Fast and Correct Performance Recovery of
Operating Systems Using a Virtual Machine Monitor

Kenichi Kourai

Kyushu Institute of Technology

kourai@ci.kyutech.ac.jp

Abstract

Rebooting an operating system is a final but effective recovery tech-
nique. However, the system performance largely degrades just after
the reboot due to the page cache being lost in the main memory. For
fast performance recovery, we propose a new reboot mechanism
called the warm-cache reboot. The warm-cache reboot preserves
the page cache during the reboot and enables an operating system to
restore it after the reboot, with the help of a virtual machine moni-
tor (VMM). To perform correct recovery, the VMM guarantees that
the reused page cache is consistent with the corresponding files on
disks. We have implemented the warm-cache reboot mechanism in
the Xen VMM and the Linux operating system. Our experimental
results showed that the warm-cache reboot decreased performance
degradation just after the reboot. In addition, we confirmed that the
file cache corrupted by faults was not reused. The overheads for
maintaining cache consistency were not usually large.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Storage Management

General Terms Design, Performance, Reliability

Keywords Reboot, Page Cache, Performance Degradation, Cache
Consistency

1. Introduction

Operating systems are frequently rebooted to recover the whole
system. When an operating system crashes due to Mandelbugs [8],
it can usually recover from the crash after being rebooted. Since the
causes of Mandelbugs are very complex, the rebooted operating
system rarely crashes again. The reboot is also used as a simple
method for software rejuvenation [7, 10]. Software rejuvenation
is a proactive technique to counteract software aging, which is
the phenomenon that the state of running software degrades with
time. Even if an operating system slows down due to aging-related
bugs [8] such as memory leaks, the rebooted operating system can
easily restore its normal state.

However, the system performance largely degrades just after the
reboot of an operating system. The primary cause is to lose the
page cache, namely, disk cache. An operating system stores file
contents in the main memory as the page cache to speed up file

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’11, March9-11, 2011, Newport Beach, California, USA.

Copyright © 2011 ACM 978-1-4503-0501-3/11/03. .. $10.00

accesses. When an operating system is rebooted, the contents of
the main memory are erased and the page cache is lost. Without
the page cache, an operating system has to read files from slow
disks. Worse, if the operating system runs in a virtual machine
(VM), such cache misses may greatly affect the whole system
performance because disks are shared between VMs. The conflicts
of disk accesses degrade the performance of not only the rebooted
VM but also the other VMs.

Thus, recovery by the reboot is not complete until the system
performance is recovered. When an operating system is booted and
all the applications on top of it are started, the system can start pro-
viding the same services as before the reboot. To make this reboot
procedure faster, many techniques have been proposed [2, 12, 20].
However, the system does not restore the same performance at that
time. For example, server processes can accept new connections,
but they may not return quick responses due to performance degra-
dation caused by frequent cache misses. Such performance degra-
dation lasts until the page cache is re-filled. The size of the page
cache tends to increase as the main memory becomes larger.

For fast performance recovery, we propose a new reboot mech-
anism with the help of a virtual machine monitor (VMM), which is
called the warm-cache reboot. The warm-cache reboot preserves
the page cache in the main memory during the reboot and en-
ables an operating system to restore it after the reboot. This mech-
anism prevents performance degradation caused by frequent cache
misses. To maintain the consistency of the page cache after the re-
boot, our VMM makes sure that the contents of the page cache are
the same as those of corresponding files on disks. A software layer
like a VMM is necessary to preserve the page cache in an operating
system through its reboot and to reuse only consistent pages even
after the crashes of an operating system.

We have developed CacheMind on the basis of Xen [3] and
implemented the warm-cache reboot mechanism in the VMM and
the Linux operating system running on top of it. CacheMind pre-
serves memory allocation to rebooted VMs, manages the page
cache through the reboot of operating systems, and maintains the
consistency of the page cache. It protects the page cache to pre-
vent operating systems from reusing the corrupted one and reduces
the overhead of unprotecting the page cache on file writes by dou-
ble caching. To maintain the cache consistency even for writes to
memory-mapped files, we introduced the unprotect-on-write bit in
page table entries.

From our experimental results, the performance degradation just
after the warm-cache reboot was 0 % to 39 % while that just after
a normal reboot was 39 % to 90 %. The performance just after
the warm-cache reboot was 8.7 times higher at maximum. The
overheads for enabling the warm-cache reboot were usually less
than 5.5 % for accesses to regular files and less than 13 % for those
to memory-mapped files. In worst cases, however, they were 33 %
for writes to regular files and 25 % for those to memory-mapped

files. In addition, our fault-injection test showed that a part of the
page cache could be corrupted by faults but it was not reused by the
consistency mechanism of the warm-cache reboot.

The rest of this paper is organized as follows. Section 2 de-
scribes problems of recovering the system performance after the
reboot of an operating system. Section 3 presents the warm-cache
reboot. Section 4 explains our implementation based on Xen and
Section 5 shows our experimental results. Section 6 examines re-
lated work, and Section 7 concludes the paper.

2. Performance Recovery

After the reboot of an operating system, the system performance is
largely degraded for a while. The primary cause is various caches
being lost in an operating system. Particularly, losing the page
cache largely affects the performance. An operating system stores
file contents in the main memory as the page cache when it reads
them from disks. Since disks are much slower than the main mem-
ory, an operating system can speed up file accesses by using the
page cache in memory. When an operating system is rebooted, the
contents of main memory are erased and the page cache managed
by the operating system is lost. Just after the reboot of an operating
system, the execution performance of applications running on top
of it degrades due to frequent cache misses.

It takes a long time to recover the same performance as before
the reboot. To regain the same performance, an operating system
has to re-fill the page cache. However, modern operating systems
use most of free memory as the page cache to improve perfor-
mance. The amount of the page cache is almost equivalent to that of
free memory, which tends to be larger because the size of memory
installable on one machine is increasing due to cheaper memory
modules. In addition, widespread 64-bit processors enable an op-
erating system to deal with more than 4 GB of memory. Until the
page cache is re-filled, an operating system has to read necessary
files from slow disks and cannot recover the performance.

In a VM environment, the performance recovery needs a longer
time after an operating system in a VM is rebooted. Recently,
server consolidation is performed with VMs for cost efficiency.
In such an environment, physical disks are often shared among
VMs. Although a different physical disk may be allocated to each
VM exclusively, this is usually difficult due to physical constraints
or cost. In other words, one VM cannot occupy the whole disk
bandwidth. Worse, disk bandwidth allocated to each VM may be
limited for fairness. Since this disk sharing degrades the throughput
of disk accesses, it takes a longer time to re-fill the page cache by
reading files from disks.

Frequent disk accesses affect not only a rebooted VM but also
all the other VMs. The conflicts of disk accesses degrade the per-
formance of all the VMs. Just after an operating system in a VM
is rebooted, it frequently accesses a physical disk. Increasing disk
accesses in one VM affects the performance of the disk access by
the other VMs. From the same reason, prefetching does not work
well in a VM environment. Prefetching is a common technique
for hiding the initial cache misses particularly when the system is
booted. Files are read from disks in advance before they are ac-
cessed. Prefetching issues too many requests for disk accesses dur-
ing a short period because it is batch processing, not on-demand.
This influences the performance of the other VMs worse.

