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Abstract: Infrastructure as a Service (IaaS) provides virtual machines (VMs) to the users and its system administra-
tors often manage the user VMs using privileged VMs called the management VM. However, the administrators are not
always trustworthy from users’ point of view. If the administrators allow outside attackers to intrude in the management
VM, the attackers can easily steal sensitive information from user VMs’ memory. In this paper, we propose VMCrypt,
which preserves the data secrecy of VMs’ memory using the trusted virtual machine monitor. VMCrypt provides a
dual memory view: a normal view for a user VM and an encrypted view for the management VM. The encrypted view
prevents sensitive information from leaking to the management VM. To support the existing management software for
para-virtualization, VMCrypt exceptionally provides a normal view to the management VM only for several memory
regions, which are automatically identified and maintained during the life cycle of a user VM. We have implemented
VMCrypt in Xen and our experimental results show that the downtime due to live migration was still less than one
second.
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1. Introduction
Cloud computing, providing services via the Internet, is being

widely accepted. Among various types of services, Infrastructure
as a Service (IaaS) like Amazon EC2 [1] provides users with vir-
tual machines (VMs), which are hosted in data centers. The users
can migrate hardware, software, and data that they have possessed
to IaaS clouds and use the necessary amount of VMs on demand.
In IaaS, the users manage their VMs from remote sites via the
Internet while the system administrators in IaaS manage the user
VMs using privileged VMs called the management VM. For ex-
ample, they may migrate user VMs to other hosts in clouds when
necessary for load balancing or power saving.

Due to the privileges of the management VM, sensitive infor-
mation in the user VMs may leak via the management VM. From
users’ point of view, the administrators in IaaS are not always
trustworthy [2], [3], [4]. Lazy administrators may allow outside
attackers to intrude in the management VM. Worse, administra-
tors themselves may be malicious and perform insider attacks.
Such attackers can easily steal sensitive information from the user
VMs. However, it is difficult to prohibit the access to VMs’ mem-
ory for the management VM because the administrators have to
manage the user VMs, e.g., VM migration, by accessing their
memory. This inherently leads to information leakage from the
user VMs.
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This paper proposes VMCrypt, which is a system that preserves
the data secrecy of the user VMs’ memory. VMCrypt provides a
dual memory view: a normal view and an encrypted view. A
user VM can run normally with a normal view whereas the man-
agement VM cannot steal information through an encrypted view.
These two views coexist so that both VMs concurrently access the
user VMs’ memory. To allow the management VM to inspect
memory regions of the user VMs for VM management, VMCrypt
exceptionally gives a normal view to the management VM only
for several regions. It automatically identifies such regions by
monitoring the interaction between the management VM, the user
VMs, and the virtual machine monitor (VMM). The information
on the identified regions is cached during the life cycle of a user
VM to preserve the compatibility with the existing management
software.

We have implemented VMCrypt in Xen [5] and VMCrypt cur-
rently supports para-virtualized Linux as guest operating systems.
Our experimental results show that VMCrypt allows the adminis-
trators to manage the user VMs securely and correctly. With VM-
Crypt, the administrators in the management VM failed to find
cryptographic keys and passwords from the user VM’s memory.
Nevertheless, they could boot, suspend, resume, and migrate user
VMs as usual. They could perform even live migration [6], [7]
for running user VMs. The execution performance of VM man-
agement was degraded mainly by the overheads of cryptographic
operations. However, the downtime due to live migration was still
less than one second and its overhead was 13%.

The main contributions of this paper are as follows:
• Enabling live migration while the user VMs’ memory is pro-

tected
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• Supporting para-virtualized guest operating systems, which
share various memory regions with the management VM

• Supporting the existing software for VM management
Several previous studies [3], [4], [8] tackle the problem of infor-
mation leakage from the user VMs’ memory, but none of them
supports live migration. To the best of our knowledge, VMCrypt
is the first system that supports the existing management software
for para-virtualization.

The rest of this paper is organized as follows. Section 2 clari-
fies administrator-related information leakage in IaaS clouds and
discusses related work. Section 3 presents VMCrypt to prevent
information leakage from the user VMs. Section 4 describes the
implementation details in Xen. Section 5 shows our experimental
results for VM management with VMCrypt. Section 6 concludes
the paper.

2. Motivation
2.1 Administrator-related Information Leakage

There are two types of system administrators in IaaS clouds.
One is IaaS users, who are the administrators of the systems in-
side the VMs, called user VMs, in IaaS. The other is IaaS admin-
istrators, who manage virtualized systems themselves including
the user VMs in IaaS. They can suspend, resume, and migrate
user VMs as necessary. For such VM management, the IaaS
administrators use privileged VMs called the management VM.
The examples are domain 0 in Xen [5] and the service console
in VMware ESX [9]. With the management VMs, the IaaS ad-
ministrators can access the memory, disks, and networks of user
VMs.

However, the IaaS administrators are not always trustworthy
from IaaS users’ point of view [2], [3], [4]. It is not rare that
one cloud consists of several data centers around the world. The
users often cannot know which data centers their VMs run in be-
cause the VMs may be migrated between data centers. The users
cannot exactly know who are the administrators of their VMs. If
a lazy administrator manages virtualized systems in IaaS, some
management VMs may have vulnerabilities in software or con-
figurations. In this case, vulnerable management VMs may be
penetrated by outside attackers. If an administrator cannot fix
those vulnerabilities for some reasons such as no patches, he is
considered lazy as a result. If an IaaS administrator himself is
malicious, he can perform insider attacks with high privileges.
We refer to both outside attackers and malicious IaaS administra-
tors simply as attackers.

