
Efficient VM Introspection in KVM and Performance Comparison with Xen

Kenichi Kourai
Department of Creative Informatics

Kyushu Institute of Technology
Fukuoka, Japan

kourai@ci.kyutech.ac.jp

Kousuke Nakamura
Department of Creative Informatics

Kyushu Institute of Technology
Fukuoka, Japan

work02@ksl.ci.kyutech.ac.jp

Abstract—Intrusion detection system (IDS) offloading is
useful for securely executing IDSes. It runs a target system
in a virtual machine (VM) and enables IDSes to monitor
the VM from the outside using VM introspection. Although
VM introspection is well studied, its performance has not
been reported in detail. The performance becomes important
when users choose virtualization software, e.g., Xen and KVM.
However, the performance comparison is difficult because there
is no efficient implementation of VM introspection in KVM.
In this paper, we first propose KVMonitor for efficient VM
introspection in KVM. Using KVMonitor, we have ported
Transcall for offloading legacy IDSes. For memory introspec-
tion, KVMonitor was 32 times faster than the existing LibVMI.
Then we present performance comparison between Xen and
KVM on VM introspection. The experimental results showed
that checking the kernel memory with KVMonitor was 118
times faster than that in Xen. Even for legacy chkrootkit, the
execution time with KVMonitor was 63% shorter than that in
Xen.

Keywords-Virtual machine introspection, virtualization soft-
ware, intrusion detection systems, IDS offloading, security

I. INTRODUCTION

Attacks against networked servers are increasing. As one
of the methods for detecting such attacks, intrusion detection
systems (IDSes) are used. IDSes monitor the system and
network of servers and alerts to administrators if they detect
symptoms of attacks. Recently, however, attackers attempt
to disable or tamper with IDSes after they intrude into
servers. If IDSes are compromised, they cannot detect at-
tacks. To counteract such attacks against IDSes, a technique
of offloading IDSes using virtual machines (VMs) has been
proposed [1]. IDS offloading runs a target system in a VM
and executes IDSes in the outside of the VM. This technique
can prevent IDSes from being compromised even if attackers
intrude into the VM and increase the security of IDSes.

The enabling technology of IDS offloading is VM intro-
spection [1]. VM introspection is a technique for monitoring
the memory, disks, and networks of VMs from the outside. It
has been studied for various kinds of virtualization software.
In Livewire [1], VM introspection was first implemented
using VMware Workstation [2]. Later, many researchers use
Xen [3] to implement VM introspection [4]–[13]. VMware
provides the VMsafe API for VM introspection and several
products such as Trend Micro Deep Security [14] have been

released for VMware vSphere [15]. For other virtualization
software, there is relatively less work on VM introspection
for each.

Although VM introspection is well studied, the perfor-
mance of VM introspection has not been reported in detail.
However, it becomes important when users choose one of
various kinds of virtualization software. To the best of
our knowledge, there is no performance comparison among
different virtualization software in terms of VM introspec-
tion. Most of the researches target only one virtualization
software although some claim that the proposed systems are
applicable to various virtualization software. Exceptionally,
VMwatcher [4] was implemented in Xen, QEMU [16],
VMware Server, and User-mode Linux (UML) [17], but the
performance was reported only for UML. EXTERIOR [18]
was implemented in KVM [19] and QEMU, but the perfor-
mance was not different because the experiments were done
only for the memory snapshot of a VM. VM introspection
for memory snapshots is not affected by the difference of
virtualization software.

For performance comparison, Xen and KVM are indis-
pensable because they are widely used open source vir-
tualization software. For Xen, the implementation of VM
introspection is well explained in many literatures and there
are several efficient open source implementations [20], [21].
For KVM, however, the implementation details of VM
introspection are unclear in literatures although studies on
VM introspection have been actively done recently [18],
[21]–[25]. Since KVM uses custom QEMU, studies on VM
introspection for QEMU [4], [26], [27] may be useful, but
the implementation details are also unclear. Among them,
LibVMI [21] is promising because it is an open source
implementation of VM introspection for Xen and KVM.
Unfortunately, the performance of memory introspection in
KVM is very low due to implementation issues. To compare
the performance between Xen and KVM, we cannot use
LibVMI because it is not fair for KVM.

