
Difference of Degradation Schemes among Operating Systems
— Experimental analysis for web application servers —

Hideaki Hibino Kenichi Kourai Shigeru Chiba
Dept. of Mathematical and Computing Sciences

Tokyo Institute of Technology
{hibino,kourai,chiba }@csg.is.titech.ac.jp

2-12-1-W8-50 Ohkayama, Meguro-ku, Tokyo 152–8552, JAPAN
Phone: +81–3–5734–3041 Fax: +81–3–5734–2754

Abstract

Graceful degradation is critical ability of highly avail-
able middleware such as a web application server but naive
graceful degradation is often unsatisfactory. If a web appli-
cation server provides multiple services under heavy work-
load, it must gracefully degrade the execution performance
of each service to a different degree depending on the qual-
ity required to that service. This paper reveals that the
schemes of this performance degradation, which we call
a degradation scheme, are different among several major
operating systems unless middleware-level control is per-
formed. Some operating systems showed undesirable be-
havior with respect to the degradation. This paper reports
this fact with the results of our experiments and it also men-
tions that a major factor in this difference is the waiting time
for acquiring a lock.

keywords: degradation scheme, graceful degradation, op-
erating system, web application server, multiple services

1 Introduction

Web application servers have been often used to build
complex enterprise applications on the Internet, such as
online shopping sites. A key performance factor of such
servers is the response time of dynamic pages generated by,
for example, Java servlets. Thus gracefully degrading the
execution performance of servlets under heavy workload is
critical ability of highly available web application servers
[8].

If a web application server provides multiple services,
degrading the performance of these services by servlets to
the same degree is not desirable. The performance of each
service must be degraded to a different degree depending
on the quality required to that service. The scheme of this

performance degradation of each service, which we call a
degradation scheme, is significant to build highly available
web application servers and hence it must be controlled at
middleware level. Without such control, some operating
systems show undesirable behavior.

In this paper, we report that several major operating sys-
tems without the middleware control showed different be-
havior with respect to the degradation scheme. Those op-
erating systems include Solaris 9, Linux 2.6.7, 2.6.5 and
2.4.18, FreeBSD 5.2.1, and Windows 2003 Server. We
ran heavy-weight and light-weight services implemented as
servlets at the same time on the Tomcat web application
server and measured the throughput as we gradually in-
creased the workload. The result revealed that the through-
put of the light-weight service was gradually degraded on
Solaris whereas it was steeply degraded on other operating
systems. Also, it was shown that the small difference of
versions in Linux causes a large difference of degradation
schemes. Although which behavior is appropriate depends
on the service contexts, such difference in the degradation
scheme should be absorbed by the middleware layer. Other-
wise, the application developers would have to adjust their
applications for each operating system.

Furthermore, we investigated what is a major factor of
the difference in the degradation schemes between Solaris
and Linux. According to the results of our experiments, it
is the waiting time for acquiring locks, which was longer in
Linux than in Solaris. This is because (1) a Linux thread is-
sues a larger number of system calls for acquiring locks and
(2) the Linux kernel uses an inappropriate policy of thread
scheduling in this particular contexts.

The rest of this paper is organized as follows. Section 2
describes what the degradation scheme is. Section 3 reveals
the difference of the degradation schemes among operating
systems. Section 4 investigates a major factor of the differ-
ence in the degradation schemes between Solaris and Linux.

Section 5 presents the future direction of this research. Sec-
tion 6 discusses related work and Section 7 concludes the
paper.

2 Degradation Scheme

Under heavy workload, a web application server must
gracefully degrade its execution performance. However, de-
grading the performance of all the services to the same de-
gree might be an inappropriate scheme.

Let us consider an online shopping site. Such a site pro-
vides various services ranging from light-weight services,
such as simply listing product information, to heavy-weight
services, such as transactions for purchasing products. Each
service is small software implemented as a Java servlet, for
example. If fair round-robin scheduling is executed, the per-
formance of all the services will be degraded to the same
degree under heavy work load. However, this naive degra-
dation might reduce the customer satisfaction. They might
want to keep short response time for the light-weight ser-
vices since they frequently request those services for list-
ing product information. On the other hand, they might
not mind that the heavy-weight services like transactions
for purchasing products slow down for processing more re-
quests for light-weight services since they run such a heavy-
weight service only at the end of their session.

