
Synchronized Co-migration of Virtual Machines for IDS Offloading in Clouds

Kenichi Kourai Hisato Utsunomiya
Department of Creative Informatics

Kyushu Institute of Technology
Fukuoka, Japan

{kourai,U_SAN}@ksl.ci.kyutech.ac.jp

Abstract—Since Infrastructure-as-a-Service (IaaS) clouds
contain many vulnerable virtual machines (VMs), intrusion
detection systems (IDSes) should be run for all the VMs. IDS
offloading is promising for this purpose because it allows IaaS
providers to run IDSes in the outside of VMs without any
cooperation of the users. However, offloaded IDSes cannot
continue to monitor their target VM when the VM is migrated
to another host. In this paper, we propose VMCoupler for
enabling co-migration of offloaded IDSes and their target VM.
Our approach is running offloaded IDSes in a special VM
called a guard VM, which can monitor the internals of the
target VM using VM introspection. VMCoupler can migrate a
guard VM together with its target VM and restore the state of
VM introspection at the destination. The migration processes
of these two VMs are synchronized so that the target VM does
not run without being monitored. We have confirmed that the
overheads of kernel monitoring and co-migration were small.

Keywords-IaaS clouds, virtual machines, migration, intrusion
detection systems

I. INTRODUCTION

Infrastructure as a service (IaaS) such as Amazon EC2
provides virtual machines (VMs) for the users. The users
set up their own operating systems and applications in the
VMs. Unfortunately, the systems inside VMs are not always
well maintained and can be penetrated by attackers. To
protect such systems, intrusion detection systems (IDSes) are
useful. They can monitor the operating systems, networks,
and storage of VMs and alert administrators to attacks if they
detect symptoms of intrusion. However, it is difficult for IaaS
providers to enforce the users to install IDSes in their VMs.
Even if the users install IDSes, intruders can easily disable
such IDSes running in the VMs before attacking against the
systems in them.

To solve these problems, IaaS providers can use IDS
offloading with VM introspection [1]. This technique enables
IDSes to run in the outside of their target VM and monitor
the VM securely. IDS offloading allows IaaS providers to
run IDSes for VMs without any cooperation of the users.
Using VM introspection, offloaded IDSes can directly obtain
detailed information inside the VM. They are protected from
intruders in the VM. However, when the target VM of the
IDSes is migrated to another host, the IDSes cannot continue
to monitor the VM because they are not migrated together
with the VM. Consequently, IaaS providers cannot use both

IDS offloading and VM migration.
In this paper, we propose VMCoupler, which is the system

for enabling co-migration of offloaded IDSes and their target
VM. Our idea is running offloaded IDSes in a special VM
called a guard VM and migrating a guard VM together
with its target VM. A guard VM enables IDSes to monitor
the internals of the target VM using VM introspection.
VMCoupler performs co-migration of a guard VM and its
target VM, while the guard VM continues to monitor the
target VM. To achieve this, VMCoupler preserves the state
of VM introspection in a guard VM during co-migration. In
addition, VMCoupler synchronizes the migration processes
of these two VMs for security. This guarantees that a guard
VM always monitors its target VM while the target VM is
running.

We have implemented VMCoupler in Xen 4.0.1 [2]. For
memory monitoring, VMCoupler allows a guard VM to map
memory pages of its target VM. After the co-migration, it
restores the memory-mapping state at a destination host. For
network monitoring, VMCoupler performs port mirroring
at a virtual switch for a guard VM to capture the packets
to/from a target VM. It sets up port mirroring again after
co-migration. By using networked storage, a guard VM can
monitor the storage of its target VM even after co-migration.
We conducted several experiments to examine the overheads
of monitoring and co-migration and confirmed that these
overheads were small.

The rest of this paper is organized as follows. Section II
describes the issues in IDS offloading and VM migration.
Section III proposes the system for achieving co-migration
of offloaded IDSes and their target VM, which is called
VMCoupler. Section IV describes the implementation of
VMCoupler in Xen. Section V reports the performance of
an offloaded IDS and co-migration. Section VI discusses the
related work and Section VII concludes the paper.

II. IDS OFFLOADING AND VM MIGRATION

Although IDSes play an important role in IaaS clouds
as well as in traditional systems, it is difficult that IaaS
providers enforce the users to install IDSes in their VMs.
In IaaS clouds, the providers just provide VMs, while the
users determine installed software. Therefore the providers
cannot install any software including IDSes without users’

cooperation. They can require the users to install IDSes, but
some users may not follow that for various reasons, e.g.,
performance overhead or less administrative skills. Even if
the users cooperatively install IDSes, such IDSes can be
disabled easily by intruders to the target VMs. Intruders
with sufficient privileges can stop IDSes or make IDSes
ineffective.

IDS offloading is attractive to IaaS providers in that
they can deploy IDSes without any cooperation of the
users. It enables modular and secure monitoring of VMs.
It runs IDSes in the outside of the target VM and prevents
interferences from intruders in the VM. Using a technique
called VM introspection, offloaded IDSes can monitor the
internals of the operating system, the network packets, and
the file systems of the target VM with no agent software
installed. Offloaded IDSes are often run in a privileged VM
called the management VM, which is used for managing
VMs.