In this paper, we first propose KVMonitor for efficient
VM introspection in KVM. KVMonitor enables offloading
IDSes in a VM onto the host operating system outside the
VM. It provides the functions for introspecting the memory,
disks, and networks of VMs. For efficient memory introspec-

tion, KVMonitor and offloaded IDSes share a file created
for the physical memory of a VM with negligible overhead.
For disk introspection, KVMonitor supports qcow2, which
is a disk format unique to KVM (and QEMU). For network
introspection, KVMonitor captures packets from the tap
network device for a VM. To enable legacy IDSes to be
offloaded with KVMonitor, we have ported Transcall [28],
which we have developed for Xen. We have implemented
KVMonitor for KVM 1.1.2 and confirmed that KVMonitor
was 32 times faster than LibVMI on memory introspection.
In addition, several legacy IDSes offloaded with KVMon-
itor could detect intrusions by single runs and cross-view
diff [29].

Next, we present performance comparison between Xen
and KVM on VM introspection. We examined the perfor-
mance of memory, disk, and network introspection as mi-
crobenchmarks and the execution times of offloaded IDSes
as macrobenchmarks. Our results show that checking the
kernel memory with KVMonitor was 118 times faster than
that in Xen. The performance of the offloaded Tripwire [30]
was almost the same when we used the same disk format.
Even when we offloaded chkrootkit [31] using Transcall, the
execution time with KVMonitor was 63% shorter than that
in Xen. Our conclusion from various experiments is that VM
introspection in KVM is more efficient than or the same as
that in Xen.

The rest of this paper is organized as follows. Section II
describes IDS offloading in Xen. Section III proposes KV-
Monitor for enabling efficient IDS offloading in KVM.
Section IV describes the effectiveness of IDS offloading
using KVMonitor and Section V reports the performance
comparison between IDS offloading in KVM and Xen.
Section VI describes related work and Section VII concludes
the paper.

II. BACKGROUND

A. VM Introspection in Xen

Xen is a type I virtual machine monitor (VMM), which
runs directly on hardware, as shown in Fig. 1. On top
of the VMM, Xen runs two types of VMs: DomU and
Dom0. DomU is a regular VM, while Dom0 is a VM
that has privileges for managing DomU. For DomU, Xen
provides two virtualization modes: para-virtualization and
full virtualization. Para-virtualization requires modification
to the guest operating system for efficiency, while full
virtualization does not. In either mode, IDSes are usually
offloaded from DomU to Dom0 because Dom0 can access
resources in DomU. In general, IDSes can be offloaded to the
VMM. Recently, VM introspection from other VMs has been
also proposed. For example, SSC [12] allows IDSes to be
offloaded to special-purpose VMs called service domains. In
VMCoupler [32], IDSes are offloaded to a guard VM, which
can be co-migrated with its target VM. In this paper, we
focus on offloading IDSes to Dom0 because the performance

VMM

Dom0 DomU

IDS
offload

virtual
NIC

virtual
disk

monitor

Figure 1. VM introspection by an offloaded IDS in Xen.

differences between Dom0 and a guard VM have been
already reported in [32].

To introspect the memory of DomU, an IDS offloaded to
Dom0 maps the memory pages of DomU onto its address
space. It issues a hypercall provided by the VMM and adds
entries for those memory pages to its page tables. After
it finishes to introspect those pages, it unmaps them. To
examine specific kernel data, an offloaded IDS first translates
the virtual address of the kernel data and finds a physical
page in which the kernel data is located. For this address
translation, the IDS issues a hypercall to the VMM to obtain
the value of the CR3 register of a virtual CPU in DomU.
The CR3 register points to the page directory of the current
process. Then, it starts with the physical address stored in
the CR3 register and traverses the page directory in DomU.
During the traversal, it repeatedly maps several memory
pages in which page directory entries or page table entries
are stored. Finally, it maps the target page and accesses the
kernel data.