3. Warm-cache Reboot

To quickly recover the system performance after the reboot of
an operating system, we propose a new reboot mechanism called
the warm-cache reboot. The warm-cache reboot is achieved by
combining an operating system and the underlying VMM. To use
the VMM, operating systems run on VMs created by the VMM.

A VMM is a useful software layer underlying operating systems
to preserve the page cache through the reboot and maintain its
consistency.

3.1 Preserving the Page Cache

The basic idea of the warm-cache reboot is to preserve the page
cache in memory during the reboot and enable an operating system
to restore it after the reboot. We believe that the page cache does
not need to be discarded at a reboot. The purpose of a reboot is
to initialize the internal state in an operating system or to update
its components such as its kernel. Even if the data structures in an
operating system are changed by its update, the contents of the page
cache are reusable because they are just the copies of file blocks
on disks. However, an operating system should not reuse corrupted
page cache. Rather, it should read file blocks from disks. The warm-
cache reboot discards only corrupted page cache by the consistency
mechanism described in Section 3.2.

By reusing the page cache, the warm-cache reboot prevents
performance degradation caused by cache misses just after the
reboot. In other words, it recovers the system performance as well
as the functionality. After the reboot, most of files accessed are
expected to exist on the page cache as long as a working set is
within the size of the page cache. The workload does not largely
change after the reboot because the time needed for the reboot is
not very long. Normally, the files accessed during the reboot are
not included in the working set just before the reboot. However, the
access would just replace a very small part of the page cache in
many cases.

While an operating system in a VM is rebooted by using the
warm-cache reboot mechanism, the VMM preserves the contents
of the memory allocated to the VM. The VMM allocates the same
physical memory as before the reboot to the VM. The memory
layout is the same as well. Without the VMM, it is not guaranteed
that the contents of physical memory are preserved because of a
hardware reset. A hardware reset may corrupt a part of memory,
depending on hardware [18] and temperature [9]. When the VMM
reallocates physical memory, it leaves the contents of the memory
as it is. Normally, when the VMM allocates memory pages to
VMs, it erases the contents for security. The memory pages may
include sensitive information used by another operating system. At
the warm-cache reboot, reusing memory pages without erasing the
contents is secure. Those pages are necessarily reused for the same
operating system.

A rebooted operating system reserves all the pages that have
been cached in the page cache before the reboot. We call such mem-
ory pages cache pages. This reservation is performed at the early
stage of booting the kernel, that is, before the kernel starts dynamic
memory allocation. This prevents the cache pages from being used
for other purposes and corrupted. Since the cache management in
an operating system is initialized by the reboot, the VMM manages
information to reuse the page cache of an operating system. When
an operating system allocates a cache page, it registers the page to
the VMM, with the information on the corresponding file block.
When an operating system uses that page for other purposes, it un-
registers the page. When an operating system is rebooted, it obtains
the information on the page cache from the VMM.

3.2 Maintaining Cache Consistency

The warm-cache reboot reuses a cache page only when the page
is guaranteed to be consistent. We assume that a cache page is
consistent when the contents of the page are the same as those
of the corresponding file block on a disk. When a file block is
read from a disk to a cache page, the page is consistent. After the
page is modified by file writes or destroyed by faults, it becomes

cache page

P ’D """"" : 0s

consistency
mechanism
; VMM

Figure 1. Tracking the consistency of cache pages.

inconsistent. When the cache page is written back to a disk, it
becomes consistent again.

The VMM maintains the consistency of each cache page. In a
VM environment, device accesses in an operating system running
on a VM are performed via the VMM. The VMM reads data on a
disk into a cache page passed from an operating system or writes
data in a cache page into a disk, as illustrated in Figure 1. When
disk reads or writes complete, the VMM makes the cache page
reusable because the contents of the cache page are guaranteed to
be the same as those of a file block on a disk. We assume that the
VMM works as intended and disk reads and writes are performed
correctly.

To track the cache consistency, the VMM protects cache pages
in a read-only manner. When the VMM reads a file block into a
cache page, it protects the page before that file has read so that it
can detect the modification to the cache page. While a cache page is
protected, it is reusable because the cache page is guaranteed to be
consistent. This memory protection also prevents a cache page from
being corrupted by faults. When an operating system modifies the
protected cache page to write data into a file, the VMM changes its
protection mode to writable before that write so that an operating
system can modify the cache page freely. In this state, the cache
page is not reusable because the page is not consistent. When the
VMM writes back the contents of the cache page into a disk, it
protects the page again before that file write. Thus the cache page
becomes reusable again.

The help of the VMM is indispensable to guarantee this cache
consistency. Without the VMM, an operating system cannot read a
file block on disk into protected cache pages because it cannot write
data in protected memory pages. Therefore, the contents of cache
pages may be corrupted during disk reads because an operating
system has to protect cache pages after disk reads. If faults make
an operating system unstable, the operating system may not protect
the cache page correctly. Even if the page is protected correctly,
the protection mode may be changed to writable by corrupting
the page table. Although an operating system has to manage the
reusability of cache pages, such management information may be
corrupted accidentally. If that information were wrong, the warm-
cache reboot would reuse inconsistent cache pages.

Our assumption for the cache consistency is strong but reason-
able. When the page cache is not corrupted, it could be reused even
if the contents have not been written back to disk. This enables an
operating system to use the latest updates to files after it is rebooted.
However, it is difficult to distinguish correct modification from cor-
ruption because the correctness of modification depends on seman-
tics. To avoid this semantic problem, we reuse a cache page only
after the modification to the page is written back to a disk. Since
the modification becomes persistent at that time, the cache page
becomes reusable even if its contents are corrupted. In this situ-

domain U

page cache
cache management

blkback [blkfront

domain 0

cmLinux

P2M-mapping reuse cache-mapping
table bitmap table
A

Figure 2. The system architecture of CacheMind.

VMM

ation, applications always use the corrupted file even without the
page cache. The administrator should recover corrupted files, for
example, from the backup.

4. Implementation

We have developed CacheMind on the basis of Xen 3.0.0 [3].
Figure 2 shows the system architecture. Xen provides the VMM
and VMs running on top of it. A VM is called a domain in Xen.
Specifically, the privileged VM that manages VMs and handles
I/O is called domain 0 and the other VMs are called domain Us.
Domain 0 is often considered a part of the VMM. Our modified
Linux operating system in domain U is called cmLinux. When
cmLinux in domain U accesses a virtual disk, its device driver
called blkfront sends requests to the blkback driver in domain 0.
The blkback driver accesses a physical disk drive and returns the
results to the blkfront driver.

To achieve the warm-cache reboot, our VMM manages a P2M-
mapping table, cache-mapping tables, and reuse bitmaps. A P2M-
mapping table is used for preserving the contents of the memory
of domain U even through its reboot. A cache-mapping table and
a reuse bitmap are created for each domain U. A cache-mapping
table is used for restoring the page cache after the reboot. A reuse
bitmap is used for maintaining the cache consistency.

4.1 Memory Management

In Xen, the VMM distinguishes machine memory and pseudo-
physical memory to virtualize memory resources. Machine mem-
ory is physical memory installed in the machine and consists of
a set of machine page frames. For each machine page frame, a
machine frame number (MFN) is consecutively numbered from 0.
Pseudo-physical memory is the memory allocated to domains and
gives the illusion of contiguous physical memory to domains. For
each physical page frame in each domain, a physical frame number
(PEN) is consecutively numbered from 0.

