International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014 83

Efficient and Fine-Grained
VMM-Level Packet Filtering
for Self-Protection

Kenichi Kourai, Kyushu Institute of Technology, Fukuoka, Japan
Takeshi Azumi, Tokyo Institute of Technology, Tokyo, Japan
Shigeru Chiba, The University of Tokyo, Tokyo, Japan

ABSTRACT

In Infrastructure-as-a-Service (laaS) clouds, stepping-stone attacks via hosted virtual machines (VMs) are
critical for the credibility. This type of attack uses compromised VMs as stepping stones for attacking the
outside hosts. For self-protection, laaS clouds should perform active responses against stepping-stone attacks.
However, it is difficult to stop only outgoing attacks at edge firewalls, which can only use packet headers. In
this paper, we propose a new self-protection mechanism against stepping-stone attacks, which is called xFilter.
xFilter is a packet filter running in the virtual machine monitor (VMM) underlying VMs and achieves pinpoint
active responses by using VM introspection. VM introspection enables xFilter to directly obtain information
on packet senders inside VMs. On attack detection, xFilter automatically generates filtering rules based on
packet senders. 1o make packet filtering with VM introspection efficient, we introduced several optimization
techniques. Our experiments showed that the performance degradation due to xFilter was usually less than 16%.

Keywords:

Cloud Computing, Packet Filtering, Operating Systems, Outgoing Attacks, Virtual Machines

INTRODUCTION

Cloud computing is rapidly emerging in recent
years. Among various types of clouds, infra-
structure as a service (IaaS) such as Amazon
EC2 (Amazon, Inc., 2006) provides virtual
machines (VMs) for the users. The users can
use their VMs on demand. Unfortunately, it is
not guaranteed that the systems inside VMs are
always well-maintained. Ifthe outside attackers

DOI: 10.4018/ijaras.2014040105

compromise such VMs, they can mount attacks
to the outside hosts via the VMs, which is known
as stepping-stone attacks (Staniford-Chen &
Heberlein, 1995). For example, the attackers
may perform portscans and denial-of-service
(DoS) attacks to the outside hosts.

Therefore, self-protection against such
attacks is indispensable for laaS clouds. If
a VM in an JaaS cloud is used as a stepping
stone for attacking the outside hosts, not only

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

84 International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014

the VM’s user but also the aaS provider may
have a responsibility for the attack. The laaS
provider also becomes an attacker as well as a
victim. IfanIaaS cloud detects outgoing attacks,
it should perform active responses against the
attacks. One of the methods for active responses
is updating firewall rules. Typically, new rules
are added to edge firewalls in the IaaS cloud.
The rules block the packets for the attacks from
the compromised VM.

Such a self-protection mechanism should
stop only outgoing attacks. However, active
responses performed at edge firewalls are not
pinpoint because edge firewalls can filter pack-
ets on the basis of only information contained
in the packets. For example, edge firewalls
would have to block all the packets from the
compromised VM to stop portscans. Even
when the system is partially compromised,
all the applications and users cannot send any
packets to the outside. Pinpointactive responses
are beneficial to not only IaaS users but also
providers because [aaS providers can easily stop
suspicious communication without excessive
fears of false positives.

In this paper, we propose a new self-
protection mechanism, named xFilter, for
laaS clouds. xFilter is a packet filter running
in the virtual machine monitor (VMM), which
is underneath VMs. To achieve pinpoint ac-
tive responses, xFilter obtains information on
packet senders by using a technique called VM
introspection (Garfinkel & Rosenblum, 2003).
VM introspection enables xFilter to inspect the
memory of VMs and access data in guest op-
erating systems without interacting with them.
Using information on sender processes, xFilter
can deny only packets sent from particular
processes or users. When xFilter detects an
outgoing attack, it automatically identifies the
attack source and generates a new filtering rule
to stop the stepping-stone attack. In addition,
xFilter provides development support of its
modules because it is difficult to develop soft-
ware performing VM introspectioninthe VMM.

xFilter is performance-critical because it
performs VM introspection in the middle of
packet transmission. To reduce the overheads

of VM introspection, we introduced several
optimization techniques. First, we embedded
the component for introspecting VMs into the
VMM of Xen (Barham et al., 2003) although
VM introspection is usually performed in the
privileged VM (Jiang, Wang, & Xu, 2007;
Payne, Carbone, & Lee, 2007; Payne, Carbone,
Sharif, & Lee, 2008). Second, xFilter performs
optimized sender traversal to find sender pro-
cesses so that the number of kernel objects to
be introspected is minimized. Third, xFilter
provides the decision cache to reuse filtering
decisions without VM introspection. Fourth,
two-phase attack detection minimizes the
overheads under no attack symptoms. Thanks
to these techniques, performance degradation
due to xFilter was less than 16% in usual cases.

This paper is an extended version of our
previous paper (Kourai, Azumi, & Chiba, 2012).
Inthis paper, we describe four optimization tech-
niques for xFilter explicitly and in further detail,
particularly for optimized sender traversal and
two-phase attack detection. In addition, we in-
troduce development support for xFilter and its
optimization, and we report the performance in
the development phase. Moreover, we add new
experiments for optimized sender traversal and
raw sockets. We also explain the implementation
details of our portscan detector.

BACKGROUND

For IaaS clouds, a fine-grained self-protection
mechanismis needed to stop only stepping-stone
attacks via VMs. In other words, VMs should
be able to provide services continuously as
much as possible. Even if the system inside a
VM is partially compromised, the rest is usu-
ally not compromised. For example, when the
Apache web server is compromised, only the
privileges of the user www-data are taken over
at worst. The other applications are still run-
ning legitimately because the user www-data
cannot interfere with the other users’processes.
Therefore, such legitimate applications should
be able to communicate with the outside hosts.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014 85

Such fine-grained self-protection is ben-
eficial to not only [aaS users but also [aaS
providers. For IaaS providers, it is safer to stop
all communication from partially-compromised
VMs when any attack is detected. However,
there is a certain rate of false positives for attack
detection because accurate attack detection is
difficult, particularly for portscans and DoS at-
tacks. Ifaself-protection mechanism often stops
the communication of legitimate applications,
the users would change their IaaS providers.
At worst, they might sue the providers. Using
fine-grained self-protection, IaaS providers can
stop a part of communication without excessive
fears of false positives. Then they can give a
time for solving problems to the users.

