
Dependable and Secure Remote Management in IaaS Clouds

Tomohisa Egawa
Kyushu Institute of Technology
egawan@ksl.ci.kyutech.ac.jp

Naoki Nishimura
Kyushu Institute of Technology
naonishi@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ci.kyutech.ac.jp

Abstract—In Infrastructure-as-a-Service (IaaS) clouds, the
users manage the systems in the provided virtual machines
(VMs) called user VMs through remote management software
such as Virtual Network Computing (VNC). For dependability,
they often perform out-of-band remote management via the
management VM. Even in the case of system failures inside their
VMs, the users could directly access their systems. However,
the management VM is not always trustworthy in IaaS. Once
outside or inside attackers intrude into the management VM,
they could easily eavesdrop on all the inputs and outputs in
remote management. To solve this security issue, this paper
proposes FBCrypt for preventing information leakage via the
management VM in out-of-band remote management. FBCrypt
encrypts the inputs and outputs between a VNC client and a
user VM using the virtual machine monitor (VMM). Sensitive
information is protected against the management VM between
them. The VMM intercepts the reads of virtual devices by a
user VM and decrypts the inputs, whereas it intercepts the
updates of a framebuffer by a user VM and encrypts the pixel
data. We have implemented FBCrypt in Xen and TightVNC
and confirmed that any keystrokes or pixel data did not leak.

Keywords-Virtual machine, remote management, information
leakage

I. INTRODUCTION

Infrastructure as a Service (IaaS) provides virtual ma-
chines (VMs) hosted in data centers. Its users can set up the
systems in the provided VMs called user VMs and use them
as necessary. They usually manage their systems through
remote management software such as Virtual Network Com-
puting (VNC). To allow the users to access their systems
even on failures inside their VMs, IaaS often provides out-
of-band remote management via a special VM called the
management VM. Unlike traditional remote management,
management servers are run in the management VM, not in
user VMs, and directly interact with virtual devices for user
VMs, such as virtual keyboard and video devices. Even if the
networks of user VMs are disconnected due to configuration
errors or if the systems crash in user VMs, the users can
continue to manage their VMs.

However, this out-of-band remote management increases
security risks because the management VM is not always
trustworthy in IaaS [1], [2], [3]. The management VM
may be compromised by outside attackers if it is not well-
maintained. If some of the administrators are malicious, they
may mount insider attacks [4]. Such attackers can easily
eavesdrop on the inputs and outputs in remote management

by replacing the management servers with malicious ones.
For example, they can extract passwords from keystrokes
sent from the clients and take screenshots of user VMs to
steal sensitive or private information. In addition, they may
execute arbitrary commands inside user VMs by sending
keyboard events.

To solve this security issue, we propose FBCrypt, which
protects sensitive information in out-of-band remote man-
agement against the attackers in the management VM.
FBCrypt encrypts the inputs and outputs in remote man-
agement between a VNC client and a user VM using the
virtual machine monitor (VMM). It can prevent information
leakage via the management VM between them in a manner
transparent to a user VM. The inputs to a user VM are
encrypted by a VNC client and decrypted by the VMM
when a user VM reads them from virtual devices. When a
user VM updates a framebuffer, the pixel data are encrypted
by the VMM and decrypted by a VNC client. As such,
only encrypted data are passed to the management VM. In
addition to the confidentiality, the VMM checks the integrity
of the inputs. It verifies the message authentication code
generated from inputs and detects the modification before
passing the inputs to a user VM.

To guarantee the integrity of the VMM inside IaaS,
FBCrypt performs remote attestation of the VMM with a
trusted server outside IaaS. Remote attestation certifies the
authenticity of the VMM by tamper-resistant hardware such
as the trusted platform module (TPM) [5]. Although the
management VM often has high privileges, the code and
data of the VMM are still protected against the management
VM. Thanks to the memory protection by the VMM, the
attackers in the management VM cannot steal secret keys
for encryption in the VMM or modify the code in the VMM
to invalidate the proposed security mechanisms.

