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Abstract—Recently, even operating systems are often com-
promised by the attackers. Since a compromised operating
system affects all the applications including security software
on top of it, the integrity of the operating system should be
guaranteed. However, it is difficult to monitor the operating
system securely. In this paper, we propose SPE Observer, which
is a framework for securely monitoring operating systems using
SPEs in Cell/B.E. SPE Observer guarantees the integrity and
confidentiality of monitoring systems by the isolation mode
of SPEs. To complement the isolation mode, SPE Observer
monitors the running status of monitoring systems from an
external security proxy. In addition, it schedules monitoring
systems to mitigate the performance degradation of appli-
cations due to occupying SPEs. We have implemented SPE
Observer in PlayStation 3 and developed the integrity monitor
of the operating system. According to our experiments, it was
shown that the integrity monitor on an SPE could detect
a compromised operating system and that the application
performance was dramatically improved by scheduling the
integrity monitor.

I. INTRODUCTION

In recent years, computer systems suffer from various
attacks from the Internet. The users usually protect their
systems with security software such as antivirus. Such se-
curity software monitors the system with the functionalities
of the operating system. However, the operating system is
not an exception of the attacks. Many kernel rootkits such as
Adore-ng [1], Knark [2], and SucKIT [3] have been found. If
the operating system is compromised, the monitoring results
of security software become unreliable.
To increase the reliability of security software, the in-

tegrity of the operating system should be guaranteed. How-
ever, if monitoring systems run on top of or inside the
operating system, it is difficult to examine that the operating
system is not compromised. Therefore, several methods for
running monitoring systems underneath the operating system
have been proposed, but they are not sufficient. For example,
remote attestation using the TPM [4] guarantees the integrity
of the operating system only at boot time. Hardware supports
enable monitoring systems to be executed securely [5], [6],
[7], [8], but the system performance degrades because a
monitoring system cannot be run with the other tasks on
the other CPU cores. Virtualization technology is promising
to run monitoring systems underneath the operating system
[9], [10], [11], but the hypervisors implemented by software
may have vulnerabilities [12], [13].

In this paper, we propose a framework for securely mon-
itoring operating systems using SPEs in Cell/B.E., which
is named SPE Observer. Cell/B.E. has two types of cores:
a PPE for the operating system and SPEs for parallel
applications. SPE Observer executes a monitoring system
on an SPE to check the integrity of the operating system
on the PPE. To protect the integrity and confidentiality of
the monitoring system from the attacks, SPE Observer runs
the SPE in the isolation mode1. Since the isolation mode
still allows the PPE to stop SPEs for controlling the whole
system, SPE Observer monitors the running status of the
monitoring system by sending heartbeats from an external
security proxy. In addition, to mitigate the performance
degradation of applications due to using SPEs for the moni-
toring purpose, SPE Observer schedules monitoring systems
so that SPEs are not always occupied.
We have implemented SPE Observer in PlayStation 3 and

developed a monitoring system that checked the integrity of
the kernel memory as an example. We modified the Linux
kernel to allow monitoring systems to access the kernel
memory and to schedule SPEs appropriately. Using SPE
Observer, we conducted several experiments to confirm that
the integrity monitor could detect compromised operating
systems and how the application performance was affected.
It was shown that the integrity monitor on an SPE could
distinguish between legitimate and compromised kernels.
Scheduling of monitoring systems could mitigate the per-
formance degradation of parallel applications. Particularly,
the performance of an application whose threads were syn-
chronized became 4.6 times higher at the scheduling interval
of 200 ms.
The rest of this paper is organized as follows. Section II

describes issues in the existing frameworks for monitoring
operating systems. Section III proposes SPE Observer and
Section IV explains its implementation. Section V shows
the results of experiments using SPE Observer. Section VI
describes related work in detail and Section VII concludes
this paper.