Selecting an appropriatedegradation schemeis crucial
to maximize the customer satisfaction. The degradation
scheme is a scheme of how much the performance of each
service should be degraded under heavy workload to sat-
isfy the quality required to that service. If a burst of re-
quests are sent to multiple services at the same time, each
service can process only a smaller number of requests per
time than in the case where only that service is requested.
We propose how much smaller number of requests is pro-
cessed per time should differ among the services. Since all
the services share limited system resources including CPU
time, the performance of each service is degraded respec-
tively when the workload is heavy and thus the services
compete for system resources with each other. Therefore,
the degradation scheme is a scheme of how much amount
of system resources are allocated to each application-level
service.

3 Difference among Operating Systems

The degradation scheme should be controlled by mid-
dleware to fit applications. Without such middleware-
level control, operating systems would use an inappropri-
ate scheme. In fact, according to our experiment, operat-
ing systems widely used today show different behavior with
respect to the degradation scheme if any middleware-level

control is not performed. The behavior of some operating
systems is inappropriate for our scenario mentioned in Sec-
tion 2. This behavioral difference among operating systems
means that the behavior of a web application under heavy
workload significantly depends on the underlying operating
system.

This section shows the results of our experiment to illus-
trate differences in the degradation scheme among operat-
ing systems.

3.1 Experimental Setup

In this experiment, we used the Tomcat web application
server [7], which ran on top of the Java VM (JVM). Tomcat
is usually used in 3-tiered web sites, which consist of web
servers, application servers, and database servers. Since
many network I/O for clients are done in web servers and
file I/O is done in the database, services provided by appli-
cation servers are often CPU- and memory-intensive. For
simplicity, we prepared three types of CPU- and memory-
intensive services: heavy-weight, light-weight, and middle-
weight services. The heavy-weight service creates a Docu-
ment Object Model (DOM) tree from an XML file and re-
peats the search of all the nodes in the tree 100 times. This
heavy-weight service uses a large amount of memory re-
source and CPU resource and causes garbage collection in
JVM because it creates many short-lived objects in Java.
On the other hand, the light-weight service performs the
calculation of the 25th Fibonacci number and uses only a
little amount of CPU resource. The middle-weight service
performs the calculation of the 35th Fibonacci number and
uses a relatively large amount of CPU resource.

To reveal the performance degradation scheme, we let
the clients generate various workloads to Tomcat. For one
workload set, we fixed the number of requests to the light-
weight service to 30 and increased that to the heavy-weight
service from 0 to 40 (workload set 1). For the other work-
load set, we fixed the number of requests to the light-weight
and middle-weight services to 20 and increased that to the
heavy-weight service from 0 to 40 (workload set 2). The
clients sent requests to Tomcat until the number of concur-
rent requests to each service reached the specified number.
When a client receives a response from Tomcat, the client
sends a new request. The admission control provided by
Tomcat did not work because the maximum number of con-
current requests described in the configuration file was 150.

Under such workload sets, we measured the performance
of Tomcat on various operating systems: Solaris 9, Linux
2.6.7, 2.6.5, and 2.4.18, FreeBSD 5.2.1, and Windows 2003
Server Enterprise Edition. A server host was Sun Fire V60x,
which had dual Intel Xeon 3.06GHz processors, 2GB mem-
ory, and 1Gbps Ethernet card. The processors enabled hy-
perthreading and the number of logical CPUs was four. The

0

200

400

600

800

1000

1200
R

eq
ue

st
s/

se
c

(L
ig

ht
)

Light
Heavy

0

1

2

3

4

R
eq

ue
st

s/
se

c
(H

ea
vy

)

0 10 20 30 40
of concurrent requests (Heavy)

0

200

400

600

800

1000

1200

R
eq

ue
st

s/
se

c
(L

ig
ht

)

0 10 20 30 40
of concurrent requests (Heavy)

0 10 20 30 40
of concurrent requests (Heavy)

0

1

2

3

4

R
eq

ue
st

s/
se

c
(H

ea
vy

)

(a) Solaris 9 (b) FreeBSD 5.2.1 (c) Windows 2003 Server

(d) Linux 2.6.7 (e) Linux 2.6.5 (f) Linux 2.4.18

Figure 1. Degradation schemes of various operating systems. (workload 1)

version of Tomcat was 5.0.25 and that of JDK was 1.4.2.
To generate workloads, we used eight client hosts, each of
which had a Pentium 733MHz processor, 512MB memory,
and a 100Mbps Ethernet card. The operating system was
Linux 2.4.19. These hosts were interconnected by a 1Gbps
Ethernet switch.