Active Responses at
Existing Firewalls

Packet filtering at edge firewalls is often per-
formed for active responses against stepping-
stone attacks. However, it is difficult to deny
only outgoing packets used for stepping-stone
attacks atedge firewalls. Edge firewalls can use
only the information included in the network
packets, such as [P addresses and port numbers.
Packet filtering based on source IP addresses is
the simplest active response. If an laaS cloud
adds only one rule for denying all the packets
from a compromised VM, it can completely
prohibit outgoing attacks from the VM. This
is not reasonable for partially-compromised
systems because even legitimate applications in
the VM cannot send any packets to the outside.

Using more information in packet headers
enables relatively pinpoint active responses.
Packet filtering based on destination IP ad-
dresses can deny packets sent to a specified
host, while it can allow packets to be sent to
the others. Although this is reasonable only for
a small number of hosts, it is not realistic to
add a large number of rules. For example, the
intruders may perform SMTP scans to many
hosts to find vulnerable mail servers. In such a
case, packet filtering based on destination port
numbers can prohibit sending packets to only
specific services at all hosts. By blocking port

25, the intruders cannot perform SMTP scans
to any hosts. However, legitimate applications
cannot send e-mail as well, e.g., alert mails for
detected intrusions.

Using information on source port numbers
is promising for pinpoint active responses. It
enables edge firewalls to prohibit only particular
network connections. If edge firewalls detect
illegal TCP connections, they can add filtering
rules and block only those connections. Unfor-
tunately, specifying source port numbers is too
fine-grained. Although such rules are effective
for long-lived network connections such as
SSH, they are useless for short-lived connec-
tions such as portscans. When rules are added
to edge firewalls, those short-lived connections
would have been already closed.

On the other hand, using personal firewalls
inside VMs can achieve appropriately pinpoint
active responses. Personal firewalls can use
information on sender processes for packet
filtering. For example, iptables in Linux allows
process IDs and user IDs of packet senders as
a part of filtering rules. They can block outgo-
ing packets only when attacks are mounted by
processes or users that are taken over by the
intruders. However, [aaS providers usually have
no privileges for adding rules to the personal
firewalls in VMs.

Related Work

Amazon EC2 provides firewalls called security
groups (Amazon, Inc.,2009) for VMs. Security
groups are located in the outside of VMs, but
they are provided to the laaS users. Itis uncertain
whether the cloud provider adds filtering rules
to security groups. In addition, security groups
cannot prevent stepping-stone attacks because
they are inbound-only firewalls against attacks
from the outside. They cannot filter any packets
from the inside. Also, they cannot use informa-
tion on guest operating systems inside VMs.
Theident protocol (Johns, 1993)is defined
for querying the user who sent a packet. When
one host sends a pair of source and destination
port numbers to the ident server, the server
returns the owner of a process that uses the

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

86 International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014

specified network connection. However, edge
firewalls cannot use this protocol because this
protocol is designed to be used between end
hosts. Moreover, the ident server may not be
trustworthy when the host is compromised by
stepping-stone attacks.

The most similar system to xFilter is VM-
wall (Srivastava & Giffin, 2008), which is an
application-level firewall using VM introspec-
tion. It uses information on processes sending
or receiving packets for fine-grained packet
filtering. One of the important differences is
that VMwall performs VM introspection us-
ing a process in domain 0 of Xen. According
to our experience, this degrades the network
performance severely, particularly, when large
numbers of processes and sockets are to be
inspected in domain U. Since xFilter performs
VM introspection in the VMM and optimizes it
with several techniques, the performance deg-
radation is minimized even in such a situation.
Another difference is that VMwall performs
whitelist-based packet filtering and does not
generate filtering rules dynamically. Therefore
it does not provide autonomic self-protection.

ADVOS (Garg & Saran, 2008) prevents
outgoing DoS attacks mounted by compro-
mised VMs. It detects DoS attacks only using
packet information and limits the rate of packet
transmission indomain 0 of Xen. SinceADVOS
does notuse information on sender processes, it
affects all the packets sent from compromised
VMs. It cannot limit the transmission rate of
only the packets used for DoS attacks. ADVOS
proposes VM introspection to identify malicious
processes mounting DoS attacks.

VM introspection has been also applied
to other security systems such as intrusion
detection (Garfinkel & Rosenblum, 2003;
Joshi, King, Dunlap, & Chen, 2005; Payne et
al., 2008) and malware analysis (Jiang et al.,
2007; Dinaburg, Royal, Sharif, & Lee, 2008).
These systems examine the internal state of the
operating system kernel from the outside of
the VM and detect attacks. One of the primary
differences between them and xFilter is that
they are less performance-critical than xFilter.
Since xFilter is invoked during network packet

transmission, its performance directly affects
the network performance.

Like the development of xFilter running
in the VMM, it is difficult to develop kernel
modules of operating systems. Therefore, sev-
eral operating systems such as Chorus (Rozier
et al., 1992) and CAPERA (Kourai, Chiba, &
Masuda, 1998) support the development of
kernel modules. They allow developers to first
implementkernel modules as user processes and
then embed them into the kernel without any
modifications. To the best of our knowledge,
xFilter is the first work providing such devel-
opment support for components of the VMM.

XFILTER

For appropriately pinpoint active responses
against stepping-stone attacks, we propose a
new self-protection mechanism for IaaS clouds,
named xFilter. xFilter automatically detects
outgoing attacks and stops only them on the
basis of information on packet senders.

In this paper, we assume that the attackers
compromise servers running inside VMs and
take theirprivileges. Then they attack the outside
hosts by sending packets from victim VMs. We
do not assume that the attackers modify kernel
data structures in VMs or replace the operating
systems themselves with malicious ones. This
type of attack can be detected by the VMMs
(Garfinkel & Rosenblum, 2003; Petroni, Jr. &
Hicks, 2007).

VMM-level Packet Filtering

xFilter is a packet filter running in the VMM as
in Figure 1. The VMM is underlying software
that runs VMs on top of it. xFilter can intercept
all network packets from VMs because all
packets are transmitted to the outside via the
VMM. Unlike edge firewalls, xFilter can also
intercept packets between VMs even in the same
host. This prevents stepping-stone attacks via
one VM to another in a host. Moreover, xFilter
is isolated and protected from all the VMs. It is
difficult for the intruders in VMs to compromise
xFilter in the VMM.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014 87

Figure 1. xFilter running in the VMM

VM
guest OS 4
packet / introspect
.
discard «----{ xFilter ,
VMM
transmit ¥

To stop only outgoing attacks from VMs,
xFilter uses information inside guest operating
systems by using VM introspection (Garfinkel
& Rosenblum, 2003). In principle, the VMM
cannot know such information because it is
unaware of the internals of VMs. In this sense,
the VMM is similar to edge firewalls. One of
the differences is that the VMM can directly
access the memory of VMs. VM introspection
is a technique for enabling the VMM to inspect
data used by guest operating systems. It ana-
lyzes the memory of VMs on the basis of the
information on the internal structures of guest
operating systems.