On the other hand, IaaS clouds migrate VMs for various
purposes. VM migration allows a running VM to be moved
from a source to a destination host. In particular, live
migration [3] almost does not stop a VM during its migration
by transferring most of its states with the VM running. Using
VM migration, IaaS providers can maintain physical hosts
without interrupting services provided by VMs. They can
perform load balancing by migrating heavily loaded VMs to
other lightly loaded hosts. Conversely, they can save power
if they consolidate lightly loaded VMs into a fewer hosts.

When a VM is migrated, the IDSes offloaded from the
VM should be moved together to the same destination host.
If the IDSes were not migrated, they could not continue to
monitor the target VM that has been migrated to another
host. However, they are not automatically moved with the
VM as when they run inside the VM. As a result, the target
VM would run without monitoring by IDSes. If attackers
intrude into the VM, IaaS providers cannot detect that
intrusion. To avoid such an insecure situation, IaaS clouds
cannot use VM migration with IDS offloading. This would
make IaaS clouds lose various advantages of using VMs.

One approach for migrating IDSes is migrating the man-
agement VM where IDSes are offloaded. However, the
management VM is a special VM and is not migratable.
Since only one management VM has to exist in one host, it
cannot be moved out or in. One reason of this restriction
is that the management VM handles I/O requests from
the other VMs. Another approach is offloading IDSes to a
regular VM that is different from their target VM. Although
a regular VM can be migrated, IDSes in such a VM cannot
monitor the target VM because a regular VM does not have
such privileges. The other approach is migrating only IDS
processes. Process migration has been well studied, but it
cannot preserve several process states including monitoring
states of the target VM.

A different approach is re-executing offloaded IDSes at

guard VM target VM

source host
destination host

memory

map

IDS...
...

virtual switch
port

mirror

virtual switch

migration

Figure 1. Co-migration of a guard VM and its target VM in VMCoupler.

the destination host where their target VM is migrated. If
IDSes are short-lived, this approach works well. However,
re-execution is not feasible for long-running IDSes such as
Tripwire [4]. When a target VM is migrated, the execution
of such IDSes is aborted at the source host and is restarted
from the beginning at the destination host. At this time,
for example, Tripwire has to examine many files again.
Memory forensic tools may have to analyze the whole kernel
data again. Such wasteful resource consumption should be
avoided. A possible solution is transferring the state of IDSes
to the destination host, but it needs to re-design IDSes.

III. VMCOUPLER

We propose VMCoupler for enabling co-migration of
offloaded IDSes and the target VM. VMCoupler provides
a special VM called a guard VM to run offloaded IDSes. It
migrates a guard VM and the target VMs together.

A. Guard VM

A guard VM possesses monitoring functionalities for
running offloaded IDSes, as illustrated in Fig. 1. For memory
monitoring, it allows IDSes to map memory pages of their
target VM. IDSes in a guard VM can read the contents of the
mapped memory pages and monitor the state of the target
VM. Traditionally, this was allowed only to the management
VM. For network monitoring, a guard VM allows IDSes to
capture the packets from/to their target VM. To achieve this,
VMCoupler performs port mirroring at a virtual switch. Port
mirroring duplicates the packets of the target VM to its guard
VM. A guard VM provides a dedicated network interface for
receiving the duplicated packets. For storage monitoring, a
guard VM allows IDSes to read the networked storage used
by its target VM. To enable a target VM to be migrated,
the networked storage is usually used so that the VM can
access its storage at both source and destination hosts.

VMCoupler gives least privilege to a guard VM so that the
VM can monitor only one target VM. The management VM
binds a guard VM to its target VM and allows the guard VM
to map only memory pages of the target VM. It configures
port mirroring at a virtual switch so that only the packets of
a target VM are delivered to its guard VM. By the access

control of the networked storage, a guard VM can access
only the storage of its target VM. Even if attackers penetrate
a guard VM, they can steal information only from the target
VM. In this sense, IDS offloading to a guard VM is securer
than that to the management VM. Since the management
VM has full privileges for all the VMs, the whole system is
compromised if the management VM is compromised.

B. Co-migration with Continuous Monitoring

For the continuity of the monitoring, VMCoupler migrates
a guard VM and its target VM together. It groups these
two VMs and migrates them in parallel. If we migrate a
guard VM just like a regular VM, most of the monitoring
states that the guard VM has would be lost. The mapping
state of the target VM’s memory is not migrated because
the traditional migration mechanism assumes that a VM is
self-contained. In other words, it is assumed that a VM maps
only its own memory pages. The state of port mirroring is
also not migrated because the configuration is done in a
virtual switch, which is located in the outside of the VM, at
the source host.

VMCoupler restores all the monitoring states at a des-
tination host so that a guard VM continues to monitor its
target VM. If a guard VM maps memory pages of the target
VM at a source host, VMCoupler transfers the mapping
state to a destination host. Then it remaps memory pages
of the target VM to the address spaces of offloaded IDSes.
In addition, VMCoupler reconfigures port mirroring for the
packets to/from the target VM at the virtual switch of
the destination host. For storage monitoring, a guard VM
can continue to monitor networked storage used by the
target VM after the migration. VMCoupler does not need to
provide any special mechanism for restoring the monitoring
state of storage.