II. MONITORING OPERATING SYSTEMS

To increase the reliability of the system, it is necessary
to check the integrity of the operating system. However,

1Strictly speaking, this is a mode for an SPU inside an SPE. In this
paper, we identify an SPU with an SPE for simplicity.



it is not easy to securely monitor the operating system.
Monitoring systems for the operating system often run on
top of the operating system using system calls [14], [15]. If
the operating system is compromised by the attackers, e.g.,
using kernel rootkits, the results of the system calls cannot
be trusted. For example, a compromised operating system
may prevent the notification of security breaches. It can even
stop monitoring systems although the risk of being detected
increases. Monitoring systems can be embedded into the
operating system kernel [16], [17]. They can directly monitor
the operating system through the kernel memory without
depending on the functions of the operating system, but it
is not guaranteed that monitoring systems work correctly.
Monitoring systems running inside a compromised operating
system can be also compromised easily.
To solve this problem, many researchers have proposed

methods for monitoring the operating system with the vir-
tual machine technology [9], [10], [11]. The hypervisor
virtualizes the hardware to create multiple virtual machines,
in each of which the operating system runs. Since the
hypervisor runs underneath the operating system, it can
securely monitor the operating system in a virtual machine.
In several architectures such as Xen, Hyper-V, and vSphere
Hypervisor, privileged virtual machines can also monitor the
operating system in normal virtual machines. In either case,
the monitoring system can run securely without interfer-
ence with a compromised operating system. However, the
hypervisor and the privileged virtual machines can be also
compromised because they are constructed by software. For
example, it has been reported that a normal virtual machine
could attack the hypervisor [12], [13].
With the help of hardware such as the TPM [4], the

remote attestation of the operating system can be performed.
It guarantees the integrity of the operating system if a chain
of trust is established from the TPM. For example, ROM
code measures the BIOS, the BIOS measures the boot loader,
and then the boot loader measures the operating system, in
turn. All the calculated hash values of these components are
stored in the TPM securely and verified by a trusted third
party. It is difficult for the attackers to compromise the TPM,
which is a root of trust. However, this static attestation is
performed only once at boot time. If the operating system is
compromised at runtime, that cannot be detected. Dynamic
attestation performed at runtime has been proposed for
applications [18], but it cannot be applied to the operating
system if the operating system is the lowest software layer.
Using several capabilities of processors, monitoring sys-

tems can be securely executed at runtime. System Manage-
ment Mode (SMM) provided in the x86 processor families
is used for monitoring the integrity of the operating system
[5], [6], [7]. When a CPU enters SMM via interrupts, it
can securely execute monitoring systems without interfer-
ences by the attackers. Also, Intel TXT and AMD SVM
enable monitoring systems to be executed in an execution
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Figure 1. The architecture of Cell/B.E.

environment that has not been compromised [8]. However,
while a monitoring system is running in such an execution
environment, all the other tasks including the operating
system are suspended to avoid attacks from the other CPU
cores. This is critical for coming many-core processors
because only one core can be used during monitoring.
Therefore, we use Cell Broadband Engine (Cell/B.E.)

providing a unique security feature called the isolation
mode [19]. Cell/B.E. is a heterogeneous multicore processor
that consists of a PowerPC Processor Element (PPE) and
Synergistic Processor Elements (SPEs), as depicted in Fig-
ure 1. A PPE is a control processing core and executes an
operating system and regular processes. SPEs are arithmetic
processing cores and execute parallel applications. Each
SPE consists of a Synergistic Processor Unit (SPU) and
the memory called a local store, which is isolated from
the main memory physically. It loads a program into its
local store and moves data between the main memory and
the local store using DMA. The isolation mode of an SPE
can protect the local store from the other cores and all the
devices. Nevertheless, an isolated SPE can securely run with
the other SPEs and the PPE in parallel.

III. SPE OBSERVER

This paper proposes SPE Observer, which is a framework
for monitoring operating systems using isolated SPEs in
Cell/B.E. Figure 2 illustrates the system architecture of SPE
Observer. In SPE Observer, a monitoring system runs on
an SPE in the isolation mode. An external security proxy
bridges internal and external networks and monitors the
running status of the monitoring system.

A. Threat Model

We assume that the attackers can compromise the operat-
ing system on the PPE and applications running on SPEs in
the normal mode. However, we do not assume that there are
remotely-exploitable hardware vulnerabilities in Cell/B.E.
That is, the local stores of SPEs are correctly protected in the
isolation mode and the secret key in the hardware cannot be
extracted. Note that PlayStation 3 with Cell/B.E. has been
cracked and its secret key has been exposed. We believe
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Figure 2. The system architecture of SPE Observer.

that the vulnerability is due to an implementation issue in
PlayStation 3 but is not inherent in Cell/B.E. In addition, we
do not consider any attacks against the security proxy. Since
the security proxy provides only the services of bridging
networks and monitoring the running status of monitoring
systems, protecting the security proxy is relatively easy.