Using VM introspection, xFilter obtains
information on packet senders, such as process
IDs anduser IDs, from guest operating systems.
For each packet, it searches a network socket
used for sending the packet on the basis of IP
addresses and port numbers. A process that
opens the found socket is the sender process of
the packet, and the owner of the process is the
user sent the packet. Using such information,

xFilter can block only the packets sent from
processes used for stepping-stone attacks. As
such, xFilter in the VMM can achieve appro-
priately pinpoint active responses as personal
firewalls inside VMs can.

Automatic Rule Generation

Toachieve self-protection of TaaS clouds, xFilter
automatically generates filtering rules. When it
detects outgoing attacks from VMs, it identifies
the sender process from the packet information
by using VM introspection. Then it generates a
deny rule that consists of the IPaddress and port
number of the destination host, the ID of the
source VM, and the process ID and user ID of
the attack source. For example, when a process
whose ID is 1234 and owner’s user ID is 501
performs portscans against various hosts, xFilter
generates the first rule in Figure 2. Ifattacks are
mounted against a specific IP address or port,
xFilter generates a rule that specifies it. Such
arule is process-level and effective as long as

Figure 2. The rules added by xFilter for preventing portscans

deny ip * port * vin 1 pid 1234 uid 501

deny ip * port * vmm 1 pid *

uid 501

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

88 International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014

the specified process continues portscans. The
generated rule is removed when any packets
are not filtered out by the rule for a while, e.g.,
30 minutes.

To increase the effectiveness of the gener-
ated rules, xFilter merges a generated rule with
the existing ones as necessary. If an attacking
process changes frequently, process-level rules
become ineffective soon. When there are many
generated rules, e.g., five rules, in which only
process IDs are different, xFilter merges them
into one new rule in which the process ID is a
wildcard, as shown in the second rule in Figure
2.Sucharule is user-level and effective as long
as the specified user continues portscans. In-
stead, this is coarser-grained than process-level
rules, so that the specified user cannot send any
packets. If the attackers take root privileges
and change user IDs frequently, xFilter gener-
ates one new rule in which the user ID is also
a wildcard and removes the other rules. Even
in this worst case, the rule becomes the same
as one used at edge firewalls. In such a way,
xFilter can prevent the explosion of the number
of generated rules.

When a new rule is generated, xFilter
alerts the user of a target VM to solve a prob-
lem. Since the user can know which process
or user is compromised, it is easy to identify
compromised applications. After the user re-
covers that VM by fixing vulnerabilities, [aaS
administrators remove the added rule. To ease
their burden, itis useful to provide the interface
to centrally maintainrules stored in many hosts.
Furthermore, it may be possible to allow [aaS
users themselves to remove rules in order not
to involve laaS administrators. If users remove
rules without solving problems, xFilter would
add the same rule again.

Development Support

One disadvantage of running xFilter in the
VMM is the difficulty of the development of
xFilter. xFilter has to be extended so that it can
detect new outgoing attacks and filter packets
with more information inside guest operating
systems. When the developers extend xFilter,

they have to modify the VMM. This causes
two problems. First, the developers have to
reboot the whole system to activate new xFilter
whenever they modify it a bit. Second, bugs in
xFilter can crash the whole VMM easily and
result in rebooting the whole system. At the
initial stage of the development, new imple-
mentation of xFilter includes many bugs due
to the complexity of programming for VM
introspection. Frequent reboots of the whole
system lower the efficiency of the development.

For the purpose of debugging, xFilter al-
lows most of its functionality to run in another
VM, named the helper VM, asin Figure 3. When
the xFilter core inthe VMM intercepts a packet,
it invokes an xFilter module in the helper VM.
The module introspects the target VM using
the function of the VMM. This architecture is
similar to VMwall (Srivastava & Giffin, 2008).
Since an xFilter module runs as a process in the
helper VM, activating anew module only needs
to restart the process. Even when a module
crashes, the developers can restart the process.
The crash of a module does not affect the rest
of the system.

After the developers finish debugging a
new xFilter module, they can embed it into
the VMM without any modification. xFilter
provides the common application programming
interface (API) for its module both in the VMM
and in the helper VM. The differences that
come from where the module runs are hidden
by the API provided by xFilter. For example,
the method for accessing the memory of VMs
is different between the VMM and the helper
VM, but xFilter provides the same interface to
do that. Embedding the module into the VMM
is necessary in terms of performance.

Limitation

xFilter cannot perform pinpoint active responses
when the attackers and legitimate applications
use server processes shared in a VM to send
packets. For example, the attackers can use a
local SMTP server to mount SPAM attacks,
whereas the other applications use the same
server. When xFilter detects the SPAM attacks,

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014 89

Figure 3. xFilter in the development phase

helper VM target VM
xFilter
module
Intro 3.0 guest 0S
spect
packet
xFilter | » discard
core
transmit ¢ MM

it adds a rule for denying all the packets from
the SMTP server, which is regarded as the
process of an attack source. This rule blocks
e-mails from not only the attackers but also
legitimate applications. To achieve pinpoint ac-
tive responses, applications should use external
SMTP servers to send e-mails. Specifically,
Perl and PHP scripts in web servers should use
Net::SMTP and PEAR::Mail, respectively. If
applications do not use a local SMTP server,
xFilter could block e-mails on the basis of the
sender processes.

IMPLEMENTATION

We have implemented xFilter in Xen 3.4.2
(Barhametal.,2003). Xenprovides aprivileged
VM called domain 0 and regular VMs called
domain Us. Domain 0 is often regarded as a part
of the VMM because it handles 1/0 for domain
Us. We targeted para-virtualized Linux 2.6.18
for the x86-64 architecture as guest operating
systems running in domain Us. However, it
is not difficult to implement xFilter in fully-
virtualized Linux of Xen and KVM (Kivity &
Tosatti, 2007).

Toreduce the overhead of VM introspection
and make packet filtering with sender infor-
mation efficient, we have developed several

optimization techniques. Our techniques are (1)
VM introspection in the VMM, not in domain
0, (2) optimized sender traversal, (3) the deci-
sion cache, and (4) two-phase attack detection.