C. Synchronized Co-migration

There are two requirements for secure and safe co-
migration. One is that a guard VM can always monitor its
target VM while the target VM is running. If either a guard
VM or a target VM has been migrated earlier, the guard VM
could not monitor the target VM running at a different host.
The other requirement is that the migration manager for a
guard VM can always obtain the necessary information on a
target VM. A migration manager is a program for migrating
a VM and runs in the management VM at each host. If a
target VM has been migrated earlier than a guard VM, the
migration manager for the guard VM could not examine the
memory allocation to the target VM after that.

To satisfy these two requirements, VMCoupler synchro-
nizes the migration processes of both a guard VM and a
target VM, as illustrated in Fig. 2. For security, there are two
synchronization points: S1 and S4 at source and destination
hosts, respectively. S1 is the point to wait for target VM’s
stop before guard VM’s. A migration manager reaches this

source
host

destination
host

guard VM

guard VM

target VM

target VM

S1 S2

S3 S4

migration
start

stop terminate

restartcreate

ready

ready

ready

Figure 2. Synchronization points during co-migration.

point when it enters the final stage of live migration. The
synchronization at this point guarantees that a guard VM
stops after a target VM and that it can monitor a target VM
as long as the target VM is running. In contrast, S4 is the
point to wait for guard VM’s restart before target VM’s.
A migration manager reaches this point when it completes
to reconstruct a migrated VM. The synchronization at this
point guarantees that a target VM is restarted after a guard
VM and that it is monitored by a guard VM just after its
restart.

For safety, there are also two synchronization points: S3

and S2 at destination and source hosts, respectively. S3 is the
point to wait for target VM’s creation before guard VM’s.
A migration manager creates a new VM at the destination
host just after migration starts. To restore the mapping of
the target VM’s memory in a guard VM, a target VM
has to have been created. The synchronization at this point
guarantees that. In contrast, S2 is the synchronization point
to wait for guard VM’s termination before target VM’s.
A migration manager reaches this point when all states
have been transferred. The synchronization at this point
guarantees that the migration manager for a guard VM can
obtain information on a target VM until the migration of a
guard VM completes.

IV. IMPLEMENTATION

We have implemented VMCoupler in Xen 4.0.1 [2]. In
Xen, the virtual machine monitor (VMM) runs on top
of hardware and executes VMs. The management VM is
called Dom0 and a regular VM including a target VM is
called DomU. We have developed a guard VM by extending
DomU, which is migratable, and we call it DomM. DomM
runs para-virtualized Linux for monitoring the memory of
DomU. In the current implementation, VMCoupler supports
para-virtualized Linux running in DomU and targets the x86-
64 architecture.

DomM

privcmd

kernel

VMM

map request

DomU

page
tables

hypercall modify

read
map

memory

Figure 3. Memory monitoring via the privcmd interface.

A. Memory Monitoring

In Xen, the VMM distinguishes machine memory and
pseudo-physical memory to virtualize memory resource.
Machine memory is physical memory installed in a host
and consists of a set of machine page frames. For each
machine page frame, a machine frame number (MFN) is
consecutively numbered from 0. Pseudo-physical memory
is the memory allocated to VMs and gives the illusion of
contiguous physical memory to VMs. For each physical
page frame in each VM, a physical frame number (PFN)
is consecutively numbered from 0. The VMM maintains
the machine-to-physical (M2P) table for the translation
from MFNs to PFNs. Para-virtualized Linux maintains the
physical-to-machine (P2M) table for translating PFNs to
MFNs.

Traditionally, Dom0 maps memory pages of DomU by
issuing the update va mapping hypercall to the VMM.
A hypercall is a mechanism to invoke the function of the
VMM. The VMM modifies the page table in Dom0 to
map the page specified by an MFN. To obtain such an
MFN, Dom0 usually translates a DomU’s virtual address by
traversing the page tables in DomU. The page directory entry
in DomU is obtained by the domctl hypercall. However,
VMs except Dom0 cannot map the memory pages of DomU
because only Dom0 can issue these hypercalls.

We modified the VMM so that it allows not only Dom0
but also DomM to issue these hypercalls. Dom0 notifies
the IDs of DomM and its target DomU of the VMM by
a newly created hypercall. This can limit the ability of
DomM and allow monitoring only the specified DomU. In
addition, we modified the Linux kernel in DomM so that
IDS processes can map the memory of DomU (Fig. 3).
IDS processes execute such memory mapping through the
privcmd interface provided by the Linux kernel that is para-
virtualized for Xen. Since privcmd allowed only Dom0 to
use its functions, we modified it so that DomM can also use
it.

Dom0

eth1 eth0

DomM

vif1.0 eth0vif2.0 vif2.1

DomU

peth0

IDS

mirroring packets

qdisc

network bridge

Figure 4. Network monitoring in DomM with port mirroring.

B. Network Monitoring

When DomU is created, a pair of virtual network inter-
faces (e.g., vif1.0 and eth0) is created in Dom0 and DomU,
respectively. In the bridge-networking mode, the interfaces
are connected to a network bridge in Dom0, which is
connected to physical network interfaces (e.g., peth0). When
a packet is sent from DomU, it is delivered to one of the
virtual network interfaces and is transmitted to the outside
via the network bridge. When a packet to DomU is sent
from the outside, it is delivered to one of the virtual network
interfaces via the network bridge. When a packet is sent
between DomUs, it is delivered from one virtual network
interface to another via the network bridge. Therefore, Dom0
can easily capture all the packets from/to DomU via the
virtual network interfaces. However, it is not easy for VMs
except Dom0 to capture the packets because any packets are
not delivered via these VMs.