3.2 Results

Workload Set 1 Figure 1 (a)-(d) shows the throughputs
of the services in different operating systems when we in-
creased the number of concurrent requests to the heavy-
weight service. In either operating system, the through-
put of the light-weight service was degraded as the server
load became higher. However, the degrees of the perfor-
mance degradation were different as shown in Figure 2. The
throughput in Solaris was degraded gracefully while those
in the other operating systems were not. In Solaris, the
throughput was decreased slowly by 78% when the num-
ber of requests to the heavy-weight service increased to
40. In the other operating systems, on the other hand, the
throughput was decreased suddenly by 97% to 99%. Also,
there were differences among Linux, FreeBSD, and Win-
dows and the throughputs were degraded seriously in the
order of Windows, Linux, and FreeBSD. On the contrary,
the throughput of the heavy-weight service in Solaris was
relatively lower than those in the others.

0 10 20 30 40
of concurrent requests (Heavy)

0

200

400

600

R
eq

ue
st

s/
se

c

Solaris
FreeBSD
Windows
Linux 2.6.7

0 10 20 30 40
of concurrent requests (Heavy)

0

1

2

3

4

Solaris
FreeBSD
Windows
Linux 2.6.7

(a) Light-weight service (b) Heavy-weight service

Figure 2. The difference of degradation
schemes among different operating systems
for each service. (workload set 1)

Figure 1 (d)-(f) shows the throughputs of the services in
different versions of Linux. Based on this figure, degra-
dation schemes for each service are plotted in Figure 4.
The figure shows that the small difference of versions be-
tween 2.6.5 and 2.6.7 makes a large difference of degra-
dation schemes. Under heavy load, version 2.6.5 and
2.4.18 showed similar throughput for the light-weight ser-
vice while version 2.6.7 and 2.4.18 showed similar through-
put for the heavy-weight service.

0 10 20 30 40
of concurrent requests (Heavy)

0

50

100

150
R

eq
ue

st
s/

se
c

Solaris
FreeBSD
Windows
Linux

0 10 20 30 40
of concurrent requests (Heavy)

0

5

10

15

0 10 20 30 40
of concurrent requests (Heavy)

0

1

2

3

4

(a) Light-weight service (b) Middle-weight service (c) Heavy-weight service

Figure 3. The difference of degradation schemes among different operating systems for each service.
(workload set 2)

0 10 20 30 40
of concurrent requests (Heavy)

0

100

200

300

400

R
eq

ue
st

s/
se

c

Linux 2.6.7
Linux 2.6.5
Linux 2.4.18

0 10 20 30 40
of concurrent requests (Heavy)

2

2.5

3

3.5

4

4.5

Linux 2.6.7
Linux 2.6.5
Linux 2.4.18

(a) Light-weight service (b) Heavy-weight service

Figure 4. The difference of degradation
schemes among different versions of Linux
for each service. (workload set 1)

Workload Set 2 Figure 3 shows degradation schemes in
different operating systems when we used three types of ser-
vices. The overall throughput of the light-weight service
was higher in Solaris than in the other operating systems.
This is because the throughput of the light-weight service in
the other operating systems was enough low due to resource
conflicts with the middle-weight service, even if there was
no request to the heavy-weight service. On the other hand,
the throughput of the heavy-weight service in Solaris was
worst. For the middle-weight service, there was no large
difference.

4 Principal Factor of the Differences

In the previous section, we showed the differences of
degradation schemes among operating systems. To con-
trol these degradation schemes, we must know the princi-

pal factor that causes the differences. To investigate the
principal factor, we especially compared the behavior of
the light-weight service in Solaris and Linux at the kernel
level. We selected these two operating systems because the
light-weight service in Solaris was degraded gracefully but
that in Linux was degraded seriously. In this experiment,
we used the same environment as described in Section 3.
The number of requests concurrently posted was 30 for the
light-weight service and 20 for the heavy-weight service.