To introspect the virtual disk of DomU, an offloaded IDS
accesses the disk image for DomU. In Xen, a disk image for
a virtual disk is created as a file or a disk partition in Dom0.
By default, the raw format is used for a file-backed disk
image. The disk image with the raw format can be directly
mounted in a loopback mode if the kernel in Dom0 supports
the file system used in a virtual disk. If the logical volume
manager (LVM) is used in a virtual disk, the disk image
can be mounted after the logical volume is activated. When
the disk image is used by running or suspended DomU,
it has to be mounted in a read-only manner to prevent
metadata in the file system from being corrupted. Another
method is introspecting disk accesses caused by DomU [5].
It intercepts all the low-level disk traffic and infers high-
level file system operations. In this paper, we focus on the
monitoring of disk images.

To introspect the network of DomU, an offloaded IDS
captures the packets from virtual network interface cards
(NICs) for DomU. In Xen, corresponding to a network
interface (e.g., eth0) of DomU, a virtual NIC is created in
Dom0. A virtual network interface (e.g., vif1.0) is created

QEMU-KVM

normal
process

host operating system
(Linux)

VM

KVM module

virtual
disk

virtual NIC

Figure 2. The architecture of KVM.

for para-virtualization, whereas a tap network device (e.g.,
tap1.0) is created for full virtualization. A virtual NIC is
connected to the network bridge in Dom0. When Dom0
receives a packet for DomU from an external host or another
VM in the same host, it sends the packet to DomU via the
network bridge and the virtual NIC. When DomU sends a
packet to the external, Dom0 receives it via the virtual NIC
and sends it via the network bridge. As such, virtual NICs
can receive all the packets from/to DomU.

B. Architecture of KVM

KVM consists of a kernel module and user-level QEMU-
KVM processes, as illustrated in Fig 2. The KVM module
assists the virtualization of CPU and memory using hard-
ware support such as Intel VT. QEMU-KVM is QEMU
customized for KVM and emulates virtual devices such as
disks and networks of a VM. Therefore, KVM is called a
hybrid VMM of type I and II. The KVM module is type I
VMM running on hardware, whereas QEMU-KVM is type II
VMM running on top of the host operating system. In KVM,
a QEMU-KVM process is created per VM like other normal
processes and a VM runs as a part of the process. Like Xen,
a virtual disk is created as a file in the host operating system,
but its format is qcow2 unique to QEMU by default.

III. KVMONITOR

In this paper, we present KVMonitor for efficient VM
introspection in KVM. KVMonitor is a library liked to IDSes
and allows offloaded IDSes to introspect the memory, disks
and networks of VMs. As illustrated in Fig. 3, an IDS is
offloaded onto the host operating system. An offloaded IDS
introspects a VM by accessing virtual devices managed by
QEMU-KVM via KVMonitor. Another possible architecture
is offloading IDSes to a special VM for VM introspection
like Xen. For that, however, we have to give the VM
privileges for accessing other VMs and it would require large
modification to KVM. In addition, IDSes offloaded to such
a VM would suffer from virtualization overhead. Therefore,
KVMonitor assumes an architecture for offloading IDSes
directly to the host operating system.

KVMonitor
QEMU-KVM

IDS

monitor

offload

host operating system

VM

virtual NIC

virtual
disk

Figure 3. The architecture of KVMonitor.

A. Memory Introspection

To enable offloaded IDSes to introspect the memory of a
VM, the KVMonitor-enabled QEMU-KVM creates physical
memory allocated to the VM as a file called a memory
file. Then both QEMU-KVM and IDSes map the file in
their address spaces by using the mmap system call, as
shown in Fig. 4. Using the memory-mapped file, QEMU-
KVM can directly access the physical memory of the VM
as usual, while IDSes can introspect the memory. In the
original QEMU-KVM, the physical memory of a VM is
allocated using malloc by default. Therefore, it cannot be
accessed from the outside of the QEMU-KVM process. The
original QEMU-KVM also provides an option for using a
newly created file as the physical memory of a VM, but it
removes the file after it maps the file so that the file is not
accessed by the other processes. We modified QEMU-