To enable DomM to capture the packets from/to DomU,
Dom0 duplicates the packets by achieving port mirroring
with traffic shaping. Fig. 4 depicts port mirroring in Dom0.
The traffic shaping in Linux is performed in queuing dis-
ciplines (qdisc), which is attached to a network device. A
qdisc enqueues all the packets and dequeues them according
to registered filters. For port mirroring, Dom0 creates an ad-
ditional virtual network interface as a mirror port for DomM
(e.g., vif2.1). Then it attaches a qdisc to the virtual network
interfaces for DomU (e.g., vif1.0). The qdisc receives all the
packets via the virtual network interfaces from/to DomU. It
duplicates these packets to the mirror port and DomM can
receive them via its network interface for port mirroring.

C. Storage Monitoring

Since DomU has to be migrated, its virtual disks are
usually located in networked storage such as an NFS server.
The simplest solution for monitoring such virtual disks is
that both DomU and DomM mount the same root file system
via NFS. One disadvantage of this solution is requiring
modification to the system configuration in DomU. In IaaS
clouds, it is difficult for IaaS providers to enforce specific
configuration to the users. Another solution is that DomM

mounts an NFS volume including the disk images of DomU
and provides them to DomU as virtual disks. This means that
DomM is configured as a driver domain [5] to serve virtual
disks to DomU. DomM can easily monitor the disk images
as Dom0 can traditionally. However, this configuration can
affect the storage performance of DomU. To access virtual
disks, DomU has to access networked storage via DomM.
Then DomM has to access a NFS server via Dom0 because
the DomM’s network is virtualized.

Therefore, we adopted the solution involving Dom0.
Dom0 mounts an NFS volume and provides DomU with the
disk images of DomU in it as virtual disks. DomU has to
access Dom0, but Dom0 can directly access the NFS server
because of no virtualization. DomM also mounts the same
NFS volume and monitors the disk images on it by loopback
mounts. As a variant of this solution, we also investigated
the way that Dom0 provides the disk images of DomU to
DomM as secondary virtual disks. However, the monitoring
performance was 59% lower than the solution we adopted.

D. Migration of DomM

To migrate DomM, the migration manager in Dom0
transfers the memory and the CPU state of the DomM from
a source to a destination host and continues the execution of
DomM. In particular, live migration is often used so that the
downtime of a VM becomes short. In this case, the migration
manager does not stop DomM and repeats to transfer dirty
pages, which are modified in DomM during migration.
Finally, it stops DomM and transfers the remaining dirty
pages and the CPU state. In our storage configuration, Dom0
mounts an NFS volume including the disk images of DomU
at both hosts. Even if DomM is migrated, it can access
its virtual disks via Dom0. The network interfaces of the
migrated DomM are re-connected to the network bridge in
Dom0 at the destination host.

During such memory transfers, the migration manager
canonicalizes the page table entries (PTEs) used by the
DomM at a source host. This canonicalization is rewriting
PTEs so that the page tables do not depend on host-
specific memory allocation. Specifically, the migration man-
ager replaces the host-specific MFNs in the PTEs with the
corresponding PFNs. This translation is performed with the
M2P table in the VMM. At a destination host, the migration
manager uncanonicalizes those PTEs so that DomM can
run with the host-specific page tables. If DomM maps the
memory pages of DomU, the uncanonicalization fails at the
destination host. After the canonicalization, the page tables
of DomM have entries including the PFNs belonging to
DomU. When the migration manager uncanonicalizes them,
it cannot distinguish DomU’s PFNs from DomM’s because
PFNs are local in each VM.

In VMCoupler, the migration manager for DomM trans-
fers the memory-mapping state on DomU as well. If DomM
maps a memory page of DomU, the migration manager sets a

Dom0 DomM

page
table

DomU

migration
manager 1

1
1
1
2 2

VMM

P2M table P2M table

M2P table

PFN
PFN

654 MFN

monitor bit

MFN

Figure 5. Saving the memory-mapping state for DomU.

Dom0 DomM

page
table

DomU

migration
manager

1
1

9
7
8 2

VMM M2P table

PFN
PFN

987 MFN MFN

Figure 6. Restoring the memory-mapping state for DomU.

monitor bit to the corresponding PTE, as illustrated in Fig. 5.
To examine if a PTE is used for mapping a memory page
of DomU, the migration manager re-translates the translated
PFN into an MFN. This is done using the P2M table of
DomU, which is stored in DomU’s memory. If the MFN
is equal to the original one before the canonicalization,
the migration manager can determine that the PFN belongs
to DomU. Otherwise, it re-translates the PFN using the
P2M table of DomM to check the validity of the PTE,
as performed in the original Xen. The monitor bits are
automatically transferred to the destination with memory
pages for the page tables.

At the destination host, the migration manager correctly
restores the memory-mapping state using the monitor bits.
If a monitor bit is set in a PTE, the migration manager
considers the PFN included in the PTE as the one of
DomU and replaces it with the corresponding MFN, which
is allocated to DomU. Fig. 6 shows the page table after
reconstruction. For this purpose, the migration manager
cannot use the P2M table in DomU yet because the P2M
table is reconstructed by the guest operating system itself
of DomU after DomU is resumed. Therefore, the migration
manager constructs its own P2M table of DomU from the
list of MFNs allocated to DomU and the M2P table.