4.1 Thread Processing Time for Each Request

To examine the breakdown of the thread processing time
spent for each request to the light-weight service, we ob-
tained the events on the CPU scheduling and the system
calls about all the threads in Tomcat. We can distinguish
the Java threads used by Tomcat at the kernel level because
a Java thread is bound to a specific kernel thread in So-
laris 9 and Linux. To trace such events in Solaris, we used
theprex (1) command, which can record selected events
occurred in the kernel. For Linux, we have developed a sim-
ilar tool calledkev. These tools use the performance coun-
ters of Pentium to measure time values and the resolution is
microsecond at least.

From these event logs, we extracted only the events on
the light-weight service. Since Tomcat uses the thread pool
to reuse threads for request handling, we needed to distin-
guish the section of processing the light-weight service and
that of processing the heavy-weight service in every ker-
nel thread. In this experiment, 51 threads were created in
advance to process 50 requests concurrently and wait for a
next request. First, we divided the sequential events into
sections from the end of anaccept system call to that of
the nextaccept system call for each thread. Next, we de-
termined which service was executed for each section by

Table 1. The breakdown of the thread process-
ing time of each request (ms).

Solaris Linux
running time 3.71 3.91
waiting time 137 375

(accept) 1.19 2.44
(poll) 0.41 19.4
(lock) 136 348

a client IP address recorded with an event of theaccept
system call in kev. In prex, however, since we cannot obtain
such information, we determined the service executed for
each section by whether the thread issued theopen system
call or not for reading a XML file.

Table 1 shows the breakdown of the thread processing
time for each request to the light-weight service in Solaris
and Linux. Of the total time, the running time was almost
the same and these times are consumed primarily for ex-
ecuting the Fibonacci calculation. On the other hand, the
waiting time is quite longer than the running time. The wait-
ing time in Linux was 2.6 times longer than that in Solaris.
That longer waiting time in Linux causes the serious perfor-
mance degradation.

The waiting time primarily consists of the waiting time
for I/O and for lock acquisition. In Solaris, the longest wait-
ing for I/O was theaccept system call and the next was
the poll system call, which was issued once to wait for
a request from a client. In Linux, the longest waiting was
the poll system call and the next was theaccept sys-
tem call. In either case, the waiting time for I/O was short.
On the other hand, the total waiting time for lock acquisi-
tion was longest. In Linux, thefutex system call with the
FUTEXWAIToperation was issued to wait for lock acquisi-
tion. In Solaris, themutex lock andcond wait system
calls were issued for lock acquisition. This difference of the
waiting time is the largest differences of the performance
degradation between Linux and Solaris.

4.2 Long Waiting Time for Lock Acquisition

We investigated the reason why the lock waiting time for
the light-weight service is longer in Linux than in Solaris.

4.2.1 Dominant Factor in Request Processing

We measured the waiting time for system calls on lock ac-
quisition during request processing, which is a section from
accepting a connection from a client to closing the connec-
tion and entering the thread pool. Table 2 shows the waiting
time during request processing in Solaris and Linux. The
total waiting time was longer in Linux than in Solaris by a

Table 2. The waiting time of system calls for
lock acquisition. (ms)

Solaris Linux
per-call waiting time 64.6 65.2
call frequency 1.3 2.9
total waiting time 82.0 189

time

wakeup

woken up

enter thread pool

acquire CPU

leave thread pool

thread-1

thread-2
thread-3

thread-4
thread-5

Figure 5. The thread scheduling in the thread
pool .

factor of 2.3. However, the waiting time per system call was
almost the same between Linux and Solaris. The difference
between Solaris and Linux was the number of times of sys-
tem calls issued. The number in Linux was 2.2 times of that
in Solaris.