In this situation, sensitive information in user VMs can leak via
the management VM. Using the abilities of the management VM,
the attackers inside it can steal the whole contents of the memory,
disks, and networks of the user VMs on the same physical ma-
chine. For example, the attackers can dump the whole memory
of the user VMs into their disks. They can mount the disks of
the user VMs and read all the files. Network sniffers running in
the management VM can easily capture packets to/from the user
VMs. Fortunately, disks and networks could be encrypted by the
guest operating systems themselves in the user VMs to protect
their contents. The user VMs can use encrypted file systems like
Windows EFS and virtual private networks (VPNs).

Unlike disks and networks, memory is crucial because it is dif-
ficult for the guest operating systems to encrypt their own mem-
ory. Without hardware support, neither operating systems nor
applications can run with encrypted memory. There are vari-
ous types of sensitive information in memory [10]. Clear-text
passwords and cryptographic keys can be extracted from the user
VMs’ memory. Such information resides in buffers in the kernel
or processes temporarily. In addition, the memory usually con-
tains the buffer cache, which is used for maintaining copies of the
data of file systems in memory. Through the analysis of the buffer
cache, the attackers can read the data blocks of specific files if the
blocks are on the buffer cache. The encryption of the file systems
in the user VMs is not sufficient because the buffer cache cannot
be encrypted.

Therefore, the confidentiality of the user VMs’ memory should
be preserved while the IaaS administrators perform VM manage-
ment. A simple solution to prevent information leakage is to dis-
able the management functions of the management VM, but this
would not be acceptable in IaaS. At least, live migration is in-
dispensable for the reasons of load balancing and power saving
with negligible downtime. In particular, it is challenging to sup-
port para-virtualized guest operating systems because the man-
agement VM has to inspect and modify the user VMs’ memory.
Although full virtualization is being used, para-virtualization is
still useful in terms of efficiency. In addition, any modification to
the existing management software should not be required because
it is not realistic to modify various management software.

2.2 Related Work
There are several studies for preventing information leakage

via the management VM. CloudVisor [4] runs a security moni-
tor underneath the VMM using nested virtualization. It encrypts
all the memory pages of the user VMs whenever the manage-
ment VM accesses them. Therefore, it is difficult to support
para-virtualization because CloudVisor does not allow the man-
agement VM to access pages necessary for VM management in
user VMs, e.g., the P2M table in Xen. The security monitor can-
not recognize such pages by hardware events such as VM exit.
Although CloudVisor supports VM migration for full virtualiza-
tion, there are no performance data. In addition, CloudVisor in-
troduces extra overheads to user VMs due to an additional virtual-
ization layer. It does not trust even the VMM, but we believe that
we can also trust the VMM if we can trust the security monitor
via remote attestation.

The secure runtime environment (SRE) [3], [8] preserves the
confidentiality of user VMs for para-virtualized operating sys-
tems. Like VMCrypt, SRE encrypts memory pages except sev-
eral pages necessary for VM management when the management
VM accesses them. SRE supports boot, suspend, and resume of
user VMs. However, it cannot enable live migration because it
provides an encrypted view to the management VM only when
a user VM is not running. Moreover, SRE needs to modify the
existing management software so that the VMM can identify all
the unencrypted pages. For example, the resume program has to
notify the VMM of the pages used for the P2M table because the
VMM cannot identify them at the resume time.
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In VMware vSphere Hypervisor (ESXi) [9], the VMM itself
includes the management functions and the system administra-
tors perform VM management by sending commands directly to
the VMM. Unlike VMware ESX, the management VM called the
service console is not used by default. Lacking the service con-
sole makes it difficult to steal information from the user VMs’
memory. However, this architecture lowers the flexibility of the
VM management. It is not easy for the administrators to use their
own custom management software.

Domain disaggregation [11] moves management functions in
the management VM to another VM called DomB. This architec-
ture reduces the privileges of the management VM and prevents
the attackers in the management VM from stealing sensitive in-
formation in the user VMs’ memory. For example, most of the
code for building VMs is run in DomB. However, the administra-
tors have to be still trusted because they also manage DomB as
well as the management VM. In addition, domain disaggregation
needs a large modification to the existing management software
so as to use the functions provided by DomB.

Overshadow [12] provides a dual memory view using the
VMM. The basic idea is similar to VMCrypt, but Overshadow
provides a normal view for applications and an encrypted view
for the guest operating system. The aim of Overshadow is to pre-
vent information leakage from applications to the operating sys-
tem. Furthermore, SP3 [13] can control views among applications
as well. In contrast, VMCrypt prevents information leakage from
the user VMs to the management VM. Particularly, the mecha-
nisms for enabling live migration are specific to VMs.

3. VMCrypt
VMCrypt prevents the sensitive information of the user VMs’

memory from leaking via the management VM, using the trusted
VMM. Nevertheless, the IaaS administrators can manage the user
VMs with the management VM, including live migration, as be-
fore VMCrypt is introduced. VMCrypt supports para-virtualized
guest operating systems and allows the IaaS administrators to use
the existing management software.

3.1 Threat Model and Assumptions
We assume that the management VM can be compromised

by outside attackers or abused by IaaS administrators. Such at-
tackers could take the root privilege of the operating system in
the management VM and even alter the operating system kernel.
This means that the management VM is removed from the trusted
computing base in terms of confidentiality.

