class

This is the class for an attribute of a vnode.

void setUid(uid t uid)

This sets the owner user ID to uid.

void setGid(gid t gid)

This sets the owner group ID to gid.

void setBytes(u quad t bytes)

This sets the size of disk space held by a file to bytes.

void setBlockSize(long size)

This sets the block size perferred for I/O to size.

void setGeneration(u long gen)

This sets the generation number of a file to gen.

void setFlags(u long flags)

This sets the bits of flags in the flag. The type of the flag is APPEND, IMMUTABLE, and so on.

void setType(enum vtype type)

This sets the vnode type to type.

void setMode(u short mode)

This sets the file access mode to mode. The mode is VREAD, VWRITE, and/or VEXEC.

void setNlink(short nlink)

This sets the number of references to a file to nlink.
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others: setUid, getUid, setGid, getGid, getBytes, getBlockSize, setGeneration, changeFlags,

setFsid, setDevice, getDevice, getMode, getNLink, setFileid, getFileid, setSize,

getSize, setAccessTime, getAccessTime, setChangeTime, getChangeTime, setModifiedTime,

getModifiedTime, create, destroy

A.2.2.6 Nameidata class

This is the class for pathname lookup.

void setPathLength(int len)

This sets the length of a pathname to len.

void setStartDir(Vnode* vp)

This sets the vnode for a starting directory.

Vnode* getVnode()

This returns the vnode of the result of pathname lookup.

Vnode* getParentVnode()

This returns the vnode of a directory where the result vnode is.

others: getCompName, getStartDir, create, destroy

A.2.2.7 CompName class

This is the class for a component name used in pathname lookup.

const String& getName() const

This returns the pathname to be looked up.

void setFlags(u long flags)

This sets the bits of flags in the flag. The type of the flag is LOCKLEAF for locking a vnode,

LOCKPARENT for locking aparent vnode.

void setNameiOp(u long op)

This sets the operation for which the pathname lookup is done. The operation is LOOKUP,

CREATE, DELETE, or RENAME.

void setPathName(const String& path)

This sets the pathname to path.

others: getNameLen, checkFlags, changeFlags, setUcred, getUcred, setProc, getProc,

freePathname
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A.2.2.8 Buf class

This is the class for handling the file buffer.

void lock()

This sets the lock flag.

void setBusy()

This sets the busy flag.

void wait(int priority = -1, const char* msg = "")

This makes the current thread sleep until wakeup() is called for this buffer. priority and msg

are passed to System::sleep().

void wakeup()

This wakes up the thread made sleep by wait() for this buffer.

void setFlags(long flag)

This sets the bits of flag in the flag. The type of the flag is B ASYNC for asynchronous I/O,

B DELWRI for delay I/O, B READ for reading a buffer, and so on.

void setReadUcred(Ucred* cred)

This sets the credentials for read to cred.

void setResident(long resid)

This sets the size of data remaining in this buffer.

void setDirtyOffset(int off)

This sets the offset of dirty region in this buffer.

void setDirtyEnd(int end)

This sets the end of dirty region in this buffer.

void setValidOffset(int off)

This sets the offset of valid region in this buffer.

void setValidEnd(int end)

This sets the end of valid region in this buffer.

long getSize() const

This returns the size of this buffer.

void setError(int error)

This sets the error for this buffer.
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void bremFree()

This removes this buffer from the free list.

void brelse()

This release this buffer on to the free list.

void brelVp()

This disassociates this buffer from a vnode.

void bgetVp(Vnode* vp)

This associates this buffer with the vnode vp.

int bwrite()

This writes out the contents of this buffer.

int bioWait()

This waits for operations on this buffer to complete. This method returns an error if it fails

the operations.

void bioDone()

This marks I/O complete on this buffer. If the operations are not asynchronous, it wakes up

a thread waiting for this buffer.

int bread(Ucred* cred, int async = 0)

This reads a disk block to this buffer.

void clrBuf()

This clears the data area of this buffer by zero.

void copyIn(caddr t addr, int size = -1, off t offset = 0)

This copies memory of addr to this buffer with the offset offset by size. If size is -1, the size

of copy is the buffer size.

void copyOut(caddr t addr, int size = -1, off t offset = 0)

This copies the data of this buffer with the offset offset to memory of addr by size. If size is

-1, the size of copy is the buffer size.

caddr t getData() const

This returns the pointer to the data of this buffer.

Buf* getBlock(Vnode* vp, daddr t lblkno, int size)

This is a static method. This returns a new buffer with the size of size. If a buffer associated

with the vnode vp and the logical block number lblkno exists, this returns it.
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others: unlock, isLocked, clearBusy, isBusy, isWaiting, setPhysicalBlockNum,

getPhysicalBlockNum, setLogicalBlockNum, getLogicalBlockNum, setVnode, getVnode,

getReadUcred, setWriteUcred, getWriteUcred, getResident, setProc, setDevice,

getDirtyOffset, getDirtyEnd, getValidOffset, getValidEnd

A.2.2.9 BufList class

This is the class for a list of buffers. The methods are the same with List class.