System Architecture

As illustrated in Figure 4, xFilter consists of
three components: the core, the detector, and
the inspector. When a process issues system
calls such as send in domain U, the operat-
ing system kernel transmits a packet with the
front-end network driver called netfront. The
netfront driver passes the packet to the back-
end driver called netback in domain 0 and the
netback driver invokes the xFilter core. If the
core decides to deny that packet, it discards the
packet; otherwise, it passes the packet to the
xFilter detector. If the detector judges that the
packet is used for attacks, it generates a new
filtering rule and discards the packet. If the
packet is not for attacks, the detector passes
the packet to the real driver.

When the xFilter core and detectorneed VM
introspection, they invoke the xFilter inspector
in the VMM by issuing a new hypervisor call.
The inspector pauses domain U and introspects
its memory to identify the packet sender. When
it is invoked by the core, it also makes a deci-
sion on packet filtering with the obtained sender

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

90 International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014

Figure 4. The architecture of xFilter in Xen

domain 0 domain U
A
drr.ie\fgr netback [* netfront
\K xFilter 2/
| detector j«-f core | hostOS| | # guestOs
/
Y
inspector |
_) introspect VMM

information and returns the decision to the core.
When the inspector is invoked by the detector,
it simply returns the sender information.
xFilter runs only the inspector in the VMM
for efficiency. Although the xFilter core and
detector in domain 0 could introspect domain
U by mapping its memory pages, the overhead
is larger. The VMM can directly access the
memory of domain U because it manages the
whole memory in the system. Inaddition, xFilter
can handle all packets only in domain 0 until
stepping-stone attacks are detected. While it
has no filtering rules, the core can immediately
pass packets to the detector without invoking
the inspector inthe VMM. Ifthe all components
of xFilter ran in the VMM, the netback driver
would have to always issue the hypervisor call.

Sender Traversal with
VM Introspection

The xFilter inspector obtains information on
the data structures and global symbols in guest
operating system kernels from their debug
information. Such debug information is stored
in the DWARF format (DWARF Debugging
Information Format Committee,2010). Thenthe
inspector translates obtained virtual addresses to
physical addresses. Itlooksup page tables in the
VMs and performs the translation by itself. Ithas

toaccess several memory pages per translation,
but this overhead is minimized thanks to running
the inspector in the VMM. There are libraries
for introspecting guest operating systems, such
as XenAccess (Payne etal., 2007) and LibVMI
(Payne & Leinhos, 2011). However, we could
not use them because they intend to be used by
user-level processes on domain 0.

Figure 5 illustrates how the xFilter inspec-
tor traverses kernel data structures. To find a
process sending a particular packet, the inspec-
tor traverses the process list in domain U from
the init_task symbol. The process list consists
ofalltask structobjects, which contain process
information such as process IDs and owner’s
user ID. While traversing the process list, the
inspector deeply inspects the socket list that
each process owns. If the inspector finds the
inet sock object for a socket whose source
and destination IP addresses and port numbers
match the target packet, it regards the process
owning that object as a sender. When one
socket is shared between multiple processes by
spawning the process that created the socket,
the inspector regards the original process as
a sender. This approach is the same as that in
iptables (Netfilter Core Team, 2001).

To introspect the guest operating system
consistently, the xFilter inspector first checks
spin locks for introspected data structures. For

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014 91

Figure 5. The traversal of kernel data structures

—| init_task :: I
task_struct - task_struct — .., = task_struct
pid, uid pid, wid pid, uid
| files_struct | ‘ files_struct |
| rdtable | | tdtable | fdtable
Y ~
[dle][il
inet_sock
saddr, daddr
sport, dport
P PO guest OS

example, if the guest operating system does
not acquire the spin lock for the process list,
the inspector can traverse the list safely. Oth-
erwise, the inspector aborts VM introspection
and attempts to handle that packet after a while.

Optimized Sender Traversal

ThexFilter inspector optimizes the above sender
traversal when it decides whether a packet
matches one of the filtering rules or not. Since
the algorithm in Figure 5 needs to traverse all
the processes and sockets in the guest operating
system, the time is proportional to those num-
bers. To reduce the number of kernel objects
to be introspected, the inspector first checks
whetherthe ID or owner of each process matches
one of the filtering rules while it traverses the
process list. If both do not match any rules, the
inspector can skip the deep traversal of the socket
list owned by the process. Only for a process
whose ID or owner matches at least one of the
rules, the inspector examines sockets that the
process opens.

Decision Cache

The xFilter core maintains decision cache to
store the decisions made by the xFilter inspector.

Packets flowed in the same connection hit on
the decision cache. In this case, the core reuses
the decision obtained from the decision cache.
Even ifthe core invokes the inspector, it would
obtain the same decision as the cached one in
most cases. When a sender process changes its
owner, the latest decision by the inspector may
be different from the cached one. However,
xFilter applies the cached decision because
packets in the same connection should be related
to the original process and owner.

For TCP connections, the xFilter core
manages the decision cache on the basis of
the TCP control bits in packet headers. When
a new connection is being established and the
core receives a packet with the SYN flag set,
it invokes the xFilter inspector and then adds
a new entry to the decision cache. The entry
includes source and destination IP addresses,
port numbers, and allow or deny as a decision.
When an existing connection is terminated or
resetand the core receives a packet with the FIN
or RST flag set, it removes the corresponding
entry. For the other packets, the core looks up
the decision cache. The core manages those
entries in a least-recently-used (LRU) man-
ner and simply invokes the inspector again if
necessary entries are evicted.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

92 International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014

Two-Phase Attack Detection

Since xFilter detects attacks using sender
information as well as packet headers, it must
perform VM introspection for all packets even
if any attacks are not mounted. The above opti-
mization techniques such as optimized sender
traversal and the decision cache cannot be used
to mitigate the overhead of VM introspection
in attack detection. Since there are any entries
in the decision cache yet, xFilter has to traverse
all processes and sockets sequentially until it
find the socket sending a target packet.

To reduce the overhead under no attacks,
the xFilter detector has two phases: detection
and inspection. In the detection phase, the
detector examines outgoing packets with only
information included in packet headers. Since
the detector in this phase is the same as the ones
for edge firewalls, the overhead of the attack
detection is minimum.

Once the detector detects an attack, it
changes into the inspection phase. In this phase,
whenever the detector receives a packet, it
identifies the sender process from the packet
information by using VM introspection. When
the detector detects an attack again, it gener-
ates a deny rule, as shown in Figure 2. For
multi-packet attacks such as portscans and DoS
attacks, the detector is in the inspection phase
until it detects an attack again. Note that, for
single-packetattacks, the detector changes back
into the detection phase soon after it inspects
one packet detected in the detection phase and
generates a rule.