We have implemented FBCrypt in the Xen VMM [6] and
TightVNC [7] for para-virtualized Linux guest operating
systems. To securely pass decrypted keyboard inputs to a
user VM, the VMM identifies the keyboard queue in the user
VM and directly writes decrypted inputs into the queue. To
encrypt pixel data on a screen for the management VM, the
VMM replicates a virtual framebuffer (VFB) that holds pixel
data in a user VM and provides the original and encrypted
VFBs to the user VM and the management VM, respectively.
It synchronizes two VFBs when the user VM updates its



VFB. Our experimental results show that the attackers in
the management VM cannot steal keystrokes and screenshots
and that the overheads of FBCrypt are not so large.

The organization of this paper is as follows. Section II
describes issues in dependable remote management using the
management VM. Section III proposes FBCrypt for protect-
ing sensitive information in dependable remote management
and Section IV explains the implementation details in Xen.
Section V shows our experimental results. Section VI de-
scribes related work and Section VII concludes this paper.

II. MOTIVATION

A. Dependable Remote Management

To manage a user VM in a cloud, the user usually connects
a management client to a management server running in
the user VM. This is called in-band remote management
because the user directly accesses the user VM. Let us
consider remote management through VNC. Whenever the
user presses a key or pointer button or moves a pointing
device, an input event is generated and sent from a VNC
client to the server. When the user VM draws graphic objects
in a screen, a framebuffer update is sent from the VNC
server to the client in response to a request from the client.
A framebuffer is an area of memory used to hold pixel data.
Since the communication between the VNC client and server
can be encrypted with a virtual private network or SSH
tunneling, sensitive information in the inputs and outputs
is protected. However, this in-band remote management is
not dependable. If the user just fails the configurations of the
network or firewall in the user VM, the VNC client cannot
access the VM at all. If the system in the VM crashes, the
user cannot obtain any information via VNC.

To increase dependability in remote management of the
user VM, out-of-band remote management is desired. In this
style of remote management, a VNC server is run in the
management VM, as illustrated in Figure 1. The management
VM is provided in the type-I VMM, which runs directly on
hardware, such as Xen and Hyper-V and has privileges for
accessing all user VMs. It also emulates virtual devices for
each user VM. The VNC server in the management VM
can directly access the virtual devices to interact with a user
VM. This out-of-band remote management does not rely on
the network or the VNC server in the user VM. The user
can access the user VM as if he locally logged in the VM
even on network failures of the VM. For example, if the user
fails network configuration in the user VM, he could fix the
problems by modifying the configuration through the virtual
keyboard. Even when the system in the user VM crashes, the
user may check kernel messages through the virtual video
device.

This dependable remote management relies on the man-
agement VM, but the management VM is not always trust-
worthy in clouds [1], [2], [3]. Since the user VMs can be mi-
grated between data centers, it is not guaranteed that they are

Figure 1. Dependable remote management of a user VM.

run in data centers where all the administrators are trusted.
If the management VM is managed by lazy administrators,
it may have vulnerabilities in software or configurations. In
this case, vulnerable management VMs may be penetrated
by outside attackers. Worse, if administrators themselves are
malicious, they can act as inside attackers [4].

If such attackers abuse the privileges of the management
VM, they can eavesdrop on or modify the inputs and outputs
in remote management. Even if the network is encrypted
between a client host and the management VM, the data
processed by the VNC server in the management VM is not
encrypted. For the inputs to a user VM, the attackers can
easily obtain keyboard and pointer inputs by modifying the
VNC server. The VNC server has to receive the input events
from the client and write them to the virtual devices for the
user VM. For example, the attackers can extract passwords
and credit card numbers from keystrokes. In addition, they
can send keyboard events to a user VM and make the VM
execute arbitrary commands.

For the outputs from a user VM, the attackers can take
screenshots of the user VM through the framebuffer in
a virtual video device. The attackers may steal sensitive
information displayed on the screen. For example, when
passwords have to be written in configuration files, the
attackers can know displayed passwords even if they cannot
eavesdrop on keyboard events to the user VM. If the user
uses a software keyboard to avoid keyloggers, the attackers
can steal information on pressed keys displayed on the
screen.

B. Threat Model and Assumptions

We assume that the management VM can be compromised
by outside attackers or abused by IaaS administrators. Such
attackers could take the root privilege in the management
VM and even modify the operating system kernel. In this
paper, we focus on the attempts to steal and modify sensitive
information sent between a VNC client and a user VM in
out-of-band remote management.