A.2.2.10 BufQueue class

This is the class for a queue of buffers. The methods are the same with TailQueue class.

A.2.2.11 Uio class

This is the class for handling a universal I/O buffer.

int read(Vnode* vp, daddr t lblkno, int xfersize, off t offset, int blksize,

Ucred* cred)

This calls FileSystem::strategy and then copies the contents of the file buffer read to this

buffer. The arguments vp and lblkno indicate the file and the logical block number to be read,

respectively. The file is read from offset by xfersize. blksize is the size of a file buffer read at

a time.

int bulkRead(Vnode* vp, int blksize, int filesize, Ucred* cred)

This reads the contents of a file to this buffer by filesize, repeating to call read().

int write(Vnode* vp, daddr t lblkno, int xfersize, off t offset, int blksize,

int filesize, Ucred* cred)

This fills the contents of this buffer to a file buffer and then calls FileSystem::strategy to write

out the buffer to a file.

int bulkWrite(Vnode* vp, int blksize, int filesize, Ucred* cred)

This writes out the contents of this buffer to a file by filesize, repeating to call write().

void setOffset(off t off)

This sets the offset at which the operation should start.

void setResident(int resid)

This sets the size of data remaining in this buffer.
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void setIovec(struct iovec* iov, int iovcnt = 1)

This sets the I/O vector array to this buffer. The size of array is iovcnt.

int copyIn(caddr t cp, int size)

This fills this buffer with the contents of cp by size.

int copyOut(caddr t cp, int size)

This copies the contents of this buffer to cp by size.

others: getOffset, getResident, setProc, getProc, getIovec, getIovCount

A.2.2.12 DirEntry class

This is the class for a directory entry.

DirEntry(u int32 t fileno, u int16 t reclen, u int8 t type, const String& name)

This is a constructor of DirEntry class.

int pack(Uio* uio) const

This copies the directory entry to uio.

u int16 t length() const

This returns the length of this directory entry.

u int8 t getType() const

This returns the file type. For example, DT REG is for a regular file.

const char* getName() const

This returns the file name.

others: getFileNo, getNameLen

A.2.2.13 Ucred class

This is the class for credentials.

void setGroupMembers(gid t* groups, int ngroups)

This sets the members of the group to the array groups with the size of ngroups.

int getGroupNum() const

This returns the number of members of the group.

Bool isGroupMember(gid t gid) const

This returns True if gid is a member of the group.
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void crHold()

This increments the reference count.

others: setUid, getUid, setGid, getGid, getGroupMembers

A.2.3 Network Subsystem

The following classes are used in network subsystem modules.

A.2.3.1 MbufChain class

This is the class for handling a mbuf chain.

int length() const

This returns the length of this mbuf chain.

int remain() const

This returns the remaining size for dissect.

void resetDissect()

This resets the counters for dissect.

int build(caddr t cp, int size)

This fills this mbuf chain with the data cp with the size of size.

int build(u int32 t tl)

This fills this mbuf chain with one word value tl.

int build(MbufChain* m, int size)

This fills this mbuf chain with the specified mbuf chain m. The data is copied from the dissect

point of m by size.

int build(SockBuf* sb, int off, int size)

This fills this mbuf chain with the data of the socket buffer sb. The data is copied from the

offset off by size.

int buildAsBytes(caddr t* cp, int size)

This reserves the space for data of size in this mbuf chain and returns a pointer to the data

to *cp. The maximum size is limited to 2,048.

int buildAsWord(u int32 t** tl)

This reserves the space for data of one word in this mbuf chain and returns a pointer to the

data to *tl.
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int buildAsIovec(struct iovec** iov, int size)

This reserves the space for I/O vector array of size in this mbuf chain and returns a pointer

to the array to *iov.

int padding(int alignment)

This pads this mbuf chain with alignment.

int append(MbufChain* mc)

This appends the mbuf chain mc to the end of this mbuf chain.

int prepend(MbufChain* mc)

This appends this mbuf chain to the end of the mbuf chain mc.

int dissect(caddr t cp, int size)

This copies the data in this mbuf chain from the dissect point by size. The dissect point is

advanced by size.

int dissect(u int32 t* tl)

This copies the data in this mbuf chain from the dissect point to tl. The dissect point is

advanced by one word.

int dissectAsPointer(caddr t* cp, int size)

This sets the dissect point to *cp, and advances the dissect point by size. The maximum of

size is 2,048.

int advance(int size)

This advances the dissect point by size.

int trimHead(int size)

This trims the data from the head of this mbuf chain by size.

int trimTail(int size)

This trims the data from the tail of this mbuf chain by size.

int checkSum(int len)

This calculates checksum for the front of this mbuf chain by len.