B. Secure Execution in the Isolation Mode

SPE Observer securely executes monitoring systems on
SPEs with the isolation mode enabled. The isolation mode
protects the local store in an SPE and prohibits the PPE and
the other SPEs from accessing the local store. Therefore,
the integrity of monitoring systems running on isolated
SPEs is guaranteed because their code and data are located
in the protected local stores. The attackers cannot modify
the running program or processing data on isolated SPEs
by DMA from the outside. Also, the confidentiality of
monitoring systems running on SPEs is guaranteed. The
attackers cannot analyze the programs of monitoring systems
or steal sensitive information such as secret keys in the local
stores.
SPE Observer securely loads a monitoring system into

the local store in an SPE using a secure loader (or isolation
loader) [20]. Figure 3 shows the procedure. First, it loads
an encrypted executable of the secure loader into the local
store in an SPE. The SPE verifies the digital signature of the
secure loader. If the secure loader is not modified, the SPE
decrypts it with the secret key embedded into the hardware.
Next, the secure loader loads an encrypted executable of a
monitoring system into the local store. It verifies the digital
signature of the monitoring system and decrypts it with its
secret key.
The secure loader guarantees the integrity and confiden-

tiality of the executables of monitoring systems. For the
integrity, the attackers cannot make SPE Observer to load
compromised monitoring systems into the local stores of
isolated SPEs. The secure loader verified by the hardware
checks their integrity. Since the attackers do not know
the private key for signatures, they cannot sign their own
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Figure 3. Loading a monitoring system using the secure loader.

monitoring systems correctly. For the confidentiality, the
attackers cannot decrypt the executables of monitoring sys-
tems because they do not know the secret key for decryption.
The key is embedded into the secure loader and the secret
key for decrypting the secure loader is in the hardware.
As such, the isolation mode and the secure loader maintain

the integrity and confidentiality of monitoring systems exe-
cuted on SPEs. However, the PPE can still stop monitoring
systems running on SPEs even if SPEs run in the isolation
mode. This function is necessary because the PPE controls
the whole system including SPEs in usual computation.
For example, the PPE has to terminate an infinitely-looping
program in an SPE. To detect the PPE maliciously stopping
monitoring systems, we use a security proxy, which is
described in the next section. Note that the confidentiality of
monitoring systems is still guaranteed even if the attackers
can stop SPEs. When the isolation mode in an SPE is
disabled, the contents of the local store and the registers are
erased by the hardware. The PPE cannot steal data of the
terminated monitoring system by DMA or loading another
program into the SPE.

C. Security Proxy

To monitor the running status of monitoring systems
on SPEs, an external security proxy sends heartbeats to
monitoring systems periodically. The security proxy judges
that a monitoring system is stopped if it loses the responses
to its heartbeats. The timeout period of heartbeats has to
be configured carefully to prevent false positives. If the
attackers on the PPE stop monitoring systems, they can avoid
detecting a compromised operating system. This means that
security software running on the operating system also
becomes untrustworthy. However, the external monitoring by
the security proxy could deter the attackers from stopping
monitoring systems on SPEs.
The security proxy sends encrypted messages for heart-

beats so that only a legitimate monitoring system can
respond correctly. It is difficult for the outside attackers to
decrypt the messages. Since the secret key for decryption is
stored in the local store of an SPE, the attackers cannot steal



it thanks to the memory protection in the isolation mode.
After a monitoring system decrypts the received message,
it generates a new message depending on the decrypted
message, encrypts it, and sends it to the security proxy. The
outside attackers cannot also decrypt the reply message.
If the security proxy receives an incorrect response or

no response in a certain period, it cuts the network between
the monitoring host and the outside. In this case, it considers
that the host has been compromised. Since the security proxy
forwards packets from the monitoring host to the outside and
vice versa, it can drop all the packets between them. This
prevents the attackers from mounting outgoing attacks from
the compromised host or from leaking sensitive information
to the outside. Also, the outside attackers cannot access
the compromised host using backdoors. Although attack
programs may continue to run in the compromised host,
the damages are localized on the host. The attackers cannot
stop monitoring systems if they want to use the network.
Also, the security proxy receives monitoring results from

monitoring systems on SPEs. Like heartbeats, the results
are encrypted by the monitoring systems and the outside
attackers cannot modify them without being detected by the
security proxy. If the result indicates that the integrity of the
operating system is not preserved, the security proxy ceases
network bridging to separate the monitoring host.