Although two-phase attack detection can
reduce detection overhead under no attacks
dramatically, one drawback is that the time
needed for the completion of attack detection
becomes twice for multi-packet attacks. The
xFilter detector has to detect two attacks in the
detection and inspection phases, respectively.
In other words, xFilter cannot stop outgoing
attacks for a longer time. This may lead to false
negatives because the detector cannot generate
any rules unless attacks are mounted for a suf-

ficient period. The mitigation of this problem is
that cloud providers alert the VMs’ users when
attacks are detected in the detection phase but
not detected in the inspection phase.

Support for Raw Sockets

Raw sockets are used for mounting special at-
tacks, which cannot be mounted with regular
sockets. For example, SYN flood attacks need
raw sockets to send only SYN packets used
for establishing TCP connections. Raw sock-
ets enable the user to freely assemble packets
with protocol headers. This means that kernel
objects for raw sockets do not contain proto-
col information such as IP addresses and port
numbers. Therefore, the xFilter inspector cannot
find inet_sock objects sending such packets by
sender traversal with VM introspection.

To find possible senders even when raw
sockets are used, the xFilter inspector regards
all the processes that open any raw sockets as
senders. If it finds a raw_sock object for a raw
socket during sender traversal, it records a pro-
cess that owns the socket as a sender candidate.
Ifit cannot find an appropriate inet_sock object
after traversing all sockets, it guesses that a raw
socket is probably used for sending the packet.
Once xFilter detects attacks using a raw socket
in this way, the inspector disables optimized
sender traversal in packet filtering. It has to
always traverse all sockets to ensure that target
packets are not sent by legitimate processes.

xFilter Module

In the development phase, the xFilter module
runs as a process in domain 0, as in Figure 6.
The stub attached to the module issues a system
call and waits until the xFilter core receives a
packet from the netback driver. On receipt of a
packet, the xFilter core wakes up the module and
the system call returns the ID of the domain U
sending the packet and the packet header. Then
the stub pauses the domain U with the function
of the VMM and invokes the module. When

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014 93

Figure 6. The architecture of xFilter in the development phase

domain 0
xFilter module
| introspect
detector ‘ ‘ inspector l [
: i domain U
R
ET— Goer)
system call
L
real ,_@ netback [* netfront
driver core
host OS guest OS
VMM

the module in domain 0 analyzes the memory
of the domain U, it accesses the memory indi-
rectly using the function of the VMM because
domain 0 is isolated from domain U. Finally,
the stub passes the decision to the xFilter core
by issuing the system call again.

The cost of memory accesses of domain
U from domain 0 is very high. The xFilter
module has to use the hypervisor call that maps
the memory pages of domain U on the address
space of domain 0. Through the mapped memory
pages, they can refer to the memory of the
guest operating system and analyze it. To map
a memory page of domain U, the hypervisor
call has to add a new page table entry to the
page table in domain 0. At the same time, it
has to flush TLBs. In addition, the module also
has to map several memory pages used for the
page tables in domain U. The module looks up
the page tables for the address translation. For
example, it needs to map four memory pages
to traverse the four-level page table. Although
the development phase does not require high
performance, too large overhead causes fre-
quent TCP timeouts and makes the test of the
module difficult.

To reduce the overhead of VM introspec-
tion from domain 0, we added a new hypervisor
call for enabling copy-based VM introspection.
The hypervisor call traverses the page tables of
specified domain U from the VMM. Since the
VMM candirectly access the memory of domain
U without memory mapping, there is no extra
overhead for accessing the page tables. Then,
the hypervisor call copies the contents of the
target memory page to the buffer passed as its
argument. This memory copy needs to neither
add a new page table entry to the page table of
domain 0 nor flush TLBs.

In addition, to reduce the communication
overhead between the xFilter core and module,
the core gathers multiple packets and passes
themto the module atonce. Since itis inefficient
to traverse the process list for each packet, the
module finds multiple sender processes for all
the passed packets during one traversal of the
process list. We call this optimization technique
parallel sender traversal. This can reduce the
number of VM introspection in total. To avoid
excessively increasing the latency of packet
sending, the core waits for invoking the module
only for a short period.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

94 International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014

EXPERIMENTS

We performed experiments for demonstrating
the effectiveness of xFilter and examining its
overheads. As an example of the xFilter detec-
tor, we have implemented a portscan detector.
For a server machine, we used a PC with one
Intel Core 17 processor 860, 8 GB of memory,
and a Gigabit Ethernet NIC. The VMM was
Xen 3.4.2 and the guest operating systems in
domain 0 and domain U were Linux 2.6.18. We
allocated 7 GB of memory to domain 0 and 1
GB to domain U. For a client machine, we used
aPCwith one Athlon 64 processor 3500+,2 GB
of memory, and a Gigabit Ethernet NIC. These
two machines were connected with a Gigabit
Ethernet switch.

Self-Protection Against Portscans

To demonstrate that xFilter enables self-
protection against portscans, we performed
portscans froma victim VM to the outside hosts
using nmap (Lyon, 1997). We attempted both
normal TCP scans using regular sockets and
TCP SYN scans using raw sockets. First, we
ran one nmap process in the VM. As a result,
the xFilter detector could detect the both types
of portscans and stop the successive attacks by
automatically generating a process-level rule
like the first rule in Figure 2. We confirmed that
the other processes such as SSH could com-
municate with the outside hosts under this rule.

Next, we ran many nmap processes in the
VM by starting another nmap process after one
nmap process finished a sequence of portscans.
In this case, the detector also detected the ports-
cans and generated process-level rules for each
process. After we continued the portscans, the
detector automatically merged five these rules
into one user-level rule like the second rule in
Figure 2 to stop any portscans from the same
user. The user could not communicate with any
outside hosts due to this rule, but the other users
could still use the network.

Overheads of VM Introspection

To examine the overhead of VM introspection,
we measured the time needed for executing the
xFilter inspector. First, we changed the total
number of processes in a VM and measured
the execution time. We specified a non-existent
process ID in a filtering rule so that the xFilter
inspector traversed the entire process list and
checked the process IDs of all the processes.
In this experiment, the inspector did not deeply
inspect kernel data structures for sockets.
Figure 7(a) shows the execution time, which
is proportional to the number of processes and
takes 31 ns per process.