We assume that IaaS providers themselves are trusted.
This assumption is widely accepted [2], [3]. To guarantee
the trustworthiness, a small number of trusted senior admin-
istrators are responsible for the maintenance of the VMM
and the hardware. If average administrators that may be lazy



Figure 2. The architecture of FBCrypt.

or malicious maintain the VMM or the hardware, senior
administrators should verify it. Consequently, the VMM is
well-maintained and has no vulnerabilities. Also, we do not
consider physical attacks because server rooms should be
strictly protected in data centers.

III. DEPENDABLE AND SECURE REMOTE MANAGEMENT

To solve the security issue caused by using the untrusted
management VM in IaaS, we propose FBCrypt for enabling
dependable and secure remote management.

A. FBCrypt

FBCrypt encrypts the inputs and outputs between a VNC
client and a user VM using the VMM in a manner transpar-
ent to the user VM. The attackers in the management VM
between them cannot steal sensitive information included in
the interaction. Figure 2 shows the architecture of FBCrypt.
When the user generates an input event, the VNC client
encrypts the input with a stream cipher and sends it to the
VNC server in the management VM. The VNC server writes
the encrypted input to the corresponding virtual device such
as keyboard and pointing devices. When the user VM reads
the encrypted input from the virtual device, the VMM
intercepts this read and decrypts the input. It also checks
the integrity of the input, that is, whether the input is
not changed after sent from the VNC client. The existing
operating system in the user VM can read the decrypted
input from the virtual device using the traditional interface.

In FBCrypt, the attackers in the management VM and in
the network cannot eavesdrop on keyboard or pointer inputs
sent from a VNC client. They cannot decrypt any inputs
because only the VNC client and the VMM share a session
key for encryption. In addition, they cannot send arbitrary
keystrokes to user VMs to execute malicious commands. The
encryption and integrity check of inputs by FBCrypt prevent
the attackers from generating their own input events. Also,
the attackers cannot reuse encrypted inputs to perform replay
attacks. Thanks to the stream cipher used by FBCrypt, en-
crypted inputs captured by the attackers cannot be decrypted
correctly when they are sent to the VNC server later. The

stream cipher encrypts even the same message in a different
way. FBCrypt can detect such inputs that do not correctly
decrypted by the integrity check.

For the outputs from a user VM, on the other hand,
FBCrypt encrypts the framebuffer of a virtual video device
in the management VM. When an application such as an
X server in a user VM draws graphic objects, the user VM
updates the framebuffer by accessing the device. The VMM
intercepts this update and encrypts the updated pixel data.
In response to a request from the client, the VNC server
reads the framebuffer and sends encrypted pixel data to the
client. Then the VNC client decrypts the received pixel data
and draws them in its window. Encrypting the framebuffer
does not cause any problems because the VNC server is not
aware of the contents of the framebuffer. It simply deals with
encrypted pixel data as if they were not encrypted. Since the
virtual video device provides the same interface to the user
VM, no modification to the operating system is needed.

The attackers in the management VM and in the net-
work cannot eavesdrop on framebuffer updates sent to a
VNC client. The sent updates are a part of the encrypted
framebuffer, which can be decrypted only by either the
VMM or the VNC client. The attackers in the management
VM can directly access the entire framebuffer but cannot
decrypt it. In addition, they cannot modify the encrypted
framebuffer arbitrarily. Even if they copy some area in the
encrypted framebuffer to other areas, the copied areas cannot
be decrypted correctly because FBCrypt encrypts pixel data
with the information on their positions. Furthermore, ma-
licious framebuffer updates generated by the attackers can
be easily detected. Since such updates cannot be decrypted
correctly, meaningless objects are just drawn in its window.
Consequently, the user could notice such attacks soon.

B. Protecting FBCrypt in IaaS

To guarantee the integrity of the VMM in IaaS, FBCrypt
performs remote attestation of the VMM with a trusted
server outside IaaS. Remote attestation certifies the authen-
ticity of the VMM by tamper-resistant hardware such as the
trusted platform module (TPM) [5]. It measures the VMM
by calculating its hash value, sends the signed measurement
to the trusted server, and verifies its integrity. The VNC
clients can check the integrity of the VMM when connecting
to the VNC server in the management VM. According to
our assumption in Section II-B, only a small number of
trusted senior administrators are allowed to register the hash
value of a legitimate VMM to the trusted server for remote
attestation.