For network monitoring, Dom0 removes the filters set
up for port mirroring at the source host after it stops
DomM at the final stage of its migration. At the destination
host, Dom0 adds the filters for port mirroring again before

it restarts DomM. As such, DomM can monitor all the
packets that DomU receives. For storage monitoring, DomM
can continue to monitor the disk images of DomU after
migration because the images are located in an NFS server.
Any special mechanisms are not required for the continuity
of the storage monitoring because the network connection
to the NFS server is kept.

E. Binding DomM to DomU

Dom0 binds DomM to its target DomU by specifying
the universally unique identifier (UUID) of DomM. As
described in Section IV-A, Dom0 manages a pair of IDs
of DomM and its target DomU. However, such domain IDs
are local numbers inside a host and not valid in another
host after migration. Therefore, we used UUIDs, which are
globally unique numbers. An administrator assigns a fixed
UUID to DomU and specifies it as the target for DomM. To
this end, we added a new configuration option target uuid
to DomM. Since the configuration of DomM is transferred
to the destination at migration, Dom0 at the destination can
re-bind DomM to DomU on the basis of the UUID of DomU.

F. Synchronized Co-migration

Two migration managers migrate DomU and DomM
synchronously as shown in Fig. 2. First, they create new
VMs at a destination host and synchronize their migration
processes at S3. To wait for DomU’s creation, the program
for resuming DomM repeatedly looks up DomU by its UUID
specified in the target uuid configuration option. If it can
find that DomU, it proceeds the migration of DomM.

After the migration managers reach the final stage of
live migration, they synchronize their migration process
at S1. To wait for DomU’s stop, the migration manager
for DomM repeatedly obtains information on DomU until
DomU becomes the stopped state. While the migration
manager waits for DomU’s stop, it continues to transfer dirty
pages of DomM to the destination. This can keep the number
of dirty pages to be transferred at the final stage as small as
possible. However, if the migration manager has to wait for
a long time at S1, the total amount of transferred memory
increases. This depends on the memory access patterns in
DomM. Therefore, we also prepare an option to transfer no
dirty pages during this waiting time.

When the migration managers terminate old VMs at the
source host, they synchronize the tasks at S2. To wait for
DomM’s termination, the migration manager for DomU re-
peatedly obtains information on DomM while DomM exists.
Finally, they synchronize the restart of the new VMs at S4.
The migration manager for DomU repeatedly examines the
state of DomM until DomM is restarted. It can identify the
DomM monitoring the DomU because a pair of DomM and
DomU is registered to the VMM at the above S3.

V. EXPERIMENTS

We conducted experiments to examine the continuity of
monitoring across co-migration and to measure the perfor-
mance of monitoring and co-migration. For server machines
hosting VMs, we used two PCs with one Intel Quad Core
2.83 GHz processor, 8 GB of memory, and a gigabit Ether-
net. We used Xen 4.0.1 and ran Linux 2.6.32.38 in Dom0,
DomM, and DomU. By default, we allocated one virtual
CPU and 512 MB of memory to DomM, one virtual CPU
and 1 GB of memory to DomU, and four virtual CPUs and
the rest of the memory to Dom0. For a NFS server, we
used NAS with one Intel Xeon X5640 3.16 GHz processor,
32 GB of memory, 16 TB of RAID-5 disks, and a gigabit
Ethernet. These PCs and NAS are connected with a gigabit
Ethernet switch.

A. Memory Monitoring

We executed the integrity checker of the DomU kernel
in DomM. The integrity checker calculates the hash value
of the memory area for the kernel text and detects tam-
pering with it. We compared the hash value with the one
pre-calculated from the kernel image and confirmed that
the integrity checker could correctly monitor the kernel in
DomU. Even if we co-migrated DomM and DomU during
the integrity check, the checker could continue to run and
complete its check in the destination host.

Next, we measured the time needed for the integrity
check. For comparison, we executed the integrity checker
in Dom0 as traditional and measured the time. We ran the
integrity checker 100 times. On average, it took 135 ms
and 203 ms for the integrity checks in DomM and Dom0,
respectively. The integrity check running in DomM was 33%
faster than that in Dom0.

According to our analysis of the implementation in Xen
and Linux, we found that the number of virtual CPUs
allocated to a VM affected the performance of memory
mapping. When DomM and Dom0 map memory pages of
DomU, they issue the hypercall for obtaining the state of
virtual CPUs. They allocate a buffer passed to the hypercall
and lock it by using the mlock system call so that the
corresponding memory pages are not paged out. Since the
system call waits for all the CPUs to synchronously com-
plete pending operations on memory pages, the execution
time is proportional to the number of CPUs.

Fig. 7 shows the time for the integrity check when we
changed the number of virtual CPUs allocated to DomM
and Dom0. The results show that the time is proportional
to the number of virtual CPUs. For four virtual CPUs, the
performance in DomM was changed largely. This is probably
because the PC had only four physical CPUs and CPU
contention occurred between DomM and Dom0.