A P2M-mapping table is a one-dimensional array that records
mapping from PFN to MFN for each domain. In the 64-bit architec-
ture, the table is 2 MB for 1 GB of pseudo-physical memory. A new
mapping is created in this table when a new machine page frame is
allocated to a domain. When a machine page frame is deallocated,
an existing entry is removed. In the current implementation, we do
not assume memory overcommitment.

Our VMM preserves the mappings in the P2M-mapping table
while a domain is rebooted. In Xen, rebooting a domain destroys
the domain and re-creates a new one from scratch. Moreover, if an
operating system in a domain crashes, the user has to re-create a

new domain by hand because the original domain is destroyed with
the crash. Even when a domain is destroyed, our VMM does not
release machine page frames for the domain. If a new domain is re-
created with the same domain ID, the VMM allocates the same ma-
chine page frames to pseudo-physical page frames in accordance
with the P2M-mapping table. The same domain ID is automati-
cally assigned when a domain is rebooted. When a domain crashes,
its ID has to be specified by the user to use the same memory map-
ping. For normally terminated domains, the user can remove all
the entries in the table by specifying its ID to release unnecessary
memory.

4.2 Cache Management

A cache-mapping table is a hash table whose keys are a tuple of a
device number, an i-node number, and a file offset. The value is a
PFEN assigned to a cache page. When cmLinux accesses files, it first
searches its page cache. If no cache page exists in the page cache,
cmLinux searches the cache-mapping table in the VMM. If a cache
page exists, cmLinux adds a new entry to its page cache so that it
can find the cache page quickly the next time. If no cache pages
exist in either, cmLinux reads a file block from a disk to a new
cache page and adds it to the page cache and the cache-mapping
table.

For consistently modifying the cache-mapping table, the VMM
provides new hypercalls for cmLinux. After cmLinux reads a file
block to a cache page, it adds a new entry to the cache-mapping ta-
ble by issuing the add_cache hypercall. When it stops using a cache
page as the page cache, it removes the corresponding entry from the
table by the remove_cache hypercall. These hypercalls perform the
sanity check of a request and modify the cache-mapping table con-
sistently. Even if faults make cmLinux unstable, it cannot directly
corrupt the table inside the VMM. In addition, such a narrow inter-
face of hypercalls reduces the possibility of incorrectly modifying
the cache-mapping table, compared to that of directly corrupting
the table without protection by the VMM. Since the VMM updates
the table atomically by using the hypercalls, the data structure of
the table is preserved correctly. Once the hypercall is issued, it is
completed even if cmLinux crashes.

For efficiency, cmLinux can map the cache-mapping table into
its kernel address space in a read-only manner. This allows cm-
Linux to refer to the table directly. If such memory mapping were
not performed, cmLinux would have to issue a hypercall even for
searching the entries in the table. Such read-only memory mapping
eliminates the cost of issuing a hypercall. Since the table is still
protected against writes, cmLinux cannot corrupt the table directly.
Also, it cannot change its protection mode to writable because the
VMM prohibits cmLinux from modifying the page table entries
(PTEs) for that memory-mapped table. The VMM can intercept all
modifications to the page table by cmLinux.

When cmLinux is rebooted, the VMM first checks its reuse
bitmap and removes entries that cannot be reused from the cache-
mapping table. Then cmLinux reserves reused cache pages on the
basis of the cache-mapping table. The physical address of the table
is obtained from the starz_info page in Xen, which is allocated at
the fixed memory location. After cmLinux sets up its page table, it
protects reused cache pages on the basis of the table. We assume
that no cache pages are corrupted until cmLinux completes the
protection. If cmLinux requires new pages but cannot find any free
pages due to the reservation of cache pages, it randomly releases
the reserved but unused cache pages.

4.3 Reusability Management

A reuse bitmap is a bitmap for maintaining the reusability of cache
pages for each domain. Each bit in this bitmap represents whether
the corresponding pseudo-physical memory page is reusable as the

page cache. A reuse bit is set if the page is used as the page cache
and if the contents of the page are guaranteed to be the same as
those of a file block on a disk.

4.3.1 Access to Disks

When the blkback driver in domain O reads a file block from a disk
to a page used as the page cache of cmLinux or writes back a cache
page to a disk, it issues the set_reuse_bit hypercall to set a reuse bit
for the cache page. This hypercall can be issued only by domain 0.
The hypercall sets a reuse bit only if the contents of a cache page are
not corrupted during disk I/O. To guarantee this, the page must not
be mapped in domain U in a writable manner. If it is, its contents
may be corrupted while the blkback driver performs disk I/O. In
the current implementation, cmLinux itself protects the cache page
just before it sends a request to the blkback driver.

To check that a cache page is not mapped anywhere in a writable
manner, our VMM examines the number of writable mapping,
which is tracked by the VMM. The VMM assigns a type to each
page (such as writable, page table, and so on) and counts that ref-
erence. When a page type is writable, the reference count indicates
the number of writable mapping. The count is incremented by one
whenever a page is mapped in a writable manner in domain U, do-
main 0, or the VMM. It is decremented by one whenever a writable
page is unmapped. The reference count is more than one when there
is writable mapping for the page. The count may be more than the
actual number of writable mapping because the VMM temporarily
increments the value while it manages the page. However, this does
not lower the safety.

In addition, the blkback driver checks that a cache page has not
been mapped in a writable manner during I/O even temporarily. To
do this, the blkback driver issues the set_canary hypercall before
starting disk I/O. The hypercall sets a canary bit for a specified
page if the page is not mapped anywhere in a writable manner. The
canary bit shows that the corresponding page has not been mapped
in a writable manner. It is cleared once the page is mapped in a
writable manner. It is not set again even if the page is unmapped or
remapped in a read-only manner. Only domain 0 and the VMM can
set the bit. After disk I/O completes, the blkback driver issues the
check_canary hypercall to check the canary bit. If the bit is still set,
the hypercall sets a reuse bit for a specified page. This guarantees
that the page has not been mapped in a writable manner during disk
I/O.

4.3.2 Access to Memory-mapped Files

The mmap system call maps cache pages to the address space of
a process so that the process can access a file via virtual memory.
When a process accesses a memory region where a file is mapped
at the first time, a page fault occurs and the kernel maps the cor-
responding cache page into the region. If no cache page exists, the
kernel reads the corresponding file block from a disk. When the
mmap system call is issued with the PROT_READ flag, a cache
page is mapped in a read-only manner on a page fault caused by the
first read access. The VMM does not change the reuse bit for the
page because the read-only mapping does not affect the reusability.

On the other hand, when the mmap system call is issued with
the PROT_WRITE flag, we have to consider a reuse bit because
cache pages can be modified. In the original implementation of
Linux, even when a page fault is caused by a read access, the kernel
maps the corresponding cache page in a writable manner because
the page is permitted to be written. At that time, the VMM clears
the reuse bit for the page because its contents may be corrupted. In
this implementation, the kernel cannot reuse even cache pages that
have not been written. The VMM has no chance to set the reuse bit
once a cache page is mapped in a writable manner.