One of the reasons is that the JVM 1.4.2 in Solaris is im-
plemented so that the thread is not blocked as frequently as
possible. The JVM first calls themutex trylock func-
tion to try to acquire a lock in the userland. If that try fails,
the JVM calls themutex lock function, which may issue
themutex lock system call and be blocked. Another rea-
son is that the thread library in Solaris implements adaptive
locks, which use both spin locks and themutex lock sys-
tem call. If the thread can acquire a lock during spinning, it
is not blocked. The other reason is that Linux does not have
thecond wait system call as provided in Solaris. There-
fore, thepthread cond wait function includes four op-
erations for lock acquisition, which may issue thefutex
system call and be blocked.

4.2.2 Dominant Factor in the Thread Pool

After a thread finishes processing a request, it enters the
thread pool and waits until it is woken up by a thread leaving
the thread pool, as illustrated in Figure 5. From Table 3,
the waiting time in the thread pool was 2.9 times longer in
Linux than in Solaris. This waiting time is the sum of the
time from when a thread in the thread pool is woken up until
it wakes up the following thread. The number of waiting
threads in the thread pool and/or the execution time spent
by each thread can be the cause of the large difference in
the total waiting time. The number of waiting threads was

Table 3. The waiting time of threads in the
thread pool. (ms)

Solaris Linux
per-thread execution time 4.34 11.7
of waiting threads 12.7 13.0
total waiting time 52.6 154

Solaris Linux
0

2

4

6

8

10

12

E
xe

cu
tio

n
tim

e
(m

s)

accept-wakeup
accept
cpu-accept
wakeup-cpu

1.25

1.52

1.19

0.38

1.76

5.50

2.44

2.02

Figure 6. The breakdown of the execution
time of each thread in the thread pool (ms).

almost the same between Solaris and Linux. On the other
hand, the execution time of each thread was 2.7 longer in
Linux than in Solaris and it was the dominant factor.

Figure 6 shows the breakdown of the time spent by each
thread in Solaris and Linux. After a thread is woken up,
it enters one of the CPU run queues to wait for acquiring
a CPU (wakeup–cpu). When it acquires a CPU, it issues
the accept system call (cpu–accept). In theaccept sys-
tem call, the thread waits for a new connection from a client
(accept). After it accepts a connection, it wakes up the fol-
lowing thread waiting in the thread pool (accept–wakeup).
The time from when a thread is woken up until it acquires a
CPU depends on the CPU scheduling. Until the CPU sched-
uler allocates a time slice for the thread, the thread cannot
run even if it acquires a lock. In Linux, the time is 40%
longer than in Solaris although this factor affects the total
waiting time a little.

The dominant factor waiting in the thread pool is the time
from when a thread acquires a CPU until it wakes up the
following thread (cpu–accept, accept, and accept–wakeup).
This time is 3.2 times longer in Linux than in Solaris. First,
the time taken in theaccept system call was longer in
Linux. This waiting time depends on the request rate from
the clients and becomes longer as the rate is lower. In our
experiment, the rate was proportional to the server through-
put because the number of concurrent requests was con-

4.9

8.1
7.2 7.3

Solaris Linux
0

2

4

6

8

10

12

of

 s
ch

ed
ul

ed
 th

re
ad

s

Light
Heavy

0.25 0.3
0.41

2.3

Solaris Linux
0

0.5

1

1.5

2

2.5

C
P

U
 ti

m
es

lic
e

(m
s)

Light
Heavy

(a) Scheduled threads (b) Timeslice for each thread

Figure 7. The total number of threads sched-
uled during execution of each thread in the
thread pool and the time slice (ms).

0 2 4 6 8 10
Time (sec)

0

20

40

60

80

100

120

140

T
hr

ea
d

pr
io

rit
y

(L
in

ux
)

0

10

20

30

40

50

60

T
hr

ea
d

pr
io

rit
y

(S
ol

ar
is

)Linux

Solaris

Figure 8. The change of the thread priority.

stant. Therefore, it is considered that this longer waiting
time is not a primary factor but is secondarily caused by
performance degradation of the server.