In general, memory monitoring in DomM can be faster
than that in Dom0. For DomM, one or small number of
virtual CPUs are sufficient if only one or several IDSes

1 2 3 4
of virtual CPUs

0

100

200

300

400

500

600
ex

ec
ut

io
n

tim
e

(m
se

c)

DomM
Dom0

Figure 7. The impacts of various numbers of virtual CPUs on the kernel
monitoring.

are running. In contrast, Dom0 requires many virtual CPUs
because it has to handle I/O requests from all the VMs.

B. Storage Monitoring

We executed Tripwire [4] in DomM to scan the DomU’s
disk. Tripwire saves the correct state of the file systems to
its database and detects changes to them. We confirmed
that Tripwire in DomM could monitor the DomU’s disk
correctly as it ran inside DomU. Then, we co-migrated
DomM and DomU while Tripwire in DomM was monitoring
the DomU’s disk. Across the migration, Tripwire could
complete the integrity check of the entire disk.

Next, we measured the time needed for the integrity
check by Tripwire in DomM. For comparison, we also
executed Tripwire in Dom0 and measured the time for the
check. On average, it took 18.9 seconds and 4.5 seconds for
the integrity check in DomM and Dom0, respectively. The
time in DomM was 4.2 times longer than that in Dom0.
The primary reason is network virtualization. Tripwire in
DomM and Dom0 had to access the storage of DomU in
the NFS server. Since the network of DomM is virtualized,
its network access is performed via Dom0.

C. Network Monitoring

We executed Snort [6] in DomM to check the DomU’s
packets. Snort is a signature-based network IDS. Snort in
DomM could capture all the packets to/from DomU. When
we mounted portscans to DomU using nmap, Snort in
DomM could detect the portscans. Next, we performed co-
migration of DomM and DomU while Snort in DomM
monitored the packets for DomU. Since port mirroring in
Dom0 was disabled after DomU stopped and enabled before
DomU restarted, Snort did not drop any packets that DomU
received.

To examine the overhead of network monitoring in
DomM, we measured the increase of the CPU utilization
in DomM by running Snort. As a result, the CPU utilization
did not increase.

0 256 512 768 1024
memory size of DomM (MB)

0

5

10

15

20

25

co
-m

ig
ra

tio
n

tim
e

(s
ec

)

w/ synchronization
w/o synchronization

0 256 512 768 1024 1280
memory size of DomU (MB)

0

5

10

15

20

25

(a) (b)

Figure 8. The co-migration time for various combinations of the memory
sizes of DomM and DomU.

D. Co-migration Time

We measured the time needed for synchronized co-
migration of DomM and DomU when we changed the size
of memory allocated to the VMs. First, we allocated 1 GB of
memory to DomU and changed the memory size of DomM
from 256 MB to 1 GB. For comparison, we migrated two
independent DomUs in parallel without synchronization. We
fixed the memory size of one DomU to 1 GB and changed
the memory size of the other DomU. The time we measured
was from when we started co-migration until the migration
of both VMs completed.

Fig. 8(a) shows the co-migration times. As the memory
size of DomM became larger, the co-migration time was
increasing. This is because the total migration time of two
VMs depends on the total memory size to be transferred. The
difference between co-migration with and without synchro-
nization was small. The co-migration time was increasing
as the memory size of DomM became smaller. However,
even when the memory size of DomM was 256 MB, the
synchronization increased the co-migration time only by 0.6
second.

Next, we fixed the memory size of DomM to 1 GB and
changed that of DomU from 256 MB to 1 GB. Fig. 8(b)
shows the co-migration times. Similar to the above exper-
iment, the time for co-migration with synchronization was
almost the same as that without synchronization.

E. Downtime

We measured the downtime of DomU during synchro-
nized co-migration with DomM. Since various services are
running in DomU, its downtime should be short. The down-
time of DomU can increase at the synchronization points S2

and S4, at which DomU waits for DomM. First, we allocated
1 GB of memory to DomU and changed the memory size of
DomM from 256 MB to 1 GB. The downtime we measured
was the time in which DomU is not running at either source
or destination host. We measured the downtime 10 times.

Fig. 9(a) shows the average downtimes. As the memory
size of DomM became larger, the downtime was increasing

0 256 512 768 1024
memory size of DomM (MB)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

do
w

nt
im

e
(s

ec
)

0 256 512 768 1024 1280
memory size of DomU (MB)

0

2

4

6

8

10

do
w

nt
im

e
(s

ec
)

(a) (b)

Figure 9. The downtimes of DomU for various combinations of the
memory sizes of DomM and DomU.

Table I
THE WAIT TIMES AT EACH SYNCHRONIZATION POINT FOR VARIOUS

MEMORY SIZES OF DOMM (MS).

DomM DomU
size (MB) S1 S3 S2 S4

256 7736 0 14 25
512 5200 0 18 51
768 2675 0 19 61

1024 74 0 92 69

gradually. When we changed the memory size of DomM
from 256 MB to 1 GB, the downtime increased only by
162 ms. This means that synchronized co-migration does
not affect the downtime largely.

Next, we measured the downtimes of DomU when we
fixed the memory size of DomM to 1 GB. We changed
the memory size of DomU from 256 MB to 1 GB. The
results are shown in Fig. 9(b). It is shown that the downtime
was dramatically increasing as the memory size of DomU
became smaller. However, the memory size of DomM is
usually smaller than that of DomU because DomM only
monitors DomU. Therefore, the configuration of VMs in
Fig. 9(b) is a special case.