To solve this problem, cmLinux maps a cache page in a read-
only manner when a page fault is caused by a read access. At that
time, the VMM does not change the reuse bit like the case in which
the mmap system call is issued with only the PROT_READ flag.
Such a page can be reused safely because the page is guaranteed
not to be corrupted. When the page in this state is written, a page
fault occurs again and the page is remapped in a writable manner.
At the same time, the VMM clears its reuse bit. We call this
mechanism unprotect-on-write. This is similar to the copy-on-write
mechanism, but unprotect-on-write does not copy the contents of
the original page to a new page when the page is written. To
distinguish unprotect-on-write from copy-on-write, cmLinux sets
the unprotect-on-write (UOW) bit in a PTE. For the bit, we used a
bit available to operating systems in the x86 architecture.

A cache page modified via a mapped memory region is written
back to a disk after the munmap system call is issued to unmap
a file. When the blkback driver in domain 0 writes back a cache
page, the VMM sets the corresponding reuse bit if possible. The
munmap system call does not write back cache pages immediately,
but it traverses PTEs and sets a dirty flag to a cache page if a dirty
bit is set in the corresponding PTE. A dirty bit in a PTE is set by
a write access to the corresponding cache page. Cache pages with
a dirty flag are written back periodically or by system calls such as
sync.

The other method for writing back modified cache pages is to
issue the msync system call explicitly. Like the munmap system
call, this system call sets dirty flags to modified cache pages. If
the MS_SYNC flag is specified, the system call waits until dirty
cache pages are written back. If the MS_ASYNC flag is specified,
dirty cache pages are not written back synchronously. To set reuse
bits for the cache pages, cmLinux remaps the pages in a read-only
manner. If cache pages were mapped in a writable manner, domain
0 could not set their reuse bits. To make the state of these pages
unprotect-on-write, cmLinux sets UOW bits for the corresponding
PTEs. Since cache pages are protected, a page fault occurs when
the first write access is performed to these pages after the msync
system call.

Since the mmap system call maps cache pages directly, a pro-
cess can write data to the region that exceeds the file size. If the file
size is not multiples of the page size, the cache page for the end
of a file has such a region. To prevent data in such a region from
being written back to a disk, the original Linux always fills that ex-
tra region with zero when it writes back a modified cache page to
a disk. To do this in cmLinux, the kernel has to unprotect the page
because the page is not mapped in a writable manner in the kernel
address space. To reduce this overhead, cmLinux does not fill the
extra region with zero if all the bytes in the region are already zero.
This is a normal case because the extra region is zero as long as a
process does not modify the region wrongly.

4.3.3 Modification of Page Tables

When the protection mode of a cache page is changed to writable
by cmLinux, the VMM clears a reuse bit for the page. Changing
a protection mode means modifying a PTE. To virtualize a page
table, our VMM supports two mechanisms: the direct page table
and the writable page table. If the direct page table is used, the
VMM can recognize the modification of PTEs by the issues of
hypercalls. cmLinux has to issue hypercalls such as mmu_update
and update_va_mapping to modify PTEs.

If the writable page table is used, the VMM can trap the mod-
ification of PTEs. cmLinux can modify PTEs of the writable page
table as it directly modifies the table. When it attempts to modify a
PTE, a page fault occurs against a page including the PTE because
the page table is protected by the VMM. The VMM saves all the
PTEs in the page and maps it in a writable manner to the kernel

original new
page . page
(protected)

block A cmLinux

file block A

cache-mapping
table
VMM

Figure 3. Double caching for reducing write overheads.

address space. At the same time, the page is disconnected from a
page directory entry so that the modification to PTEs in the page is
not immediately reflected to the actual page table. The page includ-
ing modified PTEs is connected to the original page directory entry
again after it is revalidated. In the revalidation process, the VMM
also clears the corresponding reuse bit if the protection mode of
each page is changed to writable.

4.3.4 Out-of-control Pages

When domain O maps a cache page passed from domain U in
a writable manner, the VMM clears the reuse bit for the page.
For example, let us consider that the netfront driver in domain
U erroneously passes a cache page as a buffer to the netback
driver in domain O for receiving network packets. Like the blkfront
and blkback drivers, the netfront and netback drivers communicate
with each other to process network packets. If the netback driver
overwrites the contents of the cache page with received packets,
the corrupted cache page may be reused.

When cmLinux returns a part of memory to the VMM, the
VMM clears the reuse bits for the pages. For example, cmLinux
returns memory when it receives requests for memory ballooning
from the VMM via the balloon driver [23]. It returns several pages
and obtains new ones again when it needs contiguous machine
memory for DMA. Returning a memory page means that a pseudo-
physical page frame does not correspond to any machine page
frame. Such returned pages cannot be reused.

4.4 Write Optimization

The write system call is a heavyweight operation in cmLinux be-
cause cmLinux has to first unprotect the target cache page if the
page is protected. Unlike file reads, the overhead of unprotecting
the page is not hidden by a disk access. When cmLinux reads a
file block whose cache does not exist in memory, it has to protect
a newly allocated cache page, but the overhead of the protection is
much smaller than a disk access. However, the write system call
without the O_SYNC flag just modifies the page cache in memory
and does not require any disk accesses. A disk access is performed
later when the dirty cache page is written back. Therefore, the over-
head of unprotecting a cache page occupies a large portion of the
execution of the write system call.

To eliminate the overhead of unprotecting a cache page during
the execution of the write system call, cmLinux temporarily per-
forms double caching as in Figure 3. When the write system call
is issued, cmLinux allocates a new cache page if the original cache
page is protected. It then copies the memory region that will not be
modified in the original page to the new one. Finally, it writes data
specified by the system call into the new page. At the same time, it
replaces the original page in the page cache with the new one. Note
that the cache-mapping table is not changed yet. The successive
writes to the same file block are performed to that new cache page

without unprotecting it. When the dirty cache page is written back
to a disk, cmLinux changes the cache-mapping table, unprotects
the original page, and releases it. The overhead of unprotecting the
original page is hidden by that disk write. As a side effect, the orig-
inal cache page is reusable even before the modification to the new
page is written back to a disk.

cmLinux performs this double caching only when the written
size is bigger than a threshold. The double caching needs memory
to be copied from the original cache page to the new one. At
worst, cmLinux has to copy 4097 bytes of memory when only
one byte is written to a protected cache page. In such a case, the
cost of unprotecting a cache page may be less than that of copying
a necessary memory region. Since the threshold depends on the
MMU performance and memory bandwidth, we can configure the
value experimentally.

The double caching does not completely eliminate the overhead
in the write system call. First, it still needs extra memory copy.
Second, it consumes double the amount of memory used for writes.
This memory pressure may cause earlier writeback of dirty pages.
To reduce this memory pressure, cmLinux can release the original
cache pages before writeback. Third, the double caching cannot
be performed when the cache page is already mapped in the ad-
dress space of a process. To make the double caching consistent,
cmLinux also changes memory mapping of the process so that the
process refers to a new page. Such an operation, however, is costly.