The VMM is protected even against malicious manage-
ment VMs by using the protection mechanisms of the VMM
itself. The management VM usually has high privileges
and can access most of the hardware without limitations.
However, the management VM is still a sort of VM. Similar
to the other VMs, it cannot access the state of the CPUs or



the memory used by the VMM. Therefore, the attackers in
the management VM cannot modify the code in the VMM
to invalidate the proposed security mechanism. They cannot
steal data in the VMM, such as secret keys for encryption.

In addition, the CPU state and the memory of a user VM
can be protected against the management VM by using the
secure runtime environment (SRE) [2] and VMCrypt [8].
The management VM can usually access all the resources
of a user VM to enable VM management such as migration.
The SRE and VMCrypt encrypt the CPU state and the
memory of a user VM only for the management VM.
With them, the management VM cannot steal keyboard and
pointer inputs read by a user VM via its CPU registers or the
memory. It cannot read unencrypted pixel data to be written
in the framebuffer by a user VM. Also, it cannot modify the
code in a user VM so that the user VM itself sends such
sensitive data to the attackers, for example.

C. Key Management

A VNC client securely shares a session key with the
VMM whenever it establishes the connection to a VNC
server. When it connects to a user VM, it first generates
a new session key. Then the VNC client communicates with
the trusted server for remote attestation and checks that the
VMM on which the user VM runs is legitimate. If so, the
VNC client can obtain the public key of the VMM from the
server. We assume that the public key is securely registered
to the server in advance. Next, the VNC client encrypts the
session key with the public key and transfers it to the VNC
server in the management VM. The VNC server passes it to
the VMM and the VMM decrypts it with its private key. The
attackers in the management VM cannot decrypt the session
key because they cannot obtain the private key of the VMM.
The private key is sealed by TPM and can be unsealed only
when a legitimate VMM are booted.

IV. IMPLEMENTATION

We have implemented FBCrypt in Xen 4.1.1 [6] and
TightVNC Java Viewer 2.0.95 [7]. We added only 4197 lines
of code to the VMM. In Xen, domain 0 is the management
VM, while domain U is a user VM. A VNC server and
virtual devices are a part of QEMU running in domain 0.
The target guest operating system is para-virtualized Linux.

A. Encrypting Inputs

FBCrypt securely delivers user’s inputs from a VNC client
to the para-virtualized keyboard driver named kbdfront in
domain U, as illustrated in Figure 3. Currently, FBCrypt
supports only keyboard inputs, but it can support pointer
inputs in the same way. When the user presses a key, the
VNC client sends an encrypted keyboard input to the VNC
server and the VNC server writes it to a virtual keyboard
device. Then the device passes it to the VMM using a new
hypercall. In the hypercall, the VMM decrypts the encrypted

Figure 3. The encrypted delivery of keyboard inputs.

input and writes the decrypted one to the I/O ring for
kbdfront. The I/O ring is a queue used for passing data
between domains. From the I/O ring, kbdfront obtains the
decrypted input. In the original Xen, virtual devices directly
write unencrypted inputs to this I/O ring. In FBCrypt, the
I/O ring is encrypted by SRE [2] or VMCrypt [8] and can
be accessed only by domain U and the VMM.

The VMM identifies this I/O ring when domain U is
booted. Originally, the VMM does not recognize the I/O
ring because only domain U and domain 0 share it. On
initialization, kbdfront allocates and sets up the xenkbd
page, which is a memory page containing the I/O ring. Then
it registers the frame number of the page to XenStore in
domain 0. XenStore is a filesystem-like database containing
information shared between domains. The VMM monitors
this registration from domain U to domain 0 and obtains
necessary information. Domain 0 cannot interfere with this
identification mechanism. We describe how to monitor the
interaction in Section IV-C.

For encryption and decryption of inputs, FBCrypt uses
AES in CTR mode (AES-CTR) as a stream cipher. We used
a modified version of the CyaSSL library [9] in the VMM
and the Java standard API in TightVNC Java Viewer. AES-
CTR generates a key stream by encrypting counter block
values with AES and encrypts data by combining them and
the next key in the key stream via XOR. When AES-CTR
uses up all keys in the key stream, it increments the counter
values and generates a new key stream from them. When
the VNC client terminates, the internal state such as a key
stream is lost. However, the VMM cannot recognize that
termination and it continues to preserve the internal state.
To synchronize the internal state when the VNC client re-
connects to the server, the VNC server issues a hypercall
for resetting the internal state in the VMM.