MbufChain* create(int type = MT DATA)

This is a static method. This creates a new mbuf chain with the type of type. If creating a

packet header, users must pass MT HEADER as type.

others: destroy
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A.2.3.2 InPcb class

This is the class for a internet protocol control block.

void setLocalAddr(struct in addr addr)

This sets the local address of the socket with this protocol control block to addr.

void setForeignAddr(struct in addr addr)

This sets the address of a socket connected with the socket with this protocol control block

to addr.

void setLocalPort(short port)

This sets the local port of the socket with this protocol control block to port.

void setForeignPort(short port)

This sets the port of a socket connected with the socket with this protocol contorol block to

port.

void setPrivatePcb(caddr t ppcb)

This sets the protocol specific protocol control block to ppcb.

void setState(int state)

This sets the state of this protocol control block to state. The state is INP ATTACHED,

INP BOUND, or INP CONNECTED.

void setOptions(MbufChain* m)

This sets the IP options to m.

void setSockAddr(SockAddr* nam)

This fills nam with the address and port of the socket with this protocol control block.

void setPeerAddr(SockAddr* nam)

This fills nam with the address and port of a socket connected with the socket with this

protocol control block.

RtEntry* getRtEntry()

This returns the routing table entry. If the entry does not created, it creates a new routing

table entry.

int bind(SockAddr* nam, Proc* p)

This binds nam to the socket with this protocol control block.

int connect(SockAddr* nam)

This connects the socket with this protocol control block with a socket specified by nam.
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void disconnect()

This disconnects the socket with this protocol control block from the connected socket.

InPcbQueue* getInPcbQueue()

This is a static method. This returns the queue of protocol contorol blocks of the network

subsystem.

InPcb* lookup(struct in addr faddr, u int16 t fport, struct in addr laddr,

u int16 t lport)

This is a static method. This looks up a protocol control block using a foreign address faddr,

a foreign port fport, a local address laddr, and a local port lport. The search is done in the

order of (1)a lookup by connection, (2)a lookup by binding.

others: getLocalAddr, getForeignAddr, getLocalPort, getForeignPort, getSocket, getIp,

getRoute, getOptions

A.2.3.3 Ip class

This is the class for handling IP.

void setSrcAddr(struct in addr src)

This sets the source IP address to src.

void setDstAddr(struct in addr dst)

This sets the destination IP address to dst.

void setTtl(u int8 t ttl)

This sets the value of time to live to ttl.

u int8 t getTos() const

This gets the type of service, i.e. the protocol number.

int output(MbufChain* m, MbufChain* opt, Route* ro, int flags, MbufChain* mopt)

This is a static method. This attaches an IP header and the IP options opt to the packet m

and passes it to a lower network layer, e.g. ethernet device driver.

int ctloutput(int op, Socket* so, int level, int optname, MbufChain*& mp)

This is a static method. This processes a socket option for IP if level is IPPROTO IP. The

argument op is PRCO SETOPT or PRCO GETOPT, optname is IP TTL, IP TOS, and so on.

void stripOptions(MbufChain* m)

This is a static method. This strips out IP options from the packet m.
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u int getOptLen(InPcb* inp)

This is a static method. This returns the maximum length of IP options that inp holds.

int control(Socket* so, u long cmd, caddr t data, IfNet* ifp, Proc* p)

This is a static method. This processes generic internet control operations. The arguments

cmd and data are the same with those of ioctl system call.

others: getSrcAddr, getDstAddr, getTtl

A.2.3.4 Socket class

This is the class for handling a socket.

void setOptions(short options)

This sets the bits of options in the socket option. The type of the option is SO DONTROUTE,

SO REUSEADDR, and so on.

void setState(short state)

This sets the bits of state in the socket state. The type of the state is SS NBIO for non-blocking

operations, SS ASYNC for asynchronous I/O, and so on.

Bool hasQueueingSpace() const

This returns True if there is a space to queue a new connection. The limit is determined by

listen system call.

InPcb* allocateInPcb()

This allocates a new protocol control block.

SockBuf* getSndBuf() const

This returns the send buffer.

SockBuf* getRcvBuf() const

This returns the receive buffer.