5. Experiments

We performed experiments to show that the warm-cache reboot is
effective. For a server machine, we used a PC with two Dual-Core
Opteron processors Model 280, 12 GB of PC3200 DDR SDRAM
memory, a 36.7 GB of 15,000 rpm SCSI disk (Ultra 320), and
Gigabit Ethernet NICs. We used our VMM and cmLinux based
on Linux 2.6.12. For comparison, we used the original Xen 3.0.0
for a normal reboot. We used one physical partition of a disk for
a virtual disk of domain U except for experiments in Section 5.4.
The Linux ext3 file system was mounted with the ordered mode.
‘We configured several thresholds for writeback so that Linux does
not write back dirty cache pages until we issue system calls for
writeback, except for experiments in Section 5.5, 5.6, and 5.7. We
used the 64-bit execution environment except for experiments in
Section 5.7. For a client machine, we used a PC with dual Core 2
Quad processors, 4 GB of memory, and Gigabit Ethernet NICs. The
operating system was Linux 2.6.18.

5.1 Effects of Double Caching

We performed an experiment to determine the threshold of the
double caching, which we described in Section 4.4. The effects
of the double caching depend on the size of the first write to a
cache page because cmLinux copies from the original a memory
region that will not be written in. In this experiment, we wrote
various sizes of data per page and measured the throughputs of
the write accesses when we used the double caching and when we
unprotected cache pages without using the double caching. Figure 4
shows the throughputs and the performance improvement by using
the double caching. The maximum improvement was 37%. The
performance improves as the size of written data increases. As
an exception, the improvement is not linear when 4096 bytes are
written. This is because it is not necessary to issue the Iseek system
call for moving the file offset to the next 4096-byte block.
However, when the size of written data is less than 1536 bytes,
the performance is not improved. In other words, unprotecting a
cache page is better than the double caching. Therefore, we used
1536 bytes as the threshold for enabling the double caching in our
experiments. If the first write to a cache page is less than 1536

1000 : . : . : 16

800

700

.
o

600
5004

400

\\
> 1
|
o
o

throughput (MB/s)

|
o
o
performance improvement

B double caching

300 G—O unprotecting

|
I
~

200

|
o
N

100

n

| | n |
2048 3072 4096 00
written bytes/page

Figure 4. The performance improvement by the double caching
for various write sizes.

bytes, cmLinux unprotects the cache page and writes data to it
directly.

5.2 Effects of the Warm-cache Reboot

To examine the performance improvement just after the warm-
cache reboot, we measured the throughput of file accesses before
and after the reboot of an operating system. We accessed one 1-GB
file six times and rebooted between the third and fourth accesses.
We allocated 4 GB of memory to one domain U and 4 GB to
domain 0. In this experiment, all the file blocks were cached in
memory. We performed experiments for the warm-cache reboot and
the normal reboot.

First, we measured the throughput of file read accesses, chang-
ing the block size for file reads. Figure 5 shows the results. For the
4-KB file block, the throughput just after the normal reboot was
degraded by 90 % compared with that just before the reboot. The
time needed for performance recovery was 8.9 seconds for a 1-
GB file. On the other hand, when we used the warm-cache reboot,
the throughput just after the reboot was degraded only by 16 %.
The throughput is 8.7 times of that just after the normal reboot.
The time for performance recovery was only 1.0 second. For the
512-byte block size, the performance degraded by 5.7 %. This im-
provement was achieved by there being no cache misses in the page
cache even when a file was accessed at the first time after the re-
boot. The remaining performance degradation is caused by misses
of other caches in the operating system such as i-node cache.

After the normal reboot, the throughput always becomes worse
than that after the warm-cache reboot. The cause is the change of
memory allocation to the VM. After the warm-cache reboot, the
same memory allocation is preserved by the VMM. However, af-
ter the normal reboot, a new VM is created and different ranges
of memory are allocated. Since Opteron processors we used adopt
non-uniform memory architecture (NUMA), the latency of mem-
ory access became large due to this change. Also, the third and fifth
accesses are better than the second and sixth, respectively. This is
because Linux moves a cache page from the inactive list to the ac-
tive one.

Second, we measured the throughput of file write accesses. We
prepared a 1-GB file in advance and rewrote it repeatedly. Figure 6
shows the results when we changed the block size for file writes.
For the block sizes less than 4 KB, the throughput just after the
reboot was improved when we used the warm-cache reboot. When
the block size is 2 KB, the performance degradation is 92 % in the
normal reboot but 37 % in the warm-cache reboot. In this case, the
time needed for performance recovery was 31 and 3.8 seconds in

1600

[| 4KB block solid line: warm-cache reboot
1400 |- |®—® 2KB block dashed line: normal reboot —
4—¢ 1KB block
[|4A—A 512B block]
1200 — -
w
& 1000~ T
= L |
3 800 s
<
{=2) = 4
3
£ 600 — —
400 — -
200 — T
0

1st 2nd 3rd 4th 5th 6th

before reboot after reboot

1000

solid line: warm-cache reboot

900~ dashed line: normal reboot

800~ M . -

700 —

600 —

500 —

400 —

throughput (MB/s)

300 —

200 —
mmap read |
100~ ©-@® mmap write| |

1st 2nd

3rd 4th 5th 6th
before reboot

after reboot

Figure 5. The throughput of file reads through the reboot.

900

B 4KB block solid line: warm-cache reboot
@@ 2KB block dashed line: normal reboot

4@ 1KB block i
700 A—A 512B block

800

600

500

400

throughput (MB/s)

300

200

7 &
100

st 2nd 3rd 4th 5th 6th
before reboot after reboot

Figure 6. The throughput of file writes through the reboot.

the normal reboot and in the warm-cache reboot, respectively. This
performance improvement is caused by a file read before the first
write to a new cache page. In the normal reboot, the file read is
done from the disk. The warm-cache reboot can reuse the cache
page in memory. For the 4-KB block size, on the other hand, both
throughputs are almost the same and the degradation is 39 %. Since
the block size is the same as the page size, file reads after the reboot
are not performed.

Third, we measured the throughput of the accesses to a memory-
mapped file. For reads, we mapped a 1-GB file into the memory
and read it sequentially. For writes, we mapped a prepared 1-GB
file into the memory and rewrote it sequentially. The block size
was 4 KB because it did not greatly affect the throughput. Figure 7
shows that the warm-cache reboot can decrease the performance
degradation just after the reboot. In case of the normal reboot, the
throughputs of reads and writes are degraded by 86 % and 83 %
and the recovery times are 9.0 and 9.2 seconds, respectively. For
the warm-cache reboot, the throughputs are degraded only by 15 %
and 9.1 % and the recovery times are only 1.5 and 1.8 seconds,
respectively.

5.3 Overheads

To examine the overheads for enabling the warm-cache reboot, we
first executed the 10zone 3.347 benchmark [19] in cmLinux and

Figure 7. The throughput of accesses to a memory-mapped file
through the reboot.

1400
r B 4KB biock solid bar: cmLinux b
ocl p R)
1200 KB block white bar: original Linux
L @ 1KB block - -]
1000 — _
@ H J
s}
S 800(- -
S F 4
Q
<
S 600~ a
o
£ L 4
400 — 7] —
7
4
L v]
7 7
200 — 7 ?]
7
L 7 ; i
7 : 7
0 a Z

write rewrite read reread rnd read rnd write

Figure 8. The results of I0zone.

the original Linux. We specified 512 MB as its file size. We exe-
cuted sequential write, rewrite, read, and reread and then executed
random read and write. We allocated 4 GB to domain U and all the
file blocks created temporarily were cached in memory. Figure 8
shows the results when IOzone uses file I/O system calls. The over-
heads for file reads are negligible. On the other hand, file writes in-
volve overheads. The worst throughput degradation among sequen-
tial writes is 5.5% with the 1-KB block size. For random writes, the
overheads are 2.3 % to 13 %. Figure 9 shows the results when 10-
zone uses the mmap system call. The throughput of all accesses is
degraded and the overheads are 2.9 % to 8.9 %.