F. Breakdown of Synchronization

To examine the breakdown of synchronization, we mea-
sured the wait times at each synchronization point. First, we
fixed the memory size of DomU to 1 GB and changed that
of DomM from 256 MB to 1 GB. Table I shows the average
wait times when we measured them 10 times.

As the memory size of DomM became smaller, the wait
time increased at S1. The reason is that the memory transfer
of DomM completes in a shorter time than that of DomU and
DomM is ready to stop earlier. Note that the wait time at S3

was always zero. In other words, DomU was created before
DomM at the destination host without synchronization. In
contrast to S1, the wait time was decreasing at S2 as the
memory size of DomM was smaller. This is because the
remaining state of DomM can be transferred faster than that
of DomU after S1. For S4, the wait time decreased as the
memory size of DomM became smaller. This means that

Table II
THE WAIT TIMES AT EACH SYNCHRONIZATION POINT FOR VARIOUS

MEMORY SIZES OF DOMU (MS).

DomM DomU
size (MB) S1 S3 S2 S4

256 0 0 7696 51
512 0 0 5109 101
768 0 0 2732 69

1024 74 0 92 69

DomM of a smaller memory size can complete migration
and restart earlier than DomU.

Next, we fixed the memory size of DomM to 1 GB and
changed that of DomM from 256 MB to 1 GB. Table II
shows the wait times at each synchronization point. At
S1, DomM did not wait for DomU’s stop because DomU
completed to transfer its memory earlier. Instead, the wait
time at S2 became longer as the memory size of DomU was
smaller because DomU reached the point earlier.

G. Co-migration of Write-intensive VMs

We examined the impacts on the performance of co-
migration when VMs modified its memory aggressively. We
ran a program that modified the specified number of mem-
ory pages at the specified interval. Note that the program
modified one byte per page. The memory sizes of DomM
and DomU were 512 MB and 1 GB, respectively.

First, we measured the co-migration time when we ran
the program in DomU. The program modified 125000 pages
(about 500 MB) at a time. Fig. 10(a) shows the results for
various write intervals. As the write interval increased, the
co-migration time became longer when the interval was less
than 750 ms. This is because the number of the iterations
of transferring dirty pages exceeded the maximum. The
migration manager transfers only the pages that are modified
in the previous iteration but are not modified in the current
one. When the frequency of the memory writes is too high,
most of the dirty pages are not transferred. As a result, the
iteration proceeded faster and reached the maximum count
earlier.

On the other hand, when the interval was more than
750 ms, the co-migration time did not increase and it
was about 40 seconds. This is because the total amount
of transferred memory exceeded the maximum. Since the
frequency of memory writes was not so high, the migration
manager transferred more dirty pages to the destination host.
Therefore, the amount of transferred memory reached the
maximum at the certain time.

Next, we measured the co-migration time when we ran the
program in DomM. The program modified 100000 pages
(about 400 MB) at a time because the memory size of
DomM was 512 MB. Fig. 10(b) shows the results for various
write intervals. Similar to write-intensive DomU, the co-
migration time was proportional to the interval when the

0 500 1000 1500
write interval (ms)

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500
write interval (ms)

0

5

10

15

20

25

30

35

40

45

co
-m

ig
ra

tio
n

tim
e

(s
ec

)

(a) write-intensive DomU (b) write-intensive DomM

Figure 10. The co-migration time for write-intensive DomU and DomM.

interval was less than 750 ms. It was about 30 seconds when
the interval was more than 750 ms.

VI. RELATED WORK

For Xen, various special-purpose VMs have been pro-
posed to divide the privileges of Dom0, which is called
Dom0 disaggregation. Driver domains [5] run device drivers
in VMs different from Dom0. IDSes can be run in driver
domains to monitor networks and storage. Stub domains [7],
[8] enable running QEMU used for device emulation. Since
they are allowed to access the memory of DomUs for device
emulation, IDSes in them can monitor the memory. Also,
they can intercept device accesses and check the integrity.
DomB [9] is used to boot DomU, instead of Dom0. It
loads a kernel image into the DomU’s memory and sets
up DomU. Xoar [10] disaggregates Dom0 into many single-
purpose VMs called service VMs. However, these VMs are
not designed to be migratable because they are helpers for
Dom0.

A self-service cloud (SSC) computing platform [11] pro-
vides users with special-purpose VMs called service do-
mains (SDs) to monitor their own VMs. SDs can introspect
the memory of target VMs and monitor accessed disk
blocks and issued system calls. Also, they can intercept disk
accesses and encrypt disk blocks. In SSC, a user’s meta-
domain consists of user’s own Dom0 (Udom0), DomUs,
SDs, and mutually trusted service domains (MTSDs). These
VMs should be migrated together because of their strong
association, but SSC does not support such co-migration.

Live gang migration [12] efficiently achieves concurrent
migration of multiple co-located VMs. To reduce the migra-
tion overhead, it transfers memory contents that are identical
across VMs only once. It tracks identical memory contents
across VMs and performs memory de-duplication for all
the migrated VMs. It also applies differential compression
to nearly identical memory pages. Unlike VMCoupler, live
gang migration does not synchronize between the migration
process of multiple VMs. This approach can be incorporated
into VMCoupler to reduce the co-migration time of a guard
VM and its target VM.