Socket* getNewConn(int connstatus)

This creates a new socket with the state of connstatus.

void setError(u short errno)

This sets the error of socket operations to errno.
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int reserve(u long sndcc, u long rcvcc)

This reserves buffer spaces for send and receive to sndcc and rcvcc, respectively. It must be

called before using this socket.

int abort()

This aborts sending packets.

void setConnecting()

This makes the socket state connecting.

void cantSendMore()

This makes this socket not send any more packets.

void wakeupRead()

This wakes up a thread waiting for socket read.

int connect(SockAddr* addr)

This connects this socket with a socket specified by addr.

int shutdown(int how)

This shuts down part of a full-duplex connection. The argument how is the same with one

passed to shutdown system call.

int close()

This disconnects if this socket is connected and then close this socket.

int send(SockAddr* addr, MbufChain* m, int flags)

This sends a packet m to the address addr. If addr is NULL and this socket is not connected,

it returns an error.

int receive(SockAddr** paddr, MbufChain** m, int* flagsp)

This reads a pakcet from the receive buffer and the pointer is set in m.

void setUpcall(NetworkSystem* ns)

This sets up so that NetworkSystem::soUpcall() for ns is called by a socket upcall. The socket

upcall is done when this socket is woken up for read.

Socket* create(int dom, int type, int proto)

This is a static method. This creates a new socket with the arguments of socket system call

and returns it.

Socket* create(int fd)

This is a static method. This returns a socket corresponding to fd.
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others: getOptions, checkOptions, clearState, checkState, getProtoSw, setConnected,

setDisconnecting, setDiconnected, cantRecvMore, wakeupWrite, clearUpcall, destroy

A.2.3.5 SockBuf class

This is the class for handling a socket buffer.

void setHighWatermark(u long hiwat)

This sets the maximum buffer size to hiwat.

void setLowWatermark(u long lowat)

This sets the low watermark to lowat.

int size() const

This returns the size of data in this buffer.

int getSpace() const

This returns the size of space in this buffer.

MbufChain* getMbufChain()

This returns data in this buffer as a mbuf chain.

int reserve(u long cc)

This checks for the value of cc and sets the maximum buffer size to it if acceptable.

void drop(int len)

This drops data from the front of this buffer by the size of len.

Bool needNotify()

This returns True if I/O is possible. It is used to to notify the other sockets.

Bool appendAddr(SockAddr* asa, MbufChain* m0, MbufChain* ctrl)

This appends the address asa, the data m0, and control data ctrl to this buffer. It is funda-

mentally used for a receive buffer.

void append(MbufChain* m)

This appends the data m to this buffer. It is used for data-stream protocol.

others: getHighWatermark, getLowWatermark

A.2.3.6 SockAddr class

This is the class for an socket address.
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int length() const

This returns the length of this socket address.

void setAddr(in addr addr)

This sets the IP address to addr.

void setPort(u int16 t port)

This sets the port to port.

Bool isNullHost() const

This returns True if this socket address points to null address.

others: getAddr, getPort, isMulticast, isBroadcast

A.2.3.7 IfAddr class

This is the class for an interface address of internet.

struct in addr getAddr() const

This returns the internet address.

struct in addr getBroadAddr() const

This returns the broadcast address.

others: getIfNet, getSockAddr, create, destroy

A.2.3.8 IfNet class

This is the class for a network interface.

Bool checkFlags(short flags) const

This returns True if the bit of flags is set in the flag.

u long getMtu() const

This returns the value of maximum transmission unit (MTU).

A.2.3.9 Route class

This is the class for a route.

SockAddr* getDstAddr() const

This returns the destination address.
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void allocateRtEntry()

This allocates a new routing table entry.

others: setRtEntry, getRtEntry, freeRtEntry

A.2.3.10 RtEntry class

This is the class for a routing table entry.

Bool checkFlags(short flags) const

This returns True if the bits of flags are set in the flag. The type of the flag is RTF UP for an

usable route, RTF HOST for a host entry, and so on.

SockAddr* getGwAddr() const

This returns the gateway address.

SockAddr* getDstAddr() const

This returns the destination address.

SockAddr* getNetmask() const

This returns the network mask.

others: getFlags, getIfNet, getIfAddr, getRtMetrics

A.2.3.11 RtMetrics class

This is the class for route metrics.

u long getMtu()

This returns the maximum packet size called maximum transmission unit (MTU).

u long getSendPipe()

This returns the outbound delay-bandwidth product.

u long getRecvPipe()

This returns the inbound delay-bandwidth product.

void setThreshold(u long ssthresh) const

This returns the outbound gateway buffer limitation.

void setRtt(u long rtt)

This sets the round trip time to rtt.
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void setRttVar(u long rttvar)

This sets the variance of the round trip time to rttvar.

Bool checkLocks(u long locks) const

This returns True if the bits of locks are set in the lock flag. The type of the flag is RTV MTU,

RTV RPIPE, RTV RTT, and so on. When these lock flags are set, programmers cannot access

the corresponding metrics.

others: getThreshold, getRtt, getRttVar

A.2.3.12 ProtoSw class

This is the class for a protocol switch.

Bool checkFlags(short flags) const

This returns True if the bits of flags are set in the flag. The type of the flag is PR ATOMIC

for exchanging atomic message, PR CONNREQUIRED for connection required by protocol, and

so on.
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