In this paper, we focus on the attempts to steal sensitive infor-
mation from the user VMs’ memory. Information leakage from
other resources such as CPU registers, storage, networks, and
covert channels is out of scope. In real IaaS clouds, these re-
sources should be protected against the management VM as well.
Since there are several studies for protecting them, we can incor-
porate those with VMCrypt. For example, the protection of CPU
registers has been proposed in SRE [3], [8]. Storage and networks
can be encrypted by the guest operating systems themselves, as
described in Section 2, or by the VMM [14]. Mitigating the risk
of covert channels is discussed in the literature [15]. Also, we

Fig. 1 A dual memory view provided by VMCrypt.

do not consider the other types of attacks against the user VMs
from the management VM, such as integrity attacks and denial-
of-service attacks.

We assume that IaaS providers themselves are trusted, as
widely accepted [2], [4]. In IaaS, trusted senior administrators
should be responsible for the maintenance of VMMs and the
hardware. They would not be lazy or malicious, unlike average
IaaS administrators that manage the user VMs in the manage-
ment VM. In real IaaS clouds, average administrators may man-
age VMMs and the hardware as well, but senior administrators
should finally examine the correctness. Therefore, we assume
that VMMs are well maintained and have no vulnerabilities that
are compromised by the attackers. Also, we do not consider phys-
ical attacks such as the cold boot attack [16] because server rooms
should be strictly protected in data centers.

3.2 Dual Memory View
VMCrypt provides a dual memory view for each user VM: a

normal view and an encrypted view, as illustrated in Fig. 1. A
normal view is a view of unencrypted memory and is used by a
user VM. This view enables software running inside a user VM
to access its memory as usual. In contrast, an encrypted view is a
view of encrypted memory and provided to the management VM.
Management software running in the management VM can ac-
cess only encrypted data via this view, so that the attackers in the
management VM cannot steal any useful information inside the
user VMs. Nevertheless, the IaaS administrators in the manage-
ment VM can manage the user VMs through the encrypted views.
For example, migrating a user VM is achieved by transferring the
encrypted view of the VM’s memory to the destination.

To enable the IaaS administrators to manage the user VMs
with para-virtualization, VMCrypt exceptionally provides a nor-
mal view to the management VM only for several memory re-
gions. For such regions, the management VM can directly access
unencrypted data in a user VM. Examples of such regions are
memory shared between VMs and the page tables inside a user
VM. For para-virtualized guest operating systems, the manage-
ment VM needs to read and write data in the shared memory to
exchange information with a user VM. The page tables have to
be modified by the management VM during VM migration. The
details of such unencrypted memory regions are listed in Sec-
tion 4.4.

VMCrypt automatically identifies such unencrypted memory
regions by monitoring the interaction between the management
VM, the user VMs, and the VMM. For example, a shared mem-
ory region is passed from the management VM to the user VM
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Fig. 2 The management of session keys on VM migration.

via the VMM. The memory regions for the page tables are reg-
istered to the VMM. As such, the VMM can recognize all the
unencrypted memory regions. The information on the identified
memory regions is cached during the life cycle of a user VM,
including VM migration, to preserve the compatibility with the
existing management software. With the cache, the VMM can
restore the user VM’s memory correctly even at another host.

The two views in a dual memory view are provided concur-
rently to enable live migration. In other words, an encrypted view
coexists with a normal one for each user VM. Therefore, the man-
agement VM can access the memory of a running user VM. Live
migration requires that the management VM transfers the mem-
ory of a user VM while the user VM accesses its memory. If
VMCrypt directly encrypted the memory of the user VM by over-
writing it, the running software in the user VM would fail when
reading encrypted data.

3.3 Trusted VMMs and Coordinator
To allow only the trusted VMM to be run, VMCrypt performs

remote attestation with a trusted server called the trusted coor-
dinator (TC). The TC runs in a trusted third party outside IaaS
clouds. Remote attestation certifies the authenticity of the VMM
by tamper-resistant hardware such as the trusted platform module
(TPM) [17]. It measures the VMM by calculating its hash value,
sends the signed measurement to the TC, and verifies its integrity.
According to our threat model, trusted senior administrators in
IaaS configure the VMM correctly for remote attestation. Aver-
age IaaS administrators that may not be trusted cannot bypass this
process.

The trusted VMM maintains two types of cryptographic keys:
session keys and a pair of public and private keys. A session key
is maintained for each user VM. It is used to construct an en-
crypted view from a normal one of user VM’s memory and vice
versa. A pair of public and private keys is used to encrypt and
decrypt the session keys. The public key is securely registered to
the TC. Since the session keys and the private key are kept inside
the trusted VMM, they are not stolen by the attackers in the man-
agement VM. Also, they are not extracted from the binary file of
the VMM stored in a disk. The session keys are dynamically gen-
erated at runtime. The private key is sealed by the TPM and only
the securely-booted VMM can unseal it.

A session key for a user VM has the following life cycle. The

Fig. 3 Synchronization between an encrypted view and a normal view.

VMM generates a new session key whenever a user VM is cre-
ated whereas it discards the key at the destruction time of the VM.
When a user VM is migrated, the VMM transfers the encrypted
session key from a source host to a destination host, as proposed
in TCCP [2]. Figure 2 shows the procedure. First, host A’s VMM
obtains the public key of host B’s VMM securely from the TC.
Since the public key is signed with TC’s private key, host A’s
VMM can verify it. The TC’s public key is embedded into the
VMM in advance to prevent man-in-the-middle attacks. Next,
host A’s VMM encrypts the session key of the target VM with
B’s public key and transfers it to host B. Host B’s VMM decrypts
it using B’s private key and shares the session key for the migrat-
ing VM with host A’s VMM. As such, session keys are passed to
only hosts authorized by the TC.