To check the integrity of inputs, FBCrypt uses a message
authentication code (MAC). When the VNC client sends an
encrypted input to the server, it calculates a SHA-1 hash
value from the input before encrypted, a sequence number,
and the session key for encryption. The sequence number
is incremented whenever one input is handled. Thanks to



Figure 4. The encrypted delivery of pixel data.

a secret session key and a sequence number, the attackers
cannot calculate the hash value correctly or reuse a pair of
captured encrypted input and MAC value. To send the MAC
value with an encrypted input, we have extended the RFB
protocol [10] used in VNC. After the VMM decrypts the
encrypted input, it compares the MAC value with the hash
value calculated from the decrypted input. If the two values
are different, the VMM discards the input.

For keyboard inputs, the VMM converts the encoding
of keys when it writes decrypted inputs to the I/O ring
for kbdfront. The I/O ring is designed so that it receives
keycodes as keyboard inputs. A keycode (scancode) is data
generated when a keyboard is pressed. However, decrypted
inputs are keysyms, which are used in VNC. A keysym
is defined by the X Window System and the same as the
corresponding ASCII value for ordinary keys. To fill this
gap, the VMM converts keysyms to keycodes using the
mapping table. This conversion was originally done by the
VNC server. In FBCrypt, the VNC server cannot perform
this conversion because keyboard inputs received from the
VNC client are encrypted.

B. Encrypting a Framebuffer

FBCrypt securely delivers updated pixel data from the
para-virtualized video driver named fbfront in domain U to
a VNC client, as illustrated in Figure 4. Originally, fbfront
allocates a virtual framebuffer (VFB) in domain U and the
virtual video device in domain 0 shares it. In FBCrypt,
the VMM replicates the VFB for the virtual video device
and encrypts the replicated one. When an application in
domain U draws graphic objects, fbfront updates its own
VFB and sends an update event to the virtual video device
using the I/O ring for fbfront. At this time, the VMM
synchronizes the original VFB with the replicated one. The
VNC server periodically monitors updates in the replicated
VFB and sends framebuffer updates to the client if pixel
data are changed. Since the original VFB in domain U can
be encrypted only for domain 0 by SRE [2] or VMCrypt [8],
domain 0 cannot access unencrypted pixel data in the VFB.

To replicate the VFB for the virtual video device, the
VMM first identifies the VFB in domain U. When domain

U is booted, fbfront sets up the xenfb page, which contains
the pointer to the VFB. When fbfront registers this page to
XenStore in domain 0, the VMM intercepts it and allocates
a new VFB in domain 0 as an encrypted replica. At the same
time, it rewrites the xenfb page so that the page points to
the replicated VFB. Since the xenfb page stores a VFB in a
structure like page tables, the VMM constructs a replicated
VFB with the same structure. Then it sends the rewritten
xenfb page to XenStore in domain 0 and the virtual video
device uses the replicated VFB. As such, the virtual video
device is given an illusion as if it shared the same VFB with
domain U.

The VMM synchronizes the original VFB with the repli-
cated one when fbfront sends update events for the VFB
to the virtual video device. An update event consists of an
updated area in the framebuffer and is passed via the I/O ring
shared between domain U and domain 0. Since the xenfb
page also contains the I/O ring, the VMM can easily identify
it. When an update event is sent using the I/O ring, the
VMM intercepts it, encrypts the pixel data in the specified
area of the original VFB, and writes them to the replicated
VFB. After this synchronization, the VMM sends the update
event to the virtual video device. The VNC server reads the
updated pixel data from the encrypted VFB and sends them
as a framebuffer update to the VNC client. The VNC client
decrypts the received data and re-draws its window.

For encryption and decryption of pixel data, FBCrypt
uses a modified version of RC5 [11], which uses the non-
standard block size of 48 bits to accommodate two pixels.
It is desirable to encrypt a VFB by one pixel because an
updated area can be an arbitrary rectangle. However, the
block size of 24 bits is less than the standard minimum size
of 32 bits and therefore we chose the 48 bits as the block
size. In addition, FBCrypt considers the position of each
pixel to be encrypted. If all the pixels were encrypted by the
same key without considering their positions, the attackers
in domain 0 could obtain approximate screen images.