D. Scheduled Monitoring

SPE Observer needs at least one SPE for executing a
monitoring system, whereas Cell/B.E. is a processor that
gains performance by parallel processing with many SPEs.
If monitoring systems always occupy one or more SPEs, the
performance of the other applications degrades in proportion
to the number of occupied SPEs. However, an operating
system may not always need to be monitored as frequently
as possible. For example, it would be sufficient to check the
integrity of the operating system kernel every second.
To mitigate the performance degradation of applications,

SPE Observer enables monitoring systems to be scheduled.
Whenever it executes a monitoring system, it performs a
context switch in a victim SPE if necessary and securely
loads the executable of the monitoring system into the local
store using the secure loader. Although such scheduling suf-
fers from the extra overhead of starting monitoring systems
every time, the other applications can use all the SPEs when
monitoring systems do not run. The SPE scheduling depends
on the operating system that may be compromised, but the
security proxy is responsible for monitoring the periodic
execution of monitoring systems.

IV. IMPLEMENTATION

We have implemented SPE Observer using the Cell/B.E.
SDK 3.1 and the Security SDK, which were provided by
IBM. The target operating system running on the PPE is
Linux 2.6.27.

A. Secure Execution on SPEs

SPE Observer emulates the isolation mode using the
Security SDK because we could not obtain the secure loader
that supported the isolation mode of SPEs at the hardware
level. Unlike the hardware-level isolation mode, the secure
loader that is not encrypted is loaded into the local store
of an SPE. To make a monitoring system occupy one SPE
while it is running, SPE Observer executes it with the
SPE NOSCHED flag. This flag prevents the SPE scheduler
from switching the context of the specified thread.

B. Monitoring the Kernel Memory

To allow an SPE used for a monitoring system to access
the kernel memory, SPE Observer first clears the Problem-
State bit in the status register of the memory flow controller
(MFC). The MFC is included in each SPE and performs
DMA transfers between the local store and the main mem-
ory. The Problem-State bit is usually set so that the MFC
can access only the process memory.
Second, SPE Observer registers an address mapping for

the kernel memory to a segment lookaside buffer (SLB)
of the SPE. In Cell/B.E., the main memory including the
kernel memory is accessed by using effective addresses. An
effective address is mapped onto a virtual address, which is
mapped onto a physical address. The SLB is a translation
table from effective addresses to virtual addresses and is
included in each SPE. An SPE can access the main memory
if the corresponding address mapping exists in the SLB.
As an example, we have developed a monitoring system

that checks the integrity of the kernel memory. This integrity
monitor obtains the text and read-only data segments of the
operating system kernel using DMA. Note that the read-
only data segment includes the system call table. Then it
calculates the SHA-1 hash value of these memory regions
using libspucrypt and compares the value with the pre-
calculated one. To overlap DMA transfers from the kernel
memory with the calculation of the hash value, the integrity
monitor performs double buffering. It prepares two buffers,
one for calculation and the other for a DMA transfer. While
it calculates the hash value of a memory block in one buffer,
it transfers the next memory block to the other buffer using
DMA.
It is possible to implement other types of monitoring sys-

tems for SPE Observer. For example, a monitoring system
can monitor dynamic data in the kernel, such as the process
list and the module list, by using a technique similar to
virtual machine introspection [9]. This technique enables
monitoring systems to access the kernel data structures
through debug information of the kernel.

C. Heartbeats

To implement heartbeats from the security proxy, SPE
Observer runs a relay process on the PPE, as illustrated in
Figure 4. The relay process forwards encrypted messages
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between the security proxy and a monitoring system on an
SPE. It is possible to directly communicate between the
security proxy and an SPE by running protocol stacks in
the SPE [21]. However, this approach makes it difficult to
implement a monitoring system in the same SPE because
implementing protocol stacks consume a large amount of
local store.
The security proxy and the relay process on the PPE

communicate using TCP/IP, while the relay process and a
monitoring system communicate using a mailbox of an SPE.
A mailbox is prepared for passing data between the PPE and
an SPE via mailbox channels in the MFC. Using a mailbox,
the PPE can communicate with SPEs running even in the
isolation mode.
Figure 5 is the flow chart of handling heartbeats between

these three components. When the security proxy sends a
heartbeat, it generates a random message, encrypts it with
a pre-shared key, and sends it to a target host. The pre-
shared key is embedded into a monitoring system and is
shared with the security proxy. The relay process receives the
encrypted message and passes it to the specified monitoring
system on an SPE using its mailbox. The monitoring system
reads the message in the mailbox, decrypts it, and generates
a reply message depending on the random message in the
heartbeat. Then it encrypts the reply message and writes it to
its mailbox. After the relay process reads the reply message
in the mailbox and sends it to the security proxy, the security
proxy decrypts the message and checks the correctness of
the reply.
Although the relay process on the PPE can be com-

promised, this heartbeat mechanism still works well. If a
compromised relay process modifies encrypted messages
between the security proxy and a monitoring system, either
the monitoring system or the security proxy can detect that
by checking decrypted messages. If the relay process drops
messages, the security proxy can detect that by the timeout.
As a result, the security proxy can cease bridging the
networks. Since the security proxy sends encrypted random
messages that change every time, it is difficult for the relay
process to mount replay attacks.