4. Implementation
We have implemented VMCrypt in Xen 4.0.1 [5]. In Xen, a

user VM is domain U and the management VM is domain 0. In
the current implementation, VMCrypt supports para-virtualized
Linux for the x86-64 architecture as guest operating systems.
VMCrypt mainly depends on Xen in how the VMM identifies
unencrypted memory regions. If we implement this method in
the VMM, VMCrypt can be applied to full-virtualization in Xen
and the other virtualized systems such as VMware ESX.

4.1 Memory Model in Xen
Xen distinguishes machine memory and pseudo-physical

memory to virtualize memory. Machine memory is the entire
memory installed in the machine and consists of a set of machine
page frames. It is reserved for the VMM, allocated to domains,
or unallocated. Each machine page frame has a number called
the machine frame number (MFN), which is consecutively num-
bered from 0. Pseudo-physical memory is a per-domain abstrac-
tion and allows a guest operating system to consider the allocated
physical pages as contiguous. For each machine page frame, a
pseudo-physical frame number (PFN) is consecutively numbered
from 0. The VMM maintains a machine-to-physical (M2P) table
for the mapping from MFNs to PFNs. For the inverse mapping, a
physical-to-machine (P2M) table is maintained by each domain.

4.2 Constructing an Encrypted View
To construct an encrypted view from a normal view of domain

U’s memory, the VMM encrypts the contents of memory pages
of domain U when domain 0 maps those pages. Domain 0 has
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to map memory pages on its address space to access domain U’s
memory. To make two memory views coexist, the VMM repli-
cates pages of domain U and maps them on domain 0, as illus-
trated in Fig. 3 (a). For this encrypted replication, the VMM al-
locates pages in domain 0 and copies encrypted contents to them.
When domain 0 unmaps domain U’s pages, the VMM decrypts
the contents, writes them back to the original pages in domain U,
and releases the pages allocated in domain 0.

The VMM detects memory mapping and unmapping of do-
main U by monitoring the modification to the page tables of do-
main 0. The page tables are maintained by the VMM and pro-
tected to prevent illegal memory accesses. To modify a page ta-
ble entry (PTE), domain 0 has to issue a hypercall to the VMM.
If domain 0 attempts to modify its PTE directly, a page fault oc-
curs and the VMM emulates the modification. In either case, the
VMM can check the modification to PTEs. When a new PTE in-
cludes an MFN allocated to domain U, the VMM can notice that
the modification is for memory mapping. When an old PTE in-
cludes an MFN belonging to domain U, the modification is for
memory unmapping.

As an optimization for memory decryption, the VMM does not
decrypt replicated pages when domain U’s pages are mapped on
domain 0 in a read-only manner (Fig. 3 (b)). Since domain 0
cannot modify read-only pages, the contents do not need to be
written back to the original pages in domain U. When domain 0
unmaps such pages, the VMM simply releases them. This opti-
mization is enabled by a dual memory view that concurrently ex-
ists because unencrypted contents are still preserved in the origi-
nal pages. This reduces the overhead of memory decryption. For
example, all of the domain U’s pages are just read on suspending
domain U.

As an optimization for memory encryption, the VMM does
not encrypt domain U’s uninitialized pages when those pages are
mapped on domain 0 (Fig. 3 (c)). We define as uninitialized a
page in which any data has not been written since domain U is
created. Such uninitialized pages do not need to be encrypted
because they contain no valid data. This reduces the overhead
of memory encryption. For example, most of the domain U’s
pages are initialized by domain 0 when domain U is booted and
resumed.

In this implementation, normal and encrypted views are syn-
chronized only on memory mapping and unmapping by domain
0 for efficiency. We call this lazy synchronization. If domain U is
stopped, the encrypted view is the latest because domain U does
not modify the normal view. However, the encrypted view may
become obsolete if domain U is running. For example, live mi-
gration is performed without stopping domain U. This inconsis-
tency between memory views is usually acceptable because do-
main 0 cannot access domain U’s memory consistently even when
the memory pages are shared between domain 0 and domain U,
as traditionally performed. Management software in domain 0
should already consider this.

4.3 Dealing with Unencrypted Pages
The VMM does not encrypt the contents of unencrypted pages,

which domain 0 can access for the VM management. When do-

Fig. 4 Unencrypted pages and the encryption bitmap.

main 0 maps such pages, the VMM makes domain 0 share the
pages with domain U. Domain 0 can read information from the
shared pages at any time, but it can update the pages only before
domain U starts running. This prevents domain 0 from interfering
with running domain U, e.g., by altering the page tables. This lim-
itation does not disable most of VM management because domain
0 only sets up the shared pages at the creation time of domain U.
When domain 0 unmaps the pages, the VMM simply ceases to
share them. This mechanism is the same as the traditional one for
memory mapping between domain 0 and domain U.

To cache unencrypted pages that have been identified once, the
VMM maintains the encryption bitmap, as shown in Figure 4.
Each bit corresponds to each machine page frame consecutively
and all the bits are set at first. The bit is cleared if the corre-
sponding page is identified as unencrypted. For the attempt to
map domain U’s pages, the VMM determines which view it pro-
vides to domain 0 by referring to this bitmap. The encryption
bitmap is necessary because the VMM cannot always determine
whether a specified page should be encrypted or not when the
page is mapped on domain 0. The VMM identifies unencrypted
pages at the appropriate times as described in Section 4.4 and
constructs the encryption bitmap.