Since FBCrypt encrypts two pixels together, the VMM
rewrites update events in the I/O ring so that the updated
areas are aligned by the boundary of two pixels. For exam-
ple, when the X-position or the width of an updated area
is odd, the VMM needs to expand the updated area. If the
VNC server transferred only one of two pixels, the VNC
clients could not decrypt the received pixel data correctly.
Fortunately, in the current implementation of Xen, the VMM
does not need to expand updated areas. The X-position and
the width of an updated area are always aligned by 8 bits
in text mode. In graphics mode, they are always the same
as the display width, which is usually even.

C. Monitoring a XenStore Ring

To intercept the registration to XenStore in domain 0
from domain U, the VMM monitors a XenStore ring,
which is shared between domain U and domain 0, as



Figure 5. Intercepting the registration to XenStore.

shown in Figure 5. When domain U registers data to
XenStore, it writes a pair of path and value to the Xen-
Store ring. For example, the path for a virtual keyboard
is device/vkbd/0/page-ref and the value is the
frame number of the xenkbd page. The VMM inspects the
XenStore ring when domain U sends an inter-domain event
to domain 0 using a hypercall after it writes data to the ring.
If the written path is one of the above, the VMM obtains
the information on a shared page.

Since the original VMM in Xen is not aware of a XenStore
ring, our VMM identifies the ring from the start info page,
which points to the page containing the XenStore ring. This
page is passed from domain 0 to domain U when domain U
is booted. The VMM first obtains the virtual address of the
start info page from the RSI register of a virtual CPU for
domain U. The address is set by domain 0 at the build time
of domain U. Then the VMM translates the virtual address
into the frame number of the start info page.

V. EXPERIMENTS

We conducted experiments for confirming the prevention
of information leakage by FBCrypt and for examining its
overheads. For server and client machines, we used two PCs
with one Intel Core 2 Quad processor Q9550 2.83 GHz and
a Gigabit Ethernet NIC. In the server machine, we ran a
modified version of Xen 4.1.1 for the x86-64 architecture.
The server machine had 4 GB of memory and we allocated
512 MB for domain U. We ran Linux 3.1.1 in domain 0
and Linux 2.6.32.21 in domain U. In the client machine, we
ran a modified version of TightVNC Java Viewer 2.0.95 on
Linux 2.6.38.8. The client machine had 8 GB of memory.

We used AES-CTR with a 128-bit key for encrypting
inputs and SHA-1 for calculating MAC. For RC5 used for
encrypting pixel data, we used a 48-bit block, a 192-bit key,
and 16 rounds.

A. Attempts at Eavesdropping

To confirm that FBCrypt prevents domain 0 from eaves-
dropping on keystrokes, we embedded a custom keylogger
into the VNC server in domain 0. This keylogger simply
recorded keystrokes sent from the VNC client. Using the

Figure 6. The screen whose only lower half is encrypted.

Table I
THE OVERHEADS IN THE CLIENT AND SERVER SIDES (MSEC).

Client-side Server-side
Key input 0.802 0.015
Full-screen update 47 37

VNC client, we logged in to domain U by typing a user name
and a password. Without FBCrypt, the plain-text password
was recorded. When FBCrypt was enabled, the password
was encrypted by the VNC client and the keylogger recorded
encrypted one. Nevertheless, the user could log in domain
U as usual.

Next, we embedded a program for screen capture into
the VNC server to confirm that FBCrypt prevents domain
0 from stealing the pixel data of domain U. This screen
capture periodically saved the pixel data in the VFB to a file.
Figure 6 shows the screen whose lower half is encrypted for
demonstration. With FBCrypt disabled, the pixel data was
recorded as in the upper half and the attackers could read
displayed texts. FBCrypt could randomize the pixel data as
in the lower half, so that the attackers cannot recognize the
contents.

B. Overheads

First, we examined the overheads in a keyboard input
when we pressed one key to a user VM. In the client side,
we measured the time from when the VNC client received
a keyboard input until it sent the input event to the VNC
server. In the server side, we measured the time from when
the VNC server received the event until the input was written
to the I/O ring. We measured these 100 times and obtained
the average. As shown in the first row of Table I, the
overhead in the client side was 802 µs. Most of the overhead
comes from sending extra data for the MAC.