Second, we changed the total number of
sockets created by one process and measured
the execution time of the xFilter inspector. We
specified an existent user ID in a filtering rule
so that the inspector deeply inspected sockets.
Figure 7(b) shows the result. The time is ap-
proximately proportional to the number of
sockets and takes 83 ns per socket. This means
that the overhead of inspecting sockets is larger
than that of inspecting processes.

Third, we change the number of filtering
rules for xFilter and measured the execution
time of the xFilter inspector. We specified a
non-existent process ID in all the rules. Figure
7(c) shows the result. The time is proportional
to the number of rules and takes 160 ns per
rule. The number of rules is usually not so large
because xFilter merges rules.

Effect of Optimized
Sender Traversal

To examine the effects of various optimization
techniques for mitigating the overheads of VM
introspection, we measured the throughput and
the response time of the Apache web server
(Apache Software Foundation, 1995). We used
the ApacheBench benchmarking tool, which
ran in the client machine. ApacheBench sent
HTTP requests to the web server running in

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014 95

Figure 7. The introspection time for the various numbers of kernel objects and filtering rules

T T
80 (a) . 80
B B
S 60 1 o6or
£ £
5 | s
G 40+ B B 40
[} @
=3 o
g T 8
E ol 1 El
0 L 1 | L L 0 L | | | |
0 200 400 600 800 1000 0 200 400 600 800 1000
number of processes number of sockets
T
80 (C) b
= I
2
o 60 b
£
= |
o
S 40 i
@
Q
o L 4
<
£ 20~ »//—’/.//w
0 . 1 n | n | s 1 L
0 20 40 60 80 100

number of rules

the VM of the server machine. The size of the
requested HTML file was 50 KB, which was
relatively small. The baseline is the performance
when we did not use xFilter. At that time, the
throughput was 966 requests/s and the response
time was 1.04 ms.

First, we examined the effect of optimized
sender traversal. For this purpose, we changed

the number of processes and measured the web
performance. We used the same filtering rule
as that for processes in the previous section.
Figure 8 shows the throughput and response
time when we enabled and disabled optimized
sender traversal. The web performance in both
cases degraded in proportion to the number
of processes. From these results, it is shown

Figure 8. The performance improvement by optimized sender traversal

1000

800
Q
o
£ 600+
2
=y
S 400
e
=
- — baseline

200 |e-eopt 4

=—a No-opt (a)
0 L 1 | | 1
0 200 400 600 800 1000

number of processes

3.5 . :
3.0 =—a NO-0pt
L e-e Opt
5 — baseline
25+ 1
£
g20-]
é | -9
c 1.5+ -
§ L oA—-—-——‘—-o—n..,-—-—0—»»»-7—4
L 1.0F]
0.5 (b) 1
007 |) ‘ ‘
0 200 400 600 800 1000

number of processes

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

96

that optimized sender traversal achieved 58%
performance improvement for 500 processes.
Whereas the web performance degraded only
by 19% with optimized sender traversal, it
degraded by 49% without this optimization.

Effect of the Decision Cache

To examine the effect of the decision cache
in addition to optimized sender traversal, we
compared the web performance when the
decision cache was enabled with that when it

International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014

was disabled. We conducted three experiments
for various numbers of processes, sockets, and
rules. For each, we used the same filtering rule
as that in the above section.

First, we measured the web performance
when we changed the number of processes.
Figure 9(a) and 9(b) show the throughput and
response time, respectively. These figures show
that the decision cache improved the web per-
formance by 14% for 500 processes. The web
performance degraded only by 7% with the

Figure 9. The performance improvement by the decision cache

1000 T T T T T T T " 3.0 T T T T T T
[| t]
r - S SRR == w/o cache
800 251 |e-sw/cache 7
= & I — baseline 4
o L
8 o0 32]
— = — [L 4
= £
3 b 1 =150
= o
3 400 - é [
£ L | 2 1.0F
— baseline = L 1
200~ |e-e w/cache 7 0.5
| == w/ocache (a) | : (b)
0 . | I . | . I . 0.0 . | 1 . | . 1 .
0 200 400 600 800 1000 0 200 400 600 800 1000
number of processes number of processes
1000 T T T T T T 3.0 : T T T T ! -
[.“'""’-i—f——o._,‘_'_“_.__ 1 25; =—& w/o cache I
800/- e q gl sain |
° 3)
§ E20f e
£ 600~ @ F 4
= £
g S 15} i
5 3
?5’ 400 5 | Q——--.—»—7-0777-'---"'"”""“_—”.""’""‘
£ & 1.0F -
S H . 1 o
— baseline = 3 1
2001 |e-ew/cache B 05 i
| [==wio cache © |) (d)
0 L | 1 L | L | L 0.0 L | ' | 1 | L
0 200 400 600 800 1000 e 200 400 600 800 1000
number of sockets number of sockets
1000 ———F—————7———————————— 30— — ‘
r S el S St e S I =—a w/o cache |
800 - 251 le-ew/ cache B
. & F — baseline 1
ﬁ, I | Ea20F .
£ 600+ - @ L]
= £
g 1 Zsf ,
g 2"
§ 400 B 81 0 T e et et St
£ b I b
— baseline ot 1
200~ |e-ew/cache n 05- i
| |=—=wio cache (e) |) (f)
0 L | ' 1 L | ' 1 L 0.0 L | ' | L | s | L
0 20 40 60 80 100 "o 20 40 60 80 100

number of rules

number of rules

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014 97

decision cache, whereas it degraded by 19%
without the cache.

Next, we measured the web performance
for various numbers of sockets. As shown in
Figure 9(c) and 9(d), the performance degrada-
tion is proportional to the number of sockets,
which is similar to the above experiment for
processes. However, the web performance was
improved by 63% for 500 sockets. This is be-
cause optimized sender traversal cannot reduce
the number of sockets to be introspected when
their owner process should be checked. While
the performance degradation was only 13%
with the decision cache, it was 47% without the
cache. This shows that the number of sockets
affects the web performance more largely.

Third, we changed the number of filtering
rules and measured the web performance. Figure
9(e) and 9(f) show the results. The performance
improvement by the decision cache was 17%
even for 100 rules. In reality, if 100 rules were
needed, the system would have been completely
compromised.

Effect of Two-Phase
Attack Detection

To examine the effect of two-phase attack
detection, we measured the performance of
the web server when xFilter had no filtering
rules yet. In this experiment, the xFilter detec-
tor performed the portscan detection for every
packet. Figure 10 shows the web performance
when we changed the number of processes and
sockets, respectively.