The encryption bitmap in the VMM is also embedded into
domain U’s memory. When domain U is migrated, the embed-
ded bitmap is automatically transferred to the destination as well
as the domain U’s memory itself. This allows domain 0 to use
the existing management software as is. Through the embedded
bitmap, the VMM at the destination can extract information on
unencrypted pages for the migrated domain U. Without the en-
cryption bitmap, the VMM could not identify unencrypted pages
when domain U is restored.

To allocate the bitmap inside domain U’s memory, the VMM
reserves a memory region using the e820 facility of BIOS. Since
e820 is used to report the memory map to guest operating sys-
tems, the VMM inserts a reserved area into that memory map
when it creates domain U. The encryption bitmap is copied to
the reserved area in domain U’s memory when those pages are
mapped to domain 0. To preserve the integrity, the embedded
bitmap is copied back on unmapping only while domain U is
constructing, e.g., for VM migration. Its details are described
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in Section 4.5.

4.4 Identifying Unencrypted Pages
The VMM automatically identifies the unencrypted pages to

exceptionally deal with them. Figure 4 shows the data that do-
main 0 needs to access. This identification is specific to the para-
virtualization in Xen.
4.4.1 Start Info

The start info page is used for passing information from do-
main 0 to domain U when domain U starts running. This page
contains information necessary for booting a guest operating sys-
tem such as the allocated memory size. Domain 0 needs to set up
this page when domain U is booted or restored.

The VMM identifies the start info page by monitoring virtual
CPU registers of domain U. This identification is done when do-
main 0 issues the first unpause hypercall for the domain U. This
hypercall is used to start running domain U. To pass the start info
page to domain U, domain 0 sets the virtual address of the start
info page in domain U to the RSI register at boot time. The VMM
translates the virtual address to the corresponding MFN. Even if
the attackers alter that register, they cannot steal useful informa-
tion. They could make the VMM recognize an arbitrary page as
the start info page. At this time, however, domain U will not be
able to boot because an arbitrary page does not contain the correct
information for booting. In addition, domain U has no sensitive
information yet at the boot time.
4.4.2 Console/XenStore Rings

One pair of ring buffers is used to achieve the console of do-
main U. Domain 0 needs to read text outputs from and write key
inputs to the console. The other pair is used for domain U to ac-
cess a storage system called XenStore in domain 0. Domain 0 and
domain U exchange information on VM configurations through
XenStore.

Since the information on these ring buffers is stored in the start
info page, the VMM can identify it easily. Even if the attackers
specify arbitrary pages as the ring buffers, domain U uses them
only for console and XenStore, not for the other purposes. Do-
main U may write sensitive information to the console, and so
the contents should be encrypted between domain U and its user.
Such a mechanism for secure console is beyond the scope of this
paper.
4.4.3 Shared Info

The shared info page is used for sharing information among the
VMM, domain U, and domain 0. Through this page, the VMM
notifies domain U of virtual CPU interrupts, and so on. Domain
U passes the P2M table to domain 0. The VMM can easily iden-
tify the page because the VMM itself allocates the page when it
creates domain U.
4.4.4 P2M Table

The P2M table is a mapping table from PFNs to MFNs. The
P2M table has a tree structure to allow machine page frames to
be sparsely allocated to domain U. Domain 0 needs to access this
table to obtain all the MFNs allocated to domain U when it mi-
grates domain U. The VMM identifies the top page of the P2M
table from the shared info page. It traverses the P2M table from
the top node and recognizes all the pages used for the table. To

prevent the attackers from making arbitrary pages be a part of the
P2M table, the VMM checks the data structure and the validity
of all the entries at this time. Note that the VMM has to perform
this traversal whenever domain 0 maps the shared info page of
domain U. This is because the P2M table is constructed by the
guest operating system in domain U.
4.4.5 Page Tables

In para-virtualized operating systems, a page table is a table
for translating virtual addresses into MFNs, not PFNs. When do-
main 0 migrates domain U, it needs to rewrite all the PTEs in the
page tables of the domain U, using the MFNs at the destination
host. The VMM identifies the pages used for the page tables in
domain U through a hypercall. The pages are always registered
to the VMM. If a page is no longer used for a page table, it is un-
registered from the VMM. The attackers cannot register arbitrary
pages as page tables because the VMM checks the validity of all
the PTEs. In addition, the VMM disallows domain 0 to modify
the page tables after domain U starts running.
4.4.6 Shared Memory with the Grant Table

The grant table is a mechanism for sharing memory pages be-
tween domain U and domain 0. For example, I/O ring buffers are
shared between the frontend drivers in domain U and the backend
drivers in domain 0. With the grant table, domain 0 has to read
and write the memory pages permitted by domain U. The VMM
can identify all the shared pages by checking the grant table. Do-
main 0 can map only the pages that domain U explicitly permits
to access. Such pages may include sensitive information, but do-
main U should encrypt it with encrypted file systems and VPN,
as described in Section 2.

4.5 Live Migration with VMCrypt
In live migration, domain 0 transfers the memory image of run-

ning domain U from a source host to a destination host. VMCrypt
encrypts the memory contents while it allows domain 0 to access
necessary information in domain U’s memory.
4.5.1 Source Host

Domain 0 first maps the shared info page of domain U to ob-
tain information on the VM and the P2M table. Then it transfers
the P2M table to the destination host. At this time, it canonical-
izes the entries so that the table does not depend on host-specific
memory allocation. Specifically, it replaces MFNs in the entries
with the corresponding PFNs. Next, domain 0 maps all the pages
of domain U and transfers their contents to the destination in turn.
When domain 0 transfers pages used for page tables, it canonical-
izes the PTEs in the tables. In live migration, domain 0 repeatedly
transfers dirty pages, which are modified by domain U during mi-
gration. Finally, it stops domain U and transfers the remaining
dirty pages and other states.