Second, we examined the relationship between the overhead
of file writes and the write size per cache page. We changed the
write size for each 4-KB file block and measured the throughput
of file writes. Figure 10 shows the throughputs in cmLinux and
the original Linux and the overhead in cmLinux. For 1-byte write
per page, the overheads are 33% and quite large. This is due to
unprotecting a cache page for only 1-byte write. However, the
overhead decreases as the write size per page increases.

Third, we examined the overhead of unprotect-on-write for a
memory-mapped file. We mapped a file to the memory with the
PROT_READ and PROT_WRITE flags, read the memory, and
then wrote it. In cmLinux, a page fault occurs at the first write after
reads to achieve unprotect-on-write. We measured the throughput

1200

L solid bar: cmLinux 4
‘Z‘Eg E:gzt white bar: original Linux
1000~ | & KB block 7
_. 8001 ~ o _
@2 .
[as}) .
g L]
3 6001 g -
<
[=J
Ef L |
o
£
= 4001 m
200 — —
write rewrite read reread rnd read rnd write
Figure 9. The results of IOzone with mmap.
700 50
600
— 40
500 |
z 4
Q 1303
= 400 0
5 B
g 1 2
= [5)
g 3 —203
£
r P -{10
100 — = B cmLinux
-4 original Linux]
o | | | . | 0
0 1024 2048 3072 4096

written bytes/page

Figure 10. The throughput of partial writes for each cache page.

of a set of read and write after the file blocks are cached in memory.
The throughputs in cmLinux and the original Linux were 344 and
459 MB/s, respectively. Compared with the original Linux, the
throughput in cmLinux degraded by 25%.

Finally, we measured the time needed for the writeback in cm-
Linux and compared it with that in the original Linux. When cm-
Linux writes back a dirty cache page to a disk, it performs heavy-
weight operations. It has to protect the page before the writeback.
If the double caching is performed, cmLinux also has to modify the
cache-mapping table by issuing a hypercall and unprotect the origi-
nal page. We wrote 1-GB data and wrote back all of the dirty cache
pages. To make cmLinux write back dirty cache pages, we issued
the fsync system call when we wrote data by using the write sys-
tem call. For writes to a memory-mapped file, we issued the msync
system call for the writeback. The times needed for fsync were 11.0
and 10.9 seconds for cmLinux and the original Linux, respectively.
Those for msync were 12.2 and 12.0 seconds, respectively. As a
result, the overheads of the writeback are only 0.4% and 1.6% for
fsync and msync, respectively. This means that the overheads are
hidden by disk accesses.

5.4 Effects of the Page Cache in Domain 0

To examine the effects of the page cache in domain 0, we used a
file-backed virtual disk for domain U. In the experiments of the
previous sections, we used a partition-based virtual disk. In this
configuration, the blkback driver in domain O directly reads the

1600~ | m—m 4KB block
| | @@ 2KB block
1400 94— 1KB block
A—A 512B block

solid line: warm-cache reboot
dashed line: normal reboot b

1200 —

G 4
o
= 1000 — —
§_ L 4
< 800]
[=J
=3 L 4
<4
= 600 —
400 — —
200~ =
0
1st 2nd 3rd 4th 5th 6th
before reboot after reboot

Figure 11. The throughput of file reads from a file-backed virtual
disk through the reboot.

900
[| W= 4KB block solid line: warm-cache reboot
800~ |@—® 2KB block dashed line: normal reboot 7
| 1KB block B
700 — A—A 512B block _|
600 — *

B/s)

&)

=)

=)
T

throughput (M
s
o
o
T

300 — —
200 — —
100 — —
0
1st 2nd 3rd 4th 5th 6th
before reboot after reboot

Figure 12. The throughput of file writes from a file-backed virtual
disk through the reboot.

physical partition without the interference with any file systems
of the operating system in domain 0. On the other hand, when
the domain U reads a file block in a file-backed virtual disk, the
blkback driver in domain O reads the corresponding file block from
the image file for a virtual disk. At that time, the operating system
in domain 0 also caches the file block. Even if the domain U is
rebooted, the file block is still cached in domain 0. When domain U
reads a file after the reboot, the blkback driver in domain O returns
data in the page cache without accessing a physical disk.

Since we allocated 4 GB to domain 0 and domain U for each,
all the file blocks were cached in the page cache of both domain
0 and domain U. Figures 11 and 12 show the throughputs of file
reads and writes, respectively. When we used the normal reboot, the
throughput of file reads degraded by 47 % for the 4-KB file block
and that of file writes by 73 % for the 2-KB file block. Compared
with when we used a partition-based virtual disk, the performance
improved because of the page cache in domain 0. However, the
performance degradation was larger than when we used the warm-
cache reboot. The blkfront driver had to communicate with the
blkback driver in domain O and copy file blocks from domain 0
to domain U.

before reboot | after reboot
Ist 2nd 3rd 4th
normal reboot 499 168 502 168
warm-cache reboot | 509 168 168 | 167

Table 1. The time for the power test in the DBT-3 benchmark (sec).

Next, we changed the memory size of domain 0 from 4 GB
to 1 GB. When we access a 1-GB file in domain U, all the file
blocks cannot be cached in the page cache in domain 0. As a result,
the throughput degradation of file reads increased from 47 % to
90 %. That of file writes also increased from 73 % to 89 %. These
degradation levels are almost the same as when we use a partition-
based virtual disk.

By comparing the results in Figure 11 with those in Figure 5,
reusing metadata in file systems is found to not improve the perfor-
mance just after the reboot. When we use a file-backed virtual disk,
not only file data but also metadata in the disk image is cached in
domain 0. However, the throughput just after the reboot is almost
the same as when we use a partition-based virtual disk.

5.5 DBT-3

To examine the performance of more realistic applications, we
measured the time needed for the power test with the scale factor of
one in the DBT-3 benchmark 1.9 [24] before and after the reboot.
DBT-3 tests database performance in a decision support system and
it is a simplified implementation of the TPC-H benchmark [22].
Its power test measures the performance of the read access to
databases. We used PostgreSQL 8.2.4 as a database. We measured
the performance four times and rebooted between the second and
third tests. We allocated 11 GB of memory to one domain U and
512 MB to domain 0. All the file blocks were cached in memory in
this experiment. We performed this experiment for the warm-cache
reboot and a normal reboot.

Table 1 shows the results when the data size was 1 GB. When
we used the normal reboot, the performance just after the reboot
degraded by 67 % compared with that just before the reboot. On the
other hand, when we used the warm-cache reboot, the performance
did not degrade at all.

5.6 Web Server

‘We measured the changes of the throughput of a web server before
and after the reboot of an operating system. The Apache web server
2.0.54 [1] served 4000 files of 1 MB, and httperf 0.8 [17] in a client
host sent requests to the server one by one. Since we allocated 11
GB of memory to one domain U, all the files served by the web
server were cached in memory. We allocated 512 MB of memory
to domain 0.