Next, we examined the overheads in a framebuffer update
when we updated the full screen (800×600) of a user VM. In
the server side, we measured the time from when the VMM
intercepted the update event for the VFB until it completed
to synchronize VFBs. In the client side, we measured the
time from when the VNC client received pixel data until it



(a) Server side (b) Client side

Figure 7. The response time of a keyboard input.

drew the data in its window. We measured these 10 times
and obtained the average. The second row in Table I shows
the overheads. Note that these overheads become smaller if
an updated area is smaller.

C. Response Time of a Keyboard Input

To exclude the influences of the interaction between the
VNC client and server, we first examined the response time
of a keyboard input in the server side. We measured the time
needed from when the VNC server received a keyboard event
until the virtual video device received an update event for
the VFB from domain U. Domain U displayed the character
corresponding to an input on the screen and generated an
update event. We measured the response time 100 times and
obtained the average and standard deviation. As shown in
Figure 7(a), the increase of the response time was 1.5 ms in
FBCrypt. This overhead is caused by decrypting a keyboard
input and encrypting pixel data for a displayed character.

Next, we examined the response time in the client side.
We measured the time from when the VNC client received
a keyboard input from the user until it completed to draw
updated pixel data sent from the server in its window.
We performed this measurement in the original Xen and
FBCrypt. For comparison, we also measured the response
time using in-band remote management, which ran a VNC
server in domain U. Figure 7(b) shows the results. The
response time in FBCrypt was 7.0 ms longer than that in
the original Xen.

Compared with these two systems, the response time in
in-band remote management was too short, which was 27
ms. One cause of the difference is the overhead of out-of-
band remote management, but another is due to the timer
interval used by the VNC server implemented in Xen. The
VNC server checks updates in the VFB at some interval and
sends the updates to the client if any. The interval is set to 30
ms when the VNC server receives a keyboard event. Since
the framebuffer update caused by the keyboard input does
not occur in 30 ms in out-of-band remote management, the

(a) Server side (b) Client side

Figure 8. The response time of a full-screen update.

next interval is set to 80 ms. This means that the framebuffer
update occurs in 110 ms after a keyboard event is received.
This is the reason why the response times in the original
Xen and FBCrypt are more than 110 ms.

D. Response Time of a Full-screen Update

We first examined the response time of a full-screen
update in the server side. We measured the time as explained
in the previous section. We ran a screen saver that made the
screen black out in advance. By the keyboard input, domain
U terminated the screen saver, re-drew the full screen, and
generated an update event. We measured the response time
10 times and obtained the average and standard deviation.
Figure 8(a) shows the results in the original Xen and
FBCrypt. The response time in FBCrypt was 36 ms longer
than that in the original Xen. Most of this overhead is caused
by encrypting 800×600 pixel data for the full screen.

To examine the response time in the client side, we
measured the time as in the previous section. As shown in
Figure 8(b), the increase of the response time in FBCrypt
was 46 ms. This is nearly equal to the time needed for
decrypting all pixel data in the screen. Thanks to the long
timer interval used by the VNC server, as analyzed in
Section V-B, the overhead of the synchronization in FBCrypt
was almost hidden in the server side. For in-band remote
management, the response time was shorter because of the
same reasons as the previous section.

VI. RELATED WORK

Xoar [12] runs QEMU including a VNC server in a sep-
arated VM called QemuVM. In Xen, QEMU can be run in
a special VM called a stub domain. Since a small operating
system named mini-os is run in these special VMs, it is
more difficult for the outside attackers to compromise them.
However, the VNC server can be compromised because it is
open to the Internet. If it is compromised, the attackers can
eavesdrop on sensitive information in remote management.
In addition, this architecture does not improve the security
against insider attacks by IaaS administrators.



VMware vSphere Hypervisor [13] runs a VNC server
in the VMM and enables dependable remote management
without the management VM. The VNC server in the VMM
can directly access virtual devices for user VMs. In vSphere,
information leakage via the management VM does not occur.
However, the attackers can steal sensitive information in
remote management if they compromise the VNC server
in the VMM. They can take over even the control of the
VMM itself. FBCrypt preserves the confidentiality in remote
management by the VMM even in the case that the VNC
server in the management VM is compromised.