VMCrypt allows domain 0 to inspect domain U’s memory
pages necessary for migration, such as the shared info page, the
P2M table, and the page tables. Such shared pages are not en-
crypted while the other pages are encrypted by the VMM when
domain 0 maps them. Thanks to a dual memory view provided
by VMCrypt, domain 0 can concurrently access encrypted pages
while domain U accesses the original pages. When domain 0 un-
maps pages, the VMM does not decrypt them for performance
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because any pages are not modified by domain 0.
When domain 0 maps the pages used for the embedded bitmap,

the VMM copies the encryption bitmap in the VMM to the pages
and encrypts them. If the encryption bitmap changes during live
migration, the embedded bitmap has to be re-transferred. The
VMM makes the pages for the embedded bitmap dirty so that
the migration software in domain 0 re-transfers them automati-
cally. To detect the corruption of the bitmap during migration,
the VMM embeds the hash value of the bitmap into the domain
U’s memory. The bitmap is critical because domain 0 can map
random pages as unencrypted by corrupting the bitmap.

Also, the VMM embeds the hash value of the page tables into
domain U’s memory to detect the alteration during migration. For
example, if restored domain U uses altered page tables, the do-
main U might store sensitive information to unencrypted pages.
When domain U is finally stopped at the source host, the VMM
canonicalizes all the entries and calculates its hash value.
4.5.2 Destination Host

At the destination host, domain 0 creates a new domain U and
reconstructs its memory using the received memory image. When
it receives a memory page, it allocates a new page for domain U,
maps it, and writes the contents to it. When domain 0 receives
pages used for page tables, it uncanonicalizes the PTEs of the ta-
bles, according to the memory allocation at the destination host.
Specifically, it replaces PFNs in the PTEs with the corresponding
MFNs. Domain 0 repeats this as long as memory pages are trans-
ferred from the source host. When domain 0 has received all data
from the source, it sets up the start info and shared info pages.
Then it uncanonicalizes the P2M table and finally starts domain
U.

The VMM does not decrypt the received memory pages on
memory unmapping, but just before domain U starts running. Un-
til the encryption bitmap is restored, the VMM cannot determine
whether each page should be decrypted or not. This delay of de-
cryption does not cause any problems. During live migration,
domain U at the destination host neither runs nor accesses any
pages. Domain 0 can access shared pages such as the page ta-
bles because those pages are transferred without encryption from
the source host. When domain 0 issues the first unpause hyper-
call to start domain U, the VMM extracts the embedded bitmap
from domain U’s memory. Then it copies back the bitmap to the
encryption bitmap in the VMM. After the bitmap extraction, the
VMM decrypts memory pages of domain U on the basis of the
encryption bitmap.

As an optimization, the VMM decrypts memory pages as early
as possible to reduce the downtime of live migration. If all pages
are decrypted at the final stage, the downtime becomes long be-
cause domain U at the source host is stopped at this stage. The
VMM extracts the embedded bitmap just after domain 0 receives
all the pages used for the bitmap. After that, the VMM can
decrypt memory pages on the basis of the restored encrypted
bitmap. However, the encryption bitmap may not be consistent
because it can be updated during live migration. For example,
pages to be encrypted may be mapped without encryption before
the encryption bitmap is correctly updated. This may lead to in-
formation leakage from domain U.

Fig. 5 Encryption based on the decryption record.

To prevent this inconsistency, the VMM maintains the decryp-
tion record, which is used to record whether each page of domain
U has been decrypted or not, as shown in Figure 5. Its bit is
set when the corresponding page is decrypted. When domain 0
unmaps a page of domain U, the VMM sets the corresponding
bit of the decryption record if the VMM decrypts it on the basis
of the encryption bitmap. When domain 0 maps the page later,
the VMM determines whether the page should be encrypted or
not, using the decryption record instead of the encryption bitmap.
With the decryption record, the VMM can give a consistent mem-
ory view to domain 0. It is guaranteed that decrypted pages are
necessarily encrypted when domain 0 maps them. At the final
stage, the VMM adjusts the encryption of all the pages on the
basis of the consistent encryption bitmap. Note that unencrypted
pages may be incorrectly decrypted but they can be restored by
encryption in case of AES-XTS at least.

The attacks against the embedded bitmap cannot succeed in
information leakage. Corruption of the bitmap is detected by the
hash value embedded into domain U’s memory. Replay attacks
are useless because domain 0 is always given the same memory
view as that at the source host. Even if a page is decrypted using
an old encryption bitmap, it is necessarily encrypted again on the
basis of the same bitmap when domain 0 maps it.

Alteration of the page tables is also detected by the embed-
ded hash value. Just before domain U starts running, the VMM
canonicalizes the PTEs, calculates the hash value, and compares
it with the embedded one. Replay attacks are not impossible, but
it is difficult to steal useful information with only old page tables.
In addition, the pages used for replayed page tables have to be
marked as unencrypted in the encryption bitmap, which cannot
be compromised.

4.6 Other VM Management with VMCrypt
For boot, domain 0 can construct domain U as usual because

the VMM does not encrypt any memory pages. It loads the ker-
nel to domain U’s memory and sets up the initial page table, the
start info page, and so on. When domain U starts running, the
VMM checks the integrity of domain U’s kernel and the other
data structure, as described in previous work [3], [8]. In addition,
VMCrypt supports the suspension and resumption of domain U,
which are similar to operations at the source and destination hosts
in VM migration, respectively.
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Fig. 6 Time used by the domain 0 to map a page of a domain U.