Process migration cannot preserve the monitoring states
of a target VM during the migration of IDS processes.
Since IDS processes map the memory of another VM,
the operating system itself in Dom0 cannot migrate the
mapping state. In addition, most of the systems supporting
process migration such as libckpt [13] and BLCR [14] do
not preserve process states completely. For example, open
files and sockets are usually closed. Distributed operating
systems such as Amoeba [15] and MOSIX [16] can migrate
processes with process states preserved, but the requests are
simply forwarded to a source host. Therefore the source host
cannot be stopped.

Compute capsules [17] and the pod abstraction in Zap [18]
enable a group of processes to be migrated as a unit. They
provide a thin virtualization layer on top of the operating
system and group processes with a private namespace. In
Zap, particularly, migrated processes can preserve network
connections and inter-process communication between them,
including shared memory. In some sense, this is similar to
our co-migration mechanism of VMs. Like the other systems
supporting process migration, Zap cannot migrate offloaded
IDS processes with the memory-mapping state of a target
VM.

VII. CONCLUSION

In this paper, we proposed VMCoupler, which enables
synchronized co-migration of offloaded IDSes and their
target VM. Offloaded IDSes are run in a guard VM and
monitor its target VM using VM introspection. VMCoupler
synchronizes the migration processes of a guard VM and a
target VM so that a guard VM can always monitor a running
target VM. Our experiments showed that the overheads
of monitoring and co-migration were small and that the
downtime of a target VM was short.

Our future work is decreasing the downtime of a target
VM due to the synchronized co-migration. We need to
add another synchronization point that a target VM waits
for a guard VM to be ready for the final stage of the
migration. Another direction is extending VMCoupler to
support various combinations of guard VMs and target
VMs as a group. Currently, one guard VM is necessary for
one target VM, but one guard VM could monitor multiple
target VMs. In this case, VMCoupler has to migrate more
than two VMs simultaneously, so that it could impact the
migration performance and the downtime of target VMs.
Also, we are planning to extend VMCoupler to domains
other than IDS offloading, such as out-of-band remote VM
management [19].

ACKNOWLEDGMENT

This research was supported in part by JST, CREST.

REFERENCES

[1] T. Garfinkel and M. Rosenblum, “A virtual machine intro-
spection based architecture for intrusion detection,” in Proc.
Network and Distributed Systems Security Symp., 2003, pp.
191–206.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. Symp. Operating Systems Principles,
2003, pp. 164–177.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proc. Symp. Networked Systems Design
and Implementation, 2005, pp. 273–286.

[4] G. Kim and E. Spafford, “The design and implementation of
Tripwire: A file system integrity checker,” in Proc. ACM Conf.
Computer and Communications Security, 1994, pp. 18–29.

[5] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson, “Safe hardware access with the Xen
virtual machine monitor,” in Proc. Workshop on Operating
System and Architectural Support for the on demand IT
InfraStructure, 2004.

[6] M. Roesch, “Snort – lightweight intrusion detection for net-
works,” in Proc. USENIX System Administration Conf., 1999.

[7] J. Nakajima and D. Stekloff, “Improving HVM domain isola-
tion and performance,” in Xen Summit September 2006, 2006.

[8] S. Thibault, “Stub domains,” in Xen Summit Boston 2008,
2008.

[9] D. G. Murray, G. Milos, and S. Hand, “Improving Xen
security through disaggregation,” in Proc. Intl. Conf. Virtual
Execution Environments, 2008, pp. 151–160.

[10] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield, “Breaking up is hard to do:
Security and functionality in a commodity hypervisor,” in
Proc. Symp. Operating Systems Principles, 2011, pp. 189–
202.

[11] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy,
“Self-service cloud computing,” in Proc. Conf. Computer and
Communications Security, 2012, pp. 253–264.

[12] U. Deshpande, X. Wang, and K. Gopalan, “Live gang migra-
tion of virtual machines,” in Proc. Intl. Symp. High Perfor-
mance Distributed Computing, 2011, pp. 135–146.

[13] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt:
Transparent checkpointing under Unix,” in Proc. USENIX
Winter 1995 Technical Conference, 1995, pp. 213–223.

[14] J. Duell, P. Hargrove, and E. Roman, “The design and
implementation of Berkeley lab’s Linux checkpoint/restart,”
LBNL, Tech. Rep., 2002.

[15] S. J. Mullender, G. v. Rossum, A. S. Tanenbaum, R. v. Re-
nesse, and H. v. Staveren, “Amoeba a distributed operating
system for the 1990s,” IEEE Computer, vol. 23, no. 5, pp.
44–53, 1990.

[16] A. Barak and R. Wheeler, “MOSIX: An integrated multi-
processor UNIX,” in Proc. USENIX Winter 1989 Technical
Conference, 1989, pp. 101–112.

[17] B. K. Schmidt, “Supporting ubiquitous computing with state-
less consoles and computation caches,” Ph.D. dissertation,
Stanford University, 2000.

[18] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and
implementation of Zap: A system for migrating computing
environments,” in Proc. Symp. Operating Systems Design and
Implementation, 2002, pp. 361–367.

[19] T. Egawa, N. Nishimura, and K. Kourai, “Dependable and
Secure Remote Management in IaaS Clouds,” in Proc. Intl.
Conf. Cloud Computing Technology and Science, 2012, pp.
411–418.