security
proxy

relay
process

monitoring
system

send
heartbeat

foward
heartbeat

receive
heartbeat

receive 
response

foward
response

send
response

wait run

check
mailbox

no
message

Figure 5. The flow chart of handling heartbeats.

send
START

receive
START

security
proxy

relay
process

monitoring
system

load
monitor

forward
START

receive
STARTED

receive
START

execute
monitor

send
STARTED

foward
STARTED

receive
END

foward
END

send
END

release
SPE

wait

run

Figure 6. The flow chart of scheduling monitoring systems.

D. Scheduling of Monitoring Systems

Monitoring systems are scheduled by the security proxy
and the SPE scheduler in a target host. The security proxy
determines when to execute monitoring systems. The flow
chart of this scheduling is illustrated in Figure 6. When it
starts a monitoring system, it sends the START message to
the relay process on the PPE. Then the relay process loads
the specified monitoring system into an SPE and sends the
START message to the monitoring system via the mailbox
of the SPE. When the monitoring system reads the START
message, it returns the STARTED message to the security
proxy via the relay process. When the monitoring system
completes its task, it sends the END message with the
monitoring result to the security proxy, terminates itself,
and releases the SPE. After the security proxy receives the
END message, it waits for the next time for starting the
monitoring system. Note that these messages are encrypted
like heartbeats. If the attackers modify or drop the messages,
the security proxy can detect that.
When a monitoring system is loaded into an SPE, the



SPE scheduler in the Linux kernel selects one of the SPEs.
It first looks for idle SPEs and allocates one of them if such
SPEs exist. If there is no idle SPE, the SPE scheduler selects
one of the SPEs used by applications as a victim and saves
the contents of the local store and the state of the SPE in
the main memory for a context switch. Then the monitoring
system is executed with the SPE NOSCHED flag.
We modified the SPE scheduler so that the most ap-

propriate SPE is selected as a victim. The existing SPE
scheduler had a bug in that a program executed with the
SPE NOSCHED flag is not scheduled forever as long as
there is no idle SPE. To work around this bug, our SPE
scheduler maximizes the priority of a program executed with
that flag, so that the program is scheduled immediately. In
addition, the existing SPE scheduler switched the context
of only a particular SPE. For fairness, our SPE scheduler
selects one of the SPEs in a round-robin fashion.

V. EXPERIMENTS

For a machine with Cell/B.E., we used Sony Computer
Entertainment PlayStation 3, which had six SPEs available
for the users. Each SPE had 256 KB of a local store. The
machine had 256 MB of XDR memory and 80 GB of a
disk. We installed Fedora 9 to this machine. For a security
proxy, we used a PC with one Intel Xeon processor E5630,
4 GB of memory, and two Gigabit Ethernet NICs. These two
machines were connected with a Gigabit Ethernet switch.

A. Integrity Checking of the Kernel

We examined that the integrity monitor on an SPE could
detect the kernel modification in SPE Observer although the
detection algorithm itself is outside the scope of this paper.
As described in Section IV-B, the integrity monitor compares
the hash value of the text and read-only data segments
in the kernel with the pre-calculated one. For comparison,
we ran on the PPE the original Linux kernel, the kernel
whose system call table was modified, and the kernel whose
function for a system call was modified. Consequently, the
integrity monitor could correctly judge that only the original
kernel was not compromised. This means that the integrity
monitor can detect kernel rootkits that modify the system call
table, such as Adore-ng and Knark. It can detect SucKIT,
which modifies the pointer itself to the table.
Next, we measured the time needed for checking the

integrity of the kernel. The integrity monitor on an SPE
obtained 12 MB of the kernel memory by DMA trans-
fers and calculated the SHA-1 hash value. It periodically
checked heartbeats from the security proxy and returned
the responses whenever it received heartbeats. The security
proxy sent a heartbeat every second. The execution time
of this integrity monitor was 24 ms, which was from
when the PPE started to load the integrity monitor until it
released the used SPE. For calculating the hash value, it
took 17 ms, which was 70 % of the total execution time.
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Figure 7. The performance of a CPU-bound application for various
monitoring systems.