4.7 Security Consideration
In VMCrypt, the management VM could interfere with the

VMM through the alteration of unencrypted pages of the user
VMs. For example, when the VMM traverses the P2M table, it
might crash if the table was altered by the attackers so that it in-
cludes non-existing memory pages. To prevent this, our VMM
carefully checks that the accessed pages belong to the target VM.

VMCrypt increases the size of the VMM, resulting in a larger
TCB. This may make the whole system more vulnerable, but the
increased code size is 12500 lines, including 6500 lines of code
for AES. This size is only 5 % of the original VMM.

5. Experiments
We performed experiments to measure the overheads of VM-

Crypt and confirm that VMCrypt prevents information leakage
via domain 0. We used two PCs, each of which has one Intel
Xeon processor 2.67 GHz with 8 cores, 12 GB of memory, a 1 TB
of SATA HDD, and a Gigabit Ethernet NIC. We ran modified Xen
4.0.1 for the x86-64 architecture on these PCs. For domain 0, we
allocated 6 GB of memory and ran Linux 2.6.32-5-xen-amd64.
For domain U, we allocated 1 GB of memory if not specified in
each experiment and ran para-virtualized Linux 2.6.32.27. These
PCs were connected with a Gigabit Ethernet switch.

Through the experiments, VMCrypt used AES-XTS with a key
size of 256 bits for the encryption of domain U’s memory. We
have implemented the AES-XTS support in the VMM but not
yet fully optimized. The performance can be improved by us-
ing AES-NI, a set of special instructions for AES. To exclude the
overhead of cryptographic operations, we also used the null ci-
pher, which did not encrypt or decrypt data. For comparison, we
conducted the experiments in the vanilla Xen.

5.1 Overhead of Constructing an Encrypted View
To examine the overhead of constructing an encrypted view, we

measured the time needed for mapping and unmapping a memory
page of domain U on domain 0. We performed this experiment
for writable mapping, read-only mapping, and the mapping of
uninitialized memory. VMCrypt encrypts and decrypts a writable
page, only encrypts a read-only page, and only decrypts an unini-
tialized page, respectively. We repeated memory mapping and
unmapping 100000 times. Figure 6 shows the mean time.

When VMCrypt used the null cipher, the execution time in-
creased by 3 µs in comparison with the vanilla Xen. This over-

head comes from examining the encryption bitmap and replicat-
ing a page. The optimization for encrypted replication was not
effective because the memory copies were completed only on the
CPU cache. When VMCrypt performed both encryption and de-
cryption of AES, the execution time was 81 µs, which was 7.7
times longer than that in the vanilla Xen. When the optimization
was enabled, the execution time was reduced to less than 60 %
of the non-optimized case. This shows that our optimization for
reducing cryptographic operations is effective.

5.2 Memory Overhead for an Encrypted View
We examined the number of extra pages allocated for an en-

crypted view. When domain 0 maps domain U’s pages, the VMM
allocates new pages in domain 0 for encrypted replication. At
worst, the number of the allocated pages could be equal to the
total number of domain U’s pages. However, the maximum num-
ber of extra pages was 1024 while we were migrating domain
U. This is because the migration program mapped 1024 pages at
once and unmapped all of them after the memory manipulation.
1024 pages are 4 MB of memory and not so large.

5.3 Performance of Live Migration
With VMCrypt, we performed live migration, which transfers

the memory image without stopping domain U and reduces the
downtime of domain U. For comparison, we also performed mi-
gration with SSL. Xen provides the mechanism of migrating do-
main U via an SSL connection. Although SSL can prevent infor-
mation leakage on the network, domain 0 at both hosts can still
steal information. Transferred data on the SSL connection is de-
crypted at domain 0. Xen used AES with a key size of 256 bits
for encryption.

We measured the time needed for migrating domain U between
two hosts. We changed the allocated memory size of domain U
from 26 MB to 4 GB. The results are shown in Figure 7(a). The
migration time was proportional to the memory size of migrated
domain U. The overhead of VMCrypt with the null cipher was
only 1 %. With AES, however, the migration time was 1.7 times
longer than that in the vanilla Xen. These results mean that en-
cryption and decryption degraded the performance largely. Note
that the performance in VMCrypt with AES is almost the same as
that in the vanilla Xen with SSL. The reason why the vanilla Xen
with SSL is slightly slower than VMCrypt with AES is that SSL
checks the data integrity as well.

Next, we measured the downtimes due to live migration of do-
main U. Here, the downtime is the time from when domain U is
stopped at the source host until it is restarted at the destination
host. As shown in Figure 7(b), the downtime was also propor-
tional to the memory size of domain U. In VMCrypt with AES, it
was still less than one second even when the memory size was 4
GB. It was 13 % longer than that in the vanilla Xen.

Third, we measured the number of re-transferred pages, which
increases due to the re-transfer of the embedded bitmap. On av-
erage, 29.5 extra pages were re-transferred, but this is negligible
when compared to the total number of pages of domain U.

Finally, we measured the CPU utilization of domain 0 during
live migration. Figure 8(a) and Figure 8(b) show the CPU uti-
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Fig. 7 The performance of live migration.
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Fig. 8 The CPU utilization during live migration.

lization of domain 0 at the source and destination hosts, respec-
tively. The measured CPU time includes the CPU time consumed
in the VMM by hypercalls issued by domain 0. Compared with
the vanilla Xen, the CPU utilization in VMCrypt with AES only
increased by 35 % and 30 % at the source and destination hosts,
respectively. However, that in the vanilla Xen with SSL increased
by 70 % and 65 %, respectively. One of the reasons of such high
CPU utilization with SSL is the integrity check.