Figure 13 shows the changes of the throughput of a web server
when we used the normal reboot and the warm-cache reboot. We
executed the reboot command in domain U in 30 seconds. When
we used the warm-cache reboot, the throughput was degraded only
by 5 % after the reboot. In 60 seconds after the web server restarts
its service, the throughput is recovered completely. On the other
hand, when we used a normal reboot, the throughput was degraded
by 41 % on average. The performance degradation lasts for 90
seconds after the web server restarts its service. During this period,
the web server loses the benefit to be gained of about 3300 requests,
compared with before the reboot.

5.7 Fault Injection

We injected faults into an operating system in domain U and ex-
amined the consistency of reused cache pages. We ported the fault
injection tool used in the Nooks [21] project to the Linux 2.6 kernel.

120

80
60

40

(a) normal reboot

20

throughput (regs/sec)

120

o
S

Y

80
60
40

20 (b) warm-cache reboot

throughput (regs/sec)

| | | |
60 90 120 150
elapsed time (sec)

o
w
o
o]
o

Figure 13. The changes of the throughput of a web server when an
operating system is rebooted.

Originally, the tool was developed for the Rio file cache [5] project.
Since the tool developed by the Nooks project strongly depends on
Intel 32-bit architecture, we used the 32-bit execution environment.

Faults injected by this tool are categorized into three types. The
first category is programming errors. Destination faults flip a ran-
dom bit of the destination of an instruction to emulate assignment
errors. Pointer faults flip a random bit of the address for memory
reference to emulate incorrect pointer calculations. Initialization
faults delete an instruction that initializes a local variable on the
kernel stack to emulate the usage of uninitialized local variables.
Interface faults delete an instruction that reads a function parameter
to emulate bad parameters. Branch faults delete a branch instruc-
tion or a repeat prefix to emulate bugs in control flow. Loop faults
invert the termination condition for a repeat prefix or a branch in-
struction. Panic faults cause a kernel panic.

The second category is memory management errors. Allocation
Sfaults return NULL at the kmalloc function to emulate memory
exhaustion. Free faults release a memory region that is still used.
Memory leak faults do not release a memory region at the kfree
function. Bcopy faults overrun the length of memory copy by one
byte to four pages.

The third category is memory corruption errors. Text faults flip
a random bit of a random instruction in the kernel. Stack faults flip
a random bit in a stack of a random process. NOP faults delete a
random instruction in the kernel.

We examined the consistency of the page cache after we in-
jected faults into an operating system and rebooted it using the
warm-cache reboot. First, we booted an operating system in do-
main U and waited until the page cache is filled by sending HTTP
requests. We allocated 1 GB of memory to domain U and sent re-
quests for 768 MB of files. Then we injected ten faults of the same
type into the kernel and waited for 60 seconds. Finally we rebooted
the operating system and checked the consistency of the page cache
by comparing it with files on a disk. We repeated this fault injection
50 times for each fault type.

Figure 14 shows the ratio at which the page cache was inconsis-
tent when the consistency mechanism was disabled. The VMM did
not manage the page cache. Instead, an operating system managed
a cache-mapping table and a reuse bitmap without the help of the
VMM. For most of fault types, the page cache was inconsistent at
a high ratio. This figure also shows the breakdown of the results of
this fault injection when the page cache was inconsistent. Although
fault injection did not always cause a crash, the page cache became
inconsistent.

100

B kernel crash
process crash
[0 no crash

90

80

70

60

50

40

inconsistency ratio (%)

30

DST
INIT
LOOP
PANIC
ALLOC
FREE
LEAK [

COPY
TEXT
STACK
NOP

100

90 O no consistency

Figure 14. The ratio of cache inconsistency when the consistency
table-only consistency
B full consistency

mechanism was disabled.
= > E
E o x
= 8 I.I'_J

Figure 15. The ratios of cache inconsistency when the consistency
mechanism was enabled at various levels.

80

70

60

50

40

inconsistency ratio (%)

30

IIF

BR fSssssssstssssy

LOOP

NOP ===y

DST
PTR

PANIC sy

ALLOC

LEAK 5%

FREE
STACK

Figure 15 shows the ratios at which the page cache was inconsis-
tent: (1) when the consistency mechanism was disabled, (2) when
the consistency mechanism was enabled only for a cache-mapping
table, not for a reuse bitmap, and (3) the consistency mechanism
was fully enabled. When only a cache-mapping table was managed
by the VMM, the ratio did not decrease. This means that a cache-
mapping table is unlikely to be corrupted by faults. When the full
consistency mechanism was enabled, the page cache was consis-
tent for all fault types except destination faults (DST). According
to our deep inspection, some faults were injected into the ext3 file
system in this exceptional case. Then the file system failed to write
back cache pages to a disk. This resulted in the inconsistency be-
tween the page cache and files on the disk. However, the contents
of the page cache were correct while those of files on the disk were
incorrect. Therefore, reusing the page cache is correct although the
consistency is not maintained.

6. Related work

The Rio file cache [5] enables dirty file cache to survive crashes of
an operating system. When an operating system crashes, Rio saves
dirty cache pages to a disk and prevents the reboot from losing

any modification to files. The biggest difference between Rio and
CacheMind is that Rio is designed for reliability while CacheMind
is for high performance. When an operating system is rebooted,
Rio discards non-dirty file cache because saving it is not necessary
for improving reliability. To the contrary, CacheMind reuses non-
dirty page cache but discards dirty ones because dirty pages are
inconsistent with disks. In addition, because Rio has to read saved
file cache from a slow disk, the performance degrades just after
the reboot. CacheMind prevents such performance degradation by
reusing the page cache preserved in memory.

The other big difference is that Rio relies only on an operating
system (and hardware) while CacheMind relies on the VMM. For
example, Rio provides two mechanisms to save the file cache to a
disk on a crash. One is to perform a warm reboot, which preserves
memory contents during the reboot, and save dirty file cache after
the reboot [5]. The other is to save the file cache using a BIOS rou-
tine before a reboot [18]. The former depends on hardware and is
not generally supported in PCs. The latter might fail because Rio
cannot always execute the BIOS routine after a crash. In Cache-
Mind, an operating system in a VM can perform a warm reboot,
independently of hardware, because the VMM guarantees to pre-
serve memory contents during the reboot of the VM.

Besides, Rio uses memory protection to prevent the file cache
from being corrupted by crashes of an operating system. Rio pro-
tects the file cache by using functions in an operating system while
CacheMind protects it by the VMM. In Rio, if the page table is
corrupted by a crash of an operating system, memory protection
might be ineffective. In CacheMind, although the page table may
be corrupted, the VMM tracks any modification and maintains the
reusability of the page cache. Also, Rio cannot atomically mod-
ify its registry for cache management because the registry is also
managed by an operating system. Therefore, the consistency of the
registry is not guaranteed when an operating system crashes. Ca-
cheMind manages a cache-mapping table for cache management
with the VMM. The modification of the table can be atomically
performed by the VMM.

As described in Section 5.4, when a file-backed virtual disk
is used in Xen, the page cache in domain O helps performance
recovery just after the reboot of an operating system in domain
U. Even in type-II VMMs such as Linux Kernel-based Virtual
Machine (KVM) [13], the page cache in its host operating system is
helpful as well. However, the performance still degrades due to the
memory copy from the page cache in domain 0 to that in domain U.
Another drawback is that domain O needs larger memory to cache
file blocks for all domain Us. It is not efficient to store the same file
blocks both in domain 0 and domain U.