The remaining time was consumed mainly for responding
heartbeats. The overhead of DMA transfers was hidden by
the hash calculation.

B. Impacts on Application Performance

We executed various types of monitoring systems on one
SPE and examined how each monitoring system affected
the performance of parallel applications. For monitoring
systems, we used the integrity monitor of the kernel, a CPU-
bound monitor, a DMA-bound monitor, and an idle monitor.
The integrity monitor repeated DMA transfers and hash
calculation in this experiment. The CPU- and DMA-bound
monitors repeated only calculation and DMA transfers,
respectively, and the idle monitor did nothing. The security
proxy did not send heartbeats to these monitoring systems
to prevent external disturbance. For each monitoring system,
we executed three types of applications as we changed the
number of application threads between one and five. Since
an application and a monitoring system used six SPEs at
most, context switches did not occur for SPEs.
First, we executed a CPU-bound application and measured

the execution time. This application performed a certain
amount of calculation with the specified number of threads.
Figure 7 shows the performance of this application when we
executed one of various monitoring systems together. The
performance is normalized by that in sequential execution.
The results show that any monitoring systems did not affect
the performance of the CPU-bound application at all because
both computation and DMA transfers did not compete with
each other. The performance increased in proportion to the
number of application threads. When the application used
five threads, the performance became 5 times.
Second, we executed a DMA-bound application, which

obtained a certain amount of memory from the main memory
by DMA transfers. We measured the time needed for com-
pleting the DMA transfers. Figure 8 shows the normalized
performance of this application with one of various monitor-
ing systems. Even when we executed the idle monitor, the
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Figure 8. The performance of a DMA-bound application for various
monitoring systems.

DMA-bound application did not scale. Compared with the
sequential execution, the application performance improved
up to only 2.2 times even if the application used many
threads. This is because the application consumed most of
the available DMA bandwidth. Therefore, when we executed
the DMA-bound monitor, the performance of the DMA-
bound application degraded by 12 % to 22 %.
On the other hand, when the CPU-bound monitor was ex-

ecuted together, the application performance was almost the
same as when the idle monitor was run. These monitoring
systems did not compete with the DMA transfers performed
by the application. Similarly, even if the application was
executed with the integrity monitor, the performance was
not nearly affected. Since the integrity monitor performed
DMA transfers to obtain the kernel memory, it was possible
to compete with the DMA transfers by the application.
However, calculating the hash value was dominant in the
integrity monitor, as analyzed in Section V-A. The integrity
monitor consumed a small portion of the DMA bandwidth.
Third, we executed an application for matrix multiplica-

tion, which was provided by IBM. This application calcu-
lated the multiplication of two matrices using the specified
number of threads, while the threads communicated with
each other for synchronization. Figure 9 shows the applica-
tion performance and the results were very similar to those
in the CPU-bound application.

C. Impacts on Applications with Six Threads

We examined how the integrity monitor affected ap-
plications running with six threads, which are the same
number of SPEs available to the users in PlayStation 3.
Applications for Cell/B.E. are often customized for the fixed
number of threads. The number is usually the same as
that of available SPEs in the target machine. This means
that the performance of applications using six threads is
important while a monitoring system is running. Since the
integrity monitor occupied one SPE in the isolation mode,
applications could use only five SPEs for six threads. In
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Figure 9. The performance of matrix multiplication for various monitoring
systems.

CPU-bound DMA-bound matrix
application

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

Figure 10. The performance degradation of applications with six threads.

this experiment, SPE Observer did not schedule the integrity
monitor.
We used three applications in the previous section. Fig-

ure 10 shows the performance when we executed each
application using six threads with the integrity monitor. The
shown performance is normalized by that when we executed
each application without running the integrity monitor. The
performance of the CPU-bound application degraded by
17 %. Since the application with six threads had to be run
on only five SPEs, the SPE scheduler switched the thread
contexts in a round-robin fashion. Therefore, the application
performance became 5

6 of that when the application could
use six SPEs.
For the DMA-bound application, the application perfor-

mance degraded only slightly. In other words, the execution
time did not nearly change even when six threads were run
on five SPEs. Since the integrity monitor on one SPE did
not perform DMA transfers very much, five SPEs could
consume most of the DMA bandwidth. This means that
each SPE for the application could consume more DMA
bandwidth than when the application used six SPEs. As
a result, the performance of DMA transfers by each SPE
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Figure 11. The performance improvement of matrix multiplication by
scheduling the integrity monitor.

improved to nearly 6
5 . This compensated the degradation by

decreasing the number of available SPEs to 5
6 .