In the detection phase, the performance
degradation was only 1% because the detector
did not perform VM introspection. This is the
overhead for detecting portscans only from
packet headers. In the inspection phase, on the
other hand, the performance degraded as the
numbers of processes and sockets increased.
The performance degraded by 13% for 500
processes, while it degraded by 16% for 500
sockets. These results mean that the overhead
of the detector is small enough until outgoing
attacks are detected.

Figure 10. The performance degradation by attack detection

1000 T T T T T T T T
800 H\—.‘.\"‘\F—m
@
o
£ s00- .
H
=y
S a00- .
Q
= — baseline
ool | --- detection phase 4
== inspection phase (a)
0 ' | | | | '
0 200 400 600 800 1000
number of processes
1000 i T T I T T T T T
800 -\N“\"‘\H__‘:
@ 4
o
£ s00- E
5
o
=
2 400+ J
e
£ — baseline 1
| |--- detection phase |
200) "
= inspection phase (C)
0 L | | | 1
0 200 400 600 800 1000

number of sockets

1.6

1.4 4

_ 1.2k .__.’*—/._k—-—l——'—l
@ L]

E
> 1.0? -

£]
' 0.8 i
2 I 4
c
§_ 0.6 _
2 0 4; =—a inspection phase]
“"| |- detection phase
0.2 [—_baseline (b) i
00— | | L]
0 200 400 600 800 1000
number of processes
16 , .
1.4]

-
n
T

-
T
1

response time (ms)
o o
[=2] @
T T T
| |

=—a inspection phase

0.4 | |-~ detection phase]
0ol = baseline (d) |
0 [L | | | 1]

0 200 400 600 800 1000

number of sockets

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

98

Overheads for Supporting
Raw Sockets

To examine the filtering performance after
xFilter detected an attack using raw sockets,
we measured the web performance for various
numbers of processes and sockets. When attacks
are mounted using raw sockets, the xFilter in-
spector has to traverse all processes and sockets
and then cannot use optimized sender traversal.
We measured the performance with and without
the decision cache because the decision cache
is useful even for attacks using raw sockets.
The decision cache can check packet headers
assembled with raw sockets. We used the same
filtering rules as those in the above section.
Figure 11(a) and 11(b) show the web
performance when we changed the number of
processes. Without the decision cache, the per-
formance degraded by 49% for 500 processes,
compared with the baseline. The decision cache
improved the performance by 62%, but the

International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014

performance was still 10% lower than that in
packet filtering for regular sockets. Similarly,
Figure 11(c) and 11(d) show the performance
when we changed the number of sockets. For
500 sockets, the performance without the cache
was 38% lower than the baseline. Thanks to
the cache, the performance was improved
by 37%. The overhead for dealing with raw
sockets was 8%.

Performance in the
Development Phase

To examine the web performance in the devel-
opment phase, we ran our xFilter module in the
helper VM and measured the throughput and
response time. The module performed packet
filtering with sender information and used
optimized sender traversal and the decision
cache. In addition, we examined the effect of
the optimization techniques specific for the de-
velopment phase: copy-based VM introspection

Figure 11. The web performance under attacks with raw sockets

1000 i T T i T T 4.0 T T T . T
e 3.5~ |==wi/o cache N
800 e - r|*-®w/cache i
B et S 3.0 |— baseline B
2 1T 27}
& so0- 9251
= E T
g <200
5 g
3 400~ S 15-
£ - 3
— baseline = 1.0F |
200+ |®-®w/cache - L
== w/o cache (a) 05 (b) N
0 L | | | 1 L 0 07 | 1 | 1 L
0 200 400 600 800 1000] 200 400 600 800 1000
number of processes number of processes
1000 3.0 T T T
.. L
T e =—=a w/o cache
800} e B T 25 |e-e w/ cache T
o — — baseline
‘a ()
g 600 s2or
= ~ Q L
= €
E =45
£ 3
53” 400 1 &8
g g 1.0F
200 — baseline F
- |®-ew/cache B
== w/o cache (c) 05-
0 s | | s | 1 0.0 s | 1 | |
0 200 400 600 800 1000 Y] 200 400 600 800 1000

number of sockets

number of sockets

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014 99

and parallel sender traversal. For comparison,
we also measured the web performance when
the module used traditional mmap-based VM
introspection.

Figure 12 shows the results. For 500
processes, the optimization of parallel sender
traversal obtained 3.2 times higher performance,
compared with per-packet sender traversal.
When the module performed copy-based VM
introspection as well, the performance became
9.2 times higher than mmap-based one. How-
ever, the performance was only 2% of that in
xFilter running in the VMM. This means that
running xFilter in the VMM is indispensable
for the production phase.

Although the architecture of VMwall
(Srivastava & Giffin, 2008) is similar to ours
in the development phase, it is reported that
the overhead of VMwall was 7% at maximum.
The primary reason is that the overhead of
VMwall was measured while a large file of
175 MB was transferred. Since VMwall uses a
mechanism similar to our decision cache, it did
not perform VM introspection for most of the
packets. In our experiment, xFilter performed
VM introspection more frequently because of
transferring a much smaller file of 50 KB. The
second reason is that the overhead of VMwall
may be measured in small numbers of processes
and sockets. However, these numbers are not
shown in the literature.

CONCLUSION

In this paper, we proposed an efficient and
fine-grained VMM-level packet filter, called
xFilter, for self-protection of TaaS clouds. xFilter
uses VM introspection to obtain information
on sender processes in VMs. To make packet
filtering with VM introspection efficient, we
introduced four optimization techniques: VM
introspection in the VMM, optimized sender
traversal, the decision cache, and two-phase
attack detection. Our experiments showed that,
thanks to these techniques, the performance
degradation due to xFilter was usually less
than 16%. Under no attacks, the overhead was
only 1%.

One of our future work is using other
information on sender processes for packet
filtering. For example, grouping processes with
information on their ancestors may be helpful.
Also, it is necessary to support VM migration.
To continue to apply filtering rules after VMs
are migrated to other hosts, we have to migrate
rules together with VMs. Another direction is
considering hardware-level 1/O virtualization
such as SR-IOV (PCI-SIG, 2010). Since the
VMM cannot capture packets in SR-IOV, we
are planning to combine packet filtering at
edge firewalls and VM introspection at hosts
running VMs.