Non-volatile disk cache such as Microsoft hybrid hard drive
(HHD) and Intel Turbo Memory are also useful for fast perfor-
mance recovery. HHD includes non-volatile memory inside a disk
drive while Turbo Memory is attached to a motherboard. They en-
able an operating system to read file blocks from fast non-volatile
memory even if the page cache in memory is lost after the reboot.
Furthermore, a solid-state drive (SSD) speeds up the whole disk
accesses by using flash memory. However, file blocks from non-
volatile memory must be copied to the page cache in the main
memory. CacheMind does not need any memory copies because it
preserves the page cache on the main memory through the reboot.

Geiger [11] maintains the mapping between disk blocks and the
page cache only by the VMM without the knowledge of operating
systems. Since it infers the mapping using several heuristics, it can
miss the detection of cache-page eviction by operating systems.
This is critical in our context because such cache pages are reused
for other purposes and do not contain valid contents for associated
files. Similarly, the time lag between actual page eviction and
its detection is also critical. To address this problem, hypervisor

exclusive cache [16] modifies operating systems so as to notify the
VMM of page eviction.

Otherworld [6] quickly recovers applications by using the mi-
croreboot technique [4]. When the kernel crashes, Otherworld starts
another kernel called the crash kernel and restores the state of ap-
plications and the operating system, including dirty file cache. The
correctness of the recovery mainly depends on the assumption that
the probability of the data corruption necessary for recovery is low.
CacheMind protects the file cache by using the VMM because the
amount of reused non-dirty file cache is large and the probability
of cache corruption is high, as shown in Section 5.7.

Recovery Box [2] preserves the state of an operating system
and applications on non-volatile memory for fast recovery. It re-
stores the state quickly after rebooting an operating system. The
state stored in that memory is protected by checksum. In addition,
Recovery Box speeds up a reboot by reusing the kernel image left
on memory. This is less effective recently because recent disks are
fast enough to read the small file for the kernel image.

RootHammer [14, 15] enables only the VMM to be quickly
rebooted by leaving VM images in memory. It uses the fact that
VM images can be reused after the reboot of the VMM. Similarly,
CacheMind uses the fact that the page cache can be reused after the
reboot of an operating system. In addition, CacheMind reuses only
consistent page cache with the help of the VMM.

7. Conclusion

In this paper, we proposed a new reboot mechanism, called the
warm-cache reboot, for fast and correct performance recovery. The
warm-cache reboot preserves the page cache on main memory
during the reboot and restores it quickly after the reboot. The VMM
guarantees that the page cache reused after the reboot is consistent
with the corresponding files on disks by maintaining reuse bitmaps.
We have implemented the warm-cache reboot mechanism in Xen.
According to our experimental results, the performance just after
the reboot became 8.7 times higher at most when we used the
warm-cache reboot. The overheads for enabling the warm-cache
reboot were usually not large. In addition, it was shown that faults
did not corrupt the reused page cache. One of our future work will
be to reuse other caches in an operating system such as i-node cache
to improve the performance just after the reboot.

Acknowledgments
This research was supported in part by JST, CREST.

References

[1] Apache Software Foundation. Apache HTTP Server Project. http:
//httpd.apache.org/.

[2] M. Baker and M. Sullivan. The Recovery Box: Using Fast Recovery to
Provide High Availability in the UNIX Environment. In Proceedings
of the Summer USENIX Conference, pages 31-44, 1992.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, 1. Pratt, and A. Warfield. Xen and the Art of Virtual-
ization. In Proceedings of the 19th Symposium on Operating Systems
Principles, pages 164177, 2003.

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Mi-
croreboot — A Technique for Cheap Recovery. In Proceedings of the
6th Symposium on Operating Systems Design and Implementation,
pages 31-44, 2004.

P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Lowell.
The Rio File Cache: Surviving Operating System Crashes. In Proceed-
ings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 74-83, 1996.

[4

=

[5

=

[6] A. Depoutovitch and M. Stumm. Otherworld - Giving Applications
a Chance to Survive OS Kernel Crashes. In Proceedings of the 5th
European Conference on Computer Systems, pages 181-194, 2010.

[7]1 S. Garg, A. Puliafito, M. Telek, and K. Trivedi. Analysis of Preventive
Maintenance in Transactions Based Software Systems. IEEE Trans-
actions on Computers, 47(1):96-107, 1998.

[8] M. Grottke and K. Trivedi. Fighting Bugs: Remove, Retry, Replicate,
and Rejuvenate. IEEE Computer, 40(2):107-109, 2007.

[9] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Calan-
drino, A. Feldman, J. Appelbaum, and E. Felten. Lest We Remember:
Cold Boot Attacks on Encryption Keys. In Proceedings of the USENIX
Security Symposium, pages 45-60, 2008.

[10] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software Rejuvena-
tion: Analysis, module and Applications. In Proceedings of the 25th
International Symposium on Fault-Tolerant Computing, pages 381—
391, 1995.

[11] S.Jones, , A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Geiger: Mon-
itoring the Buffer Cache in a Virtual Machine Environment. In Pro-
ceedings of the 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 14—
24, 2006.

[12] H. Kaminaga. Improving Linux Startup Time Using Software Resume
(and Other Techniques). In Proceedings of the Linux Symposium,
pages 25-34, 2006.

[13] A. Kivity, Y. Kamay, and D. Laor. KVM: The Linux Virtual Machine
Monitor. In Proceedings of the Linux Symposium, pages 225-230,
2007.

[14] K. Kourai and S. Chiba. A Fast Rejuvenation Technique for Server
Consolidation with Virtual Machines. In Proceedings of the 37th In-
ternational Conference on Dependable Systems and Networks, pages
245-254, 2007.

[15] K. Kourai and S. Chiba. Fast Software Rejuvenation of Virtual Ma-
chine Monitors. IEEE Transactions on Dependable and Secure Com-
puting, 2010.

[16] P. Lu and K. Shen. Virtual Machine Memory Access Tracing with
Hypervisor Exclusive Cache. In Proceedings of the USENIX Annual
Technical Conference, pages 1-15, 2007.

[17] D. Mosberger and T. Jin. httperf: A Tool for Measuring Web Server
Performance. Performance Evaluation Review, 26(3):31-37, 1998.

[18] W.Ng and P. Chen. The Design and Verification of the Rio File Cache.
IEEE Transactions on Computers, 50(4):322-337, 2001.

[19] W. Norcott and D. Capps. 10zone Filesystem Benchmark.

[20] A. Pfiffer. Reducing System Reboot Time with kexec. http://www.
osdl.org/.

[21] M. Swift, B. Bershad, and H. Levy. Improving the Reliability of Com-
modity Operating Systems. In Proceedings of the 19th Symposium on
Operating Systems Principles, pages 207-222, 2003.

[22] Transaction Processing Performance Council. TPC Benchmark H
Standard Specification Revision 2.9.0. http://www.tpc.org/,
2009.

[23] C. Waldspurger. Memory Resource Management in VMware ESX
Server. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation, pages 181-194, 2002.

[24] J. Zhang and M. Wong. Database Test Suite. http://osdldbt.
sourceforge.net/.