On the other hand, the performance of matrix multiplica-
tion degraded extraordinarily. This application synchronized
between all the threads with mailboxes of SPEs whenever
each thread performed a small amount of computation. If
even one thread is delayed, the others have to wait for
that. When six threads are executed on only five SPEs, five
threads immediately complete their computation of a certain
turn, but one thread is delayed. Since the SPE scheduler
is not aware of the idleness of threads on SPEs, it simply
performs context switches every 100 ms, which is the default
timeslice. In other words, the delayed thread is not scheduled
although there are idle SPEs. This is the reason of the
performance degradation in this application.

D. Performance Improvement by Scheduling

To examine whether the performance of matrix multipli-
cation can be improved by scheduling the integrity monitor
on an SPE, we scheduled the integrity monitor at various
intervals. Here, a scheduling interval is the time from when
the security proxy receives the END message from the in-
tegrity monitor until it sends the START message. Figure 11
shows the changes of the normalized performance when
we changed the scheduling interval. Even if the interval
was short, the application performance improved dramati-
cally. This reason is that the delayed thread was allocated
to the SPE that had been used by the integrity monitor.
The integrity monitor was re-scheduled immediately, but
it was allocated to another SPE, which was probably idle,
because our SPE scheduler selects a victim SPE in a round-
robin fashion. When the interval is more than 200 ms, the
performance degradation was less than 17 %, which is the
performance gained by one SPE.
Next, we examined how scheduling the integrity monitor

affected the performance of the CPU- and DMA-bound ap-
plications. While the performance of these applications did
not degrade very much even without scheduling, scheduling
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Figure 12. The performance improvement of a CPU-bound application by
scheduling the integrity monitor.
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Figure 13. The performance improvement of a DMA-bound application
by scheduling the integrity monitor.

incurs performance overheads due to context switches. Fig-
ure 12 and Figure 13 show the changes of the performance of
the CPU- and DMA-bound applications, respectively, when
we changed the scheduling interval. For the CPU-bound
application, the performance gradually improved from 0.83
as the interval became longer. When the interval was 100
ms, the performance degradation was only 4 %. For the
DMA-bound application, the performance degraded by 2 %
at maximum when the interval was short, but no performance
degradation occurred if the interval was longer than 100 ms.

E. Impacts on Monitoring Performance

We examined how much the integrity monitor on an SPE
was affected by running applications when SPE Observer
scheduled the integrity monitor. We executed the integrity
monitor together with one of three applications with six
threads. For comparison, we also executed the integrity
monitor alone. In this experiment, SPE Observer scheduled
the integrity monitor at the interval of 200 ms. We measured
the time from when the security proxy started sending the
START message until it received the END message.
Figure 14 shows the execution time of the integrity

monitor for various applications. Not only CPU-bound but
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Figure 14. The execution time of the integrity monitor for various
applications with scheduling.

also DMA-bound applications did not affect the performance
of the integrity monitor. However, matrix multiplication
degraded the performance by 9 %. This is probably because
the SPE scheduler could not preempt an SPE for the in-
tegrity monitor when the relay process received the START
message.

VI. RELATED WORK

A. Hardware-assisted Secure Monitoring

Copilot [22] monitors the kernel memory by using a
special PCI card inserted in a target host. The Copilot
monitor on the PCI card obtains the contents of the physical
memory by DMA and sends them to a remote host via the
dedicated network. Then the remote host checks the integrity
of the kernel text and jump tables. The attackers in the target
host cannot compromise the Copilot monitor on the PCI card
or the remote host. While Copilot needs special hardware,
SPE Observer uses only general-purpose hardware.
HyperGuard [5] monitors the integrity of the hypervisor

by using System Management Mode (SMM) provided in the
commodity x86 processor families. A CPU enters SMM via
System Management Interrupt (SMI) and executes a SMI
handler. In SMM, the CPU can securely execute code in
System Management RAM (SMRAM), which cannot be
accessed in the normal mode called the protected mode.
HyperGuard triggers SMI by timer interrupts and the SMI
handler on SMRAM checks the memory of the hypervisor.
HyperGuard can be applied to monitor the integrity of the
operating system in a non-virtualized environment.
However, there are several drawbacks of using SMM.