5.4 Performance of Other VM Management
First, we measured the time needed for building domain U. The

time we measured was from when we started creating domain U
until the VMM completed the unpause hypercall. The overhead
due to VMCrypt was only 1 % when 4 GB of memory was allo-
cated. This is because the VMM does not encrypt or decrypt at
boot time.

Next, we measured the times for suspension, resumption, and
migration, using VMCrypt with AES. The resumption and migra-
tion times were 1.8 and 2.3 times longer than those in the vanilla
Xen, respectively. These overheads come from cryptographic op-
erations of AES. Interestingly, the overhead for suspension was
only 7 % because the overhead of AES was hidden by disk I/O.

5.5 Performance Degradation of Domain U
We measured the impact of VMCrypt on the performance of

domain U. VMCrypt does not perform encryption or decryp-
tion unless domain 0 maps or unmaps pages of domain U, but
the VMM checks several operations even when domain U mod-
ifies page tables. We ran two benchmarks, lmbench [18] and
UnixBench [19], on domain U in the vanilla Xen and VMCrypt.

Fig. 9 Performance degradation of domain U by VMCrypt.

Figure 9 shows the performance degradation in lmbench due to
VMCrypt. Context switching in VMCrypt was 1.8 % slower than
in the vanilla Xen, but the overall average of performance degra-
dation in VMCrypt was 0.7 %. For UnixBench, the overall aver-
age of performance degradation in VMCrypt was also 0.7 %.

Next, we examined how live migration in VMCrypt affected
the performance of a web server running in domain U. We ran the
lighttpd web server [20] in domain U and measured its throughput
with ApacheBench [21] in a client host. The client host had one
Intel Core 2 Quad processor 2.83 GHz, 8 GB of memory, and a
Gigabit Ethernet NIC. The server and client hosts were connected
with a Gigabit Ethernet switch. Figure 10 shows that the through-
put in VMCrypt with AES was higher than that in the vanilla Xen.
This is because live migration in the vanilla Xen occupies the
network bandwidth and the web server cannot use the network
sufficiently. However, the throughput in VMCrypt with AES is
lower than that in the vanilla Xen with SSL. In VMCrypt, the
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Fig. 10 The throughput of a web server in domain U during live migration.

sender transfers 4 MB of the memory image at once and causes
bursty network traffic intermittently. This bursty traffic affects the
throughput of the web server. With SSL, in contrast, the traffic
is not bursty because the sender slowly transfers the data while
encrypting.

5.6 Overhead of Remote Attestation
We examined the overhead of remote attestation, which is per-

formed only when a host is booted. First, we measured the time
needed for the measurement of the VMM using TrustedGRUB
1.1.5 [22]. TrustedGRUB is a boot loader that calculates the
SHA-1 hash value of not only the VMM but also the kernel in
domain 0 and stores the value in the TPM. We compared the re-
boot time for TrustedGrub with that for GRUB Legacy. The time
for the measurement was 0.5 sec.

Next, we attempted the verification of the measurement by the
TC, but OpenPTS [23] did not work in our experimental environ-
ment. According to the literature [24], the verification process
takes about one second. The time should depend on the network
performance.

5.7 Leakage Tests with VMCrypt
We confirmed that VMCrypt prevented information leakage

from domain U’s memory. First, we attempted an attack to find
AES shared keys used by OpenSSH processes. We logged in do-
main U to make the SSH server generate an AES key, obtained the
memory dump of the domain U, and used the aeskeyfind tool [16]
to find AES keys from the memory dump. Second, we attempted
an attack to find RSA private keys generated by OpenSSL. We
generated an X.509 certificate signing request by executing the
openssl command in domain U and used the rsakeyfind tool [16].
We could find several keys without VMCrypt, but VMCrypt
could successfully prevent such tools from finding keys.

For the page cache, we attempted an attack to obtain shadow
passwords from the page cache in domain U’s memory. We
logged in domain U as root, so that the contents of /etc/shadow
were stored in the page cache. Then we searched the memory
dump of the domain U for the string “root:$”, with which a
root password begins. VMCrypt disabled such a password search
whereas we could find a root password when the page cache was
not encrypted by VMCrypt.

6. Conclusion
In this paper, we proposed VMCrypt, which preserves the data

secrecy of user VMs’ memory in IaaS clouds. VMCrypt provides
a dual memory view concurrently and prevents sensitive infor-
mation from leaking to the management VM. It also allows the
administrators to use the existing management software includ-
ing live migration. To support the existing management software
for para-virtualized operating systems, VMCrypt automatically
identifies unencrypted memory regions and caches that informa-
tion during the life cycle of user VMs. We have implemented
VMCrypt in the Xen VMM and confirmed that the administrators
could manage user VMs as usual but could not steal the sensitive
information. In particular, the downtime due to live migration
was comparable with the vanilla Xen and still less than one sec-
ond.

One of the future work is to reduce the overhead of memory
decryption. In the current implementation, pages mapped on the
management VM are synchronously decrypted on unmapping. To
overlap the decryption with I/O, the VMM should decrypt un-
mapped pages asynchronously. Another future work is to enable
VM introspection from the management VM. To introspect the
user VMs, the management VM has to access user VMs’ memory
without encryption. We are planning to implement the support for
VM introspection based on permission by the users. Supporting
full-virtualization is also necessary for applying VMCrypt to real
IaaS clouds. The VMM has to identify the memory regions used
for framebuffers and DMA as unencrypted pages, which is done
by CloudVisor [4].
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