The secure runtime environment (SRE) [2] and VM-
Crypt [8] prevent information leakage from the memory of
the user VMs to the management VM. When the manage-
ment VM maps memory pages of a user VM, the VMM
encrypts their contents. This architecture is complementary
to FBCrypt in that it prevents the management VM from
stealing information inside the user VMs. Note that the
management VM cannot use the VFB encrypted by these
systems, instead of the one replicated and encrypted by
FBCrypt. These systems synchronize the unencrypted and
encrypted VFBs only on memory mapping.

CloudVisor [3] runs the security monitor underneath the
VMM and encrypts the memory and storage of the user
VMs in the security monitor. Since it distrusts not only
the management VM but also the VMM, it can prevent
information leakage even from the VMM. However, the
security monitor does not encrypt the inputs and outputs
in remote management.

BitVisor [14] can prevent information leakage from stor-
age and network of the user VM. It is similar to FBCrypt
in that the VMM transparently encrypts I/O of the user VM
without the help of the management VM. However, BitVisor
does not provide the means of remote management.

VII. CONCLUSION

In this paper, we proposed FBCrypt for enabling de-
pendable and secure remote management in IaaS clouds.
To prevent information leakage via the management VM
in out-of-band remote management, FBCrypt encrypts the
inputs and outputs between a VNC client and a user VM
using the VMM. The VMM decrypts the inputs encrypted
by a VNC client when a user VM reads them. When a user
VM updates a framebuffer, the VMM encrypts the updated
pixel data, which are decrypted by a VNC client. As such,
sensitive information is protected against the management
VM, which is located in the middle. We have implemented
FBCrypt in Xen and TightVNC Java Viewer and confirmed
that the security in dependable remote management was
improved and that the overheads of FBCrypt were not so
large, particularly, for emergency use.

Currently, we are working on supporting fully-virtualized
guest operating systems in FBCrypt. Unlike para-virtualized
Linux, the guest operating systems access the virtual devices

through standard interfaces without I/O rings. Future work
is to apply FBCrypt to other remote management software
such as SSH.

ACKNOWLEDGMENT

This research was supported in part by JST, CREST.

REFERENCES

[1] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards
Trusted Cloud Computing,” in Proc. Workshop Hot Topics
in Cloud Computing, 2009.

[2] C. Li, A. Raghunathan, and N. K. Jha, “Secure Virtual
Machine Execution under an Untrusted Management OS,” in
Proc. Intl. Conf. Cloud Computing, 2010, pp. 172–179.

[3] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant
Cloud with Nested Virtualization,” in Proc. Symp. Operating
Systems Principles, 2011, pp. 203–216.

[4] TechSpot News, “Google Fired Employees for
Breaching User Privacy,” http://www.techspot.com/news/
40280-google-fired-employees-for-breaching-user-privacy.
html, 2010.

[5] Trusted Computing Group, “TPM Main Specification,” http:
//www.trustedcomputinggroup.org/, 2011.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. Symp. Operating Systems Principles,
2003, pp. 164–177.

[7] TightVNC Group, “TightVNC,” http://www.tightvnc.com/.

[8] H. Tadokoro, K. Kourai, and S. Chiba, “Preventing Infor-
mation Leakage from Virtual Machines’ Memory in IaaS
Clouds,” IPSJ Online Transactions, vol. 5, pp. 156–166, 2012.

[9] yaSSL, “CyaSSL Embedded SSL Library,” http://www.yassl.
com/.

[10] T. Richardson, “The RFB Protocol Version 3.8,” http://www.
realvnc.com.

[11] R. L. Rivest, “The RC5 Encryption Algorithm,” in Proc.
Workshop Fast Software Encryption, 1994.

[12] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield, “Breaking Up is Hard to Do:
Security and Functionality in a Commodity Hypervisor,” in
Proc. Symp. Operating Systems Principles, 2011, pp. 189–
202.

[13] VMware Inc., “VMware vSphere Hypervisor,” http://www.
vmware.com/.

[14] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai, Y. Oyama,
E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato, “BitVi-
sor: A Thin Hypervisor for Enforcing I/O Device Security,”
in Proc. Intl. Conf. Virtual Execution Environments, 2009, pp.
121–130.