First, while a CPU runs in SMM, all the regular tasks
including the operating system are suspended to maintain
the integrity. In other words, all cores other than the one
executing a SMI handler have to be frozen. SPE Observer
inherently supports multicore and a monitoring system on
an SPE in the isolation mode can run with the other tasks
in parallel. Second, SMM is much slower than the protected

mode. The isolation mode of SPEs does not suffer from such
a performance penalty. Third, it is not easy to execute var-
ious monitoring systems in SMM because the SMI handler
is a part of BIOS. SPE Observer allows executing arbitrary
programs with correct signatures for monitoring systems.
HyperCheck [6] also uses SMM to monitor the physical

memory, but it runs only a network device driver as the
SMI handler. The driver makes the NIC to read the physical
memory using DMA and send packets whose payloads
are the memory contents. The remote host receives the
packets and checks the integrity of the hypervisor. Since
SMM is only used for setting up the NIC and the integrity
checking is outsourced, the performance degradation due
to SMM is small. In addition, HyperCheck can read and
verify CPU registers. However, it is necessary to implement
various device drivers running in SMM. In SPE Observer,
monitoring systems do not depend on devices.
HyperSentry [7] allows a measurement agent inside the

hypervisor to be securely executed using SMM although the
hypervisor may have been compromised. The SMI handler
is invoked via Intelligent Platform Management Interface,
which is an out-of-band communication channel with a
remote host. Then, the handler verifies the agent inside
the hypervisor, disables interrupts, and runs the agent for
collecting the detailed information on the hypervisor. Finally,
the measurement output is attested by the remote host. In
HyperSentry, not only the SMI handler but also the agent
cannot run with the other tasks.
Flicker [8] is an infrastructure for executing security-

sensitive code such as rootkit detectors, using the hardware
support such as Intel TXT and AMD SVM. When such code
needs to be executed, Flicker suspends the current execution
environment including the operating system, securely exe-
cutes the code using late launch, and resumes the previous
execution environment. Late launch enables code execution
without interferences by the attackers. However, it also stops
all CPU cores other than the one used by the executed
code. While the security-sensitive code is running, the other
applications cannot be running. Moreover, researchers point
out that it is possible to attack Intel TXT in SMM [23].

B. Applications of the Isolation Mode of SPEs

As a usage example of the isolation mode, the code
verification service has been proposed [20]. This service
enables an SPE to check the integrity of applications run on
the PPE. When the operating system loads an application on
the PPE, it requests an SPE for the verification. The service
on the SPE obtains the memory used for the application by
DMA transfers and verifies the signature of the application
using the public key inside the SPE. Only if the verification
succeeds, the operating system runs the application. The
isolation mode maintains the integrity of the public key
and protects the service itself from the outside attackers.
This is similar to our SPE Observer, but the goal of SPE



Observer is detecting the modification to the long-running
operating system periodically, not only at boot time. SPE
Observer needs SPE scheduling to achieve this efficiently
and a security proxy for reliable detection.
The isolation mode is also used for privacy-preserved

data mining [24]. In volunteer computing like SETI@Home,
the privacy of processing data should be protected from
volunteers. The proposed system sends encrypted data to
a volunteer’s computer, decrypts them in isolated SPEs,
and performs data mining. Since the secret key is shared
only between the data owner and the application running on
isolated SPEs, any volunteers cannot decrypt the received
data. Furthermore, the decrypted data on isolated SPEs
cannot be stolen from the PPE or the other SPEs.

VII. CONCLUSION

In this paper, we proposed SPE Observer, a framework
for securely monitoring operating systems using SPEs in
Cell/B.E. SPE Observer uses the isolation mode of SPEs
to guarantee the integrity and confidentiality of monitoring
systems. It also monitors the running status of monitor-
ing systems on SPEs from the external security proxy.
To mitigate the performance degradation due to occupying
SPEs for monitoring, SPE Observer schedules monitoring
systems. We have implemented SPE Observer in PlayStation
3 and conducted several experiments. The results show that
monitoring systems on SPEs can check the integrity of the
operating system and that the application performance can be
improved by appropriate scheduling of monitoring systems.
One of our future work is to develop various monitoring

systems for SPE Observer and examine its effectiveness. For
example, it is necessary to check the integrity of kernel
modules and find hidden processes in the kernel. Another
is to develop middleware that runs in SPEs and enables the
operating system in the PPE to detect idle SPEs.
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