Next, we examined the detail of how a thread runs from
when it acquires a CPU until it wakes up the following
thread, except theaccept system call (cpu–accept and
accept–wakeup). The number of threads scheduled in this
interval is shown in Figure 7 (a). The number of threads
executing the light-weight service was larger in Linux as
we expected. On the other hand, that of the heavy-weight
service was almost the same between Solaris and Linux al-
though the time spent for this interval was 4.0 times longer
in Linux. The key to explain this phenomenon is the time
slice of the CPU scheduling. As shown in Figure 7 (b), the
time slice of threads executing the heavy-weight service is
5.6 times longer in Linux than in Solaris. The longer time
slice is a dominant factor that makes the waiting time in the
thread pool longer in Linux.

The cause of the longer time slice is the management of
thread priority in the CPU scheduler in Linux. As shown in
Figure 8, the thread priority in Solaris was variable and the

0 10 20 30 40
of concurrent requests (Heavy)

0

200

400

600

800

1000

1200

R
eq

ue
st

s/
se

c

Solaris
modified Linux
Linux

0 10 20 30 40
of concurrent requests (Heavy)

0

1

2

3

Linux
modified Linux
Solaris

(a) Light-weight service (b) Heavy-weight service

Figure 9. The degradation scheme of Linux
with short time slices. (workload set 1)

thread execution was preempted frequently for CPU- and
memory-intensive threads such as our heavy-weight ser-
vice. On the other hand, a thread priority in Linux was
almost constant, so that the CPU preemption occurred less
frequently.

4.3 Linux with Shorter Time Slices

From the above experimental analysis, we found out that
the time slice is one of the dominant factors of the difference
between Solaris and Linux. To verify this analysis, we per-
formed the same experiment with Section 3 using workload
set 1 for Linux with shorter time slices. We changed the
maximum time slice from 200ms to 2ms and the minimum
time slice from 10 ms to 1ms by modifying the Linux ker-
nel source. Figure 9 shows the result. When the server load
became high, the performance degradation in the modified
Linux was similar to that in Solaris in Figure 1. When the
number of concurrent requests to the heavy-weight service
was 20, the throughput in Linux was only 9% lower than
that in Solaris. Comparing it with the result in the original
Linux, the throughput of the light-weight service increased
in a factor of 2.4.

We analyzed the details of thread processing time for the
modified Linux. The total waiting time per request in the
modified Linux decreased from 375ms to 161ms. Of that
time, the waiting time in the thread pool decreased from
154ms to 66.9ms. The breakdown of the waiting time in
the thread pool is shown in Figure 10 and the waiting time
in every interval decreased. On the other hand, the waiting
time in request processing also decreased from 189ms to
122ms. This is because the waiting time of a lock system
call decreased from 65.2ms to 45.2ms.

From this result, it was shown that the performance
degradation in Linux approaches to that in Solaris by chang-
ing the time slice, but we don’t mention that the degradation
scheme in Solaris is always the best. We only mention that

Solaris modified Linux Linux
0

2

4

6

8

10

12

E
xe

cu
tio

n
tim

e
(m

s)

accept-wakeup
accept
cpu-accept
wakeup-cpu

1.25

1.52

1.19

0.38

1.76

5.50

2.44

2.02

1.13

2.14

1.43

0.37

Figure 10. The breakdown of the execution
time of each thread in the thread pool in Linux
with short time slices.

the degradation scheme in Solaris is better in the case of
this particular context. The important point is that it is pos-
sible to customize the degradation scheme according to the
multiple services on some operating systems.

5 Future direction

A future direction of our research is to develop a
middleware-level mechanism for controlling the degrada-
tion scheme. As we showed above, the behavior of a web
application server with respect to the degradation scheme
significantly depends on the underlying operating system.
We believe that this difference should be absorbed at the
middleware level so that application developers do not have
to care about the behavior of an underlying operating sys-
tem. The developers should be able to specify a degrada-
tion scheme appropriate for their service applications. The
specified scheme should be automatically applied to a web
application server no matter what the underlying operating
system is. Thus, controlling the degradation scheme makes
a web application server dependable because the server can
sustain the intended quality of service even if the operating
system is changed.