Figure 12. The web performance in the development phase

25

20 e g o ey
» N
& .-
£15- e
b o-e copy+parallel b
2 a--a mmap+parallel i
S 4ol |==mmap il
e
£
5 A
S (a)
e
L 1 s * * i * -
0O 200 400 600 800 1000

number of processes

3000

=—ammap
a--ammap-+parallel
«-e copy+parallel

2500

2000

response time (ms)
=] @
(=] Qo
o o
T T

e e S

800

*

400 600
number of processes

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

100 International Journal of Adaptive, Resilient and Autonomic Systems, 5(2), 83-100, April-June 2014

ACKNOWLEDGMENT

This research was supported in part by JST,
CREST.

REFERENCES

Amazon, Inc. (2006). Amazon Elastic Compute
Cloud. http://aws.amazon.com/ec2/.

Amazon, Inc. (2009). Amazon Web Services: Over-
view of Security Processes. http://aws.amazon.com/
security/.

Apache Software Foundation. (1995). Apache HTTP
Server Project. http://httpd.apache.org/.

Barham, P., Dragovic, B., Fraser, K., Hand, S.,
Harris, T., & Ho, A. et al. (2003). Xen and the Art
of Virtualization. In Proceedings of Symposium on
Operating Systems Principles (pp. 164-177).

Dinaburg, A.,Royal, P., Sharif, M., & Lee, W. (2008).
Ether: Malware analysis via Hardware Virtualiza-
tion Extensions. In Proceedings of Conference on
Computer and Communications Security (pp.51-62).
doi:10.1145/1455770.1455779

DWARF Debugging Information Format Committee.
(2010). DWARF Debugging Information Format
Version 4. http://dwarfstd.org/.

Garfinkel, T., & Rosenblum, M. (2003). A Virtual
Machine Introspection Based Architecture for Intru-
sion Detection. In Proceedings of Network and Dis-
tributed Systems Security Symposium (pp. 191-206).

Garg, S., & Saran, H. (2008). Anti-DDoS Virtualized
Operating System. In Proceedings of International
Conference on Availability, Reliability and Security
(pp. 667-674).

Jiang, X., Wang, X., & Xu, D. (2007). Stealthy Mal-
ware Detection Through VMM-Based ’Out-of-the-
Box’ Semantic View Reconstruction. In Proceedings
of Conference on Computer and Communications
Security (pp. 128-138).

Johns, M. (1993). Identification Protocol. RFC 1413.

Joshi, A., King, S., Dunlap, G., & Chen, P. (2005).
Detecting Past and Present Intrusions through
Vulnerability-specific Predicates. In Proceedings
of Symposium Operating Systems Principles (pp.
91-104). doi:10.1145/1095810.1095820

Kivity,A., & Tosatti, M. (2007). Kernel Based Virtual
Machine. http://www.linux-kvm.org/.

Kourai, K., Azumi, T., & Chiba, S. (2012). A Self-
protection Mechanism against Stepping-stone At-
tacks for [aaS Clouds. In Proceedings of International
Conference on Autonomic and Trusted Computing
(pp. 539-546). doi:10.1109/UIC-ATC.2012.139

Kourai, K., Chiba, S., & Masuda, T. (1998). Operating
System Support for Easy Development of Distrib-
uted File Systems. In Proceedings of International
Conference on Parallel and Distributed Computing
and Systems (pp. 551-554).

Lyon, G. (1997). Nmap — Free Security Scanner
For Network Exploration & Security Audits. http://
nmap.org/

Netfilter Core Team. (2001). The netfilter.org Project.
Retrieved from http://www.netfilter.org/.

Payne, B., Carbone, M., & Lee, W. (2007). Secure
and Flexible Monitoring of Virtual Machines. In
Proceedings of Annual Conference on Computer
Security Applications (pp. 385-397). doi:10.1109/
ACSAC.2007.10

Payne, B., Carbone, M., Sharif, M., & Lee, W.
(2008). Lares: An Architecture for Secure Active
Monitoring Using Virtualization. In Proceedings of
Symposium on Security and Privacy (pp. 233-247).
doi:10.1109/SP.2008.24

Payne, B., & Leinhos, M. (2011). LibVMI. http://
code.google.com/p/vmitools/.

PCI-SIG. (2010). Single Root 1/O Virtualization and
Sharing 1.1 Specification. http://www.pcisig.com/.

Petroni, N. Jr, & Hicks, M. (2007). Automated
Detection of Persistent Kernel Control-flow
Attacks. In Proceedings of Conference on Com-
puter and Communications Security (pp. 103—115).
doi:10.1145/1315245.1315260

Rozier, M., Abrossimov, V., Armand, F., Boule, 1.,
Gien, M., & Guillemont, M. et al. (1992). Overview
of the Chorus Distributed Operating System. In
Proceedings of Symposium on Microkernels and
Other Kernel Architectures (pp. 39—69).

Srivastava, A., & Giffin, J. (2008). Tamper-resistant,
Application-aware Blocking of Malicious Network
Connections. In Proceedings of International Sym-
posium on Recent Advances in Intrusion Detection
(pp. 39-58). doi:10.1007/978-3-540-87403-4_3

Staniford-Chen, S., & Heberlein, L. (1995). Holding
Intruders Accountable on the Internet. In Proceedings
of Symposium on Security and Privacy (pp. 39-49).

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://aws.amazon.com/ec2/.
http://aws.amazon.com/
http://httpd.apache.org/.
http://dx.doi.org/10.1145/1455770.1455779
http://dwarfstd.org/.
http://dx.doi.org/10.1145/1095810.1095820
http://www.linux-kvm.org/.
http://dx.doi.org/10.1109/UIC-ATC.2012.139
http://www.netfilter.org/.
http://dx.doi.org/10.1109/ACSAC.2007.10
http://dx.doi.org/10.1109/ACSAC.2007.10
http://dx.doi.org/10.1109/SP.2008.24
http://code.google.com/p/vmitools/.
http://code.google.com/p/vmitools/.
http://www.pcisig.com/.
http://dx.doi.org/10.1145/1315245.1315260
http://dx.doi.org/10.1007/978-3-540-87403-4_3

	Reference r1
	Reference r2
	Reference r3
	Reference r4
	Reference r5
	Reference r6
	Reference r7
	Reference r8
	Reference r9
	Reference r10
	Reference r11
	Reference r12
	Reference r13
	Reference r14
	Reference r15
	Reference r16
	Reference r17
	Reference r18
	Reference r19
	Reference r20
	Reference r21
	Reference r22
	Reference r23
	Reference r24
	Figure f01
	Figure f02
	Figure f03
	Figure f04
	Figure f05
	Figure f06
	Figure f07
	Figure f08
	Figure f09
	Figure f10
	Figure f11
	Figure f12