Such a middleware-level mechanism would help devel-
opers. For example, the operating system of the machine
used for development might be different from that of the
target machine, which would be an expensive big server
machine. If the behaviors of the two operating systems
are totally different with respect to the degradation scheme,
the developers must use the target machine for perfor-
mance tuning but using the target machine for development
is sometime difficult in the real world. The middleware-
level mechanism for the degradation scheme would solve
this problem since the developer can specify an appropriate
degradation scheme independently of underlying operating

systems.
We mentioned that kernel-level modification of the CPU

scheduler could change the degradation scheme in Section
4.3. To control the degradation scheme at the middleware
level, we plan to yield a part of CPU time of heavy-weight
services to light-weight services by dynamically injecting
sleep code into heavy-weight services. We believe that the
injected sleep time can be determined based on the progress
of light-weight services.

6 Related Work

As for workload of requesting static web pages, several
researchers have already reported the behavior of a web ap-
plication server under heavy workload. Almeida et al. ex-
amined the behavior of the Apache web server under heavy
workload consisting of HTML files, images, sounds, and
videos [1]. They reported that the bottleneck was I/O pro-
cessing by the kernel, which spent 90% of the time for han-
dling a request. Pradhan et al. pointed out that different
workload causes a different bottleneck as for requests for
static web pages [5]. When persistent HTTP connections
were used, the bottleneck was the accept queue. When SSL
encryption was used, on the other hand, it was the CPU run
queue.

McWherter et al. reported that the performance bottle-
neck of a servlet accessing a database differs if the database
is changed. With one database, the bottleneck was to ac-
quire a lock for logical database objects while, with another
database, it was I/O synchronization for processing online
transactions [4]. They also reported that they observed dif-
ferent results when they changed the servlet.

Several priority-based scheduling mechanisms have
been proposed for degrading the performance of each ser-
vice to a different degree. To improve the response time
of short connections, Crovella et al. proposed the shortest-
connection-first scheduling [2]. Elnikety et al. applied a
priority-based scheduling to web applications [3]. Neptune
allows web administrators to define a function for comput-
ing a service yield for each service. It schedules web appli-
cations to maximize the sum of service yields [6].

Our contribution against the work above is that we in-
vestigated difference in degradation behavior among sev-
eral major operating systems. The result of our investiga-
tion showed the significance of middleware-level mecha-
nism that absorbs the difference among operating systems
with respect to the degradation behavior.

7 Conclusion

In this paper, we reported that the degradation behavior
of a web application server under heavy workload signifi-

cantly depends on the underlying operating system. We in-
vestigated this fact with Solaris, Linux, FreeBSD, and Win-
dows Server. We measured the throughput of the Tomcat
web application server providing light-weight and heavy-
weight services. The result was that the throughput of
the light-weight service in Solaris was gradually degraded
whereas ones in the others were steeply degraded. As a re-
sult of our further experiments on Solaris and Linux, it was
revealed that the major factor of the difference is the waiting
time for acquiring locks. One reason of the longer waiting
time in Linux was that the larger number of system calls are
issued for lock acquisition due to the implementation of the
JVM and the thread library. The other reason was that the
Linux scheduler gives precedence to the threads executing
the heavy-weight service over the ones executing the light-
weight service.

References

[1] J. Almeida, V. Almeida, and D. Yates. Measuring the behavior
of a world-wide web server. Technical Report TR-96-025,
Boston University, 1996.

[2] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connec-
tion scheduling in web servers. InProceedings of the USENIX
Symposium on Internet Technologies and Systems, oct 1999.

[3] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.
A method for transparent admission control and request
scheduling in e-commerce web sites. InProceedings of the
13th International World Wide Web Conference, pages 276–
286, 2004.

[4] D. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-
Balter. Priority mechanisms for OLTP and transactional web
applications. InProceedings of the 20th International Con-
ference on Data Engineering, pages 535–546, 2004.

[5] P. Pradhan, R. Tewari, S. Sahu, C. Chandra, and P. Shenoy.
An observation-based approach towards self-managing web
servers. InProceedings of the International Workshop on
Quality of Service, 2002.

[6] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource
management for cluster-based internet services. InProceed-
ings of the 5th Symposium on Operating Systems Design and
Implementation, pages 225–238, 2002.

[7] The Apache Software Foundation. Apache Jakarta Tomcat.
http://jakarta.apache.org/tomcat/ .

[8] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture
for well-conditioned, scalable internet services. InProceed-
ings of the 18th Symposium on Operating Systems Principles,
pages 230–243, 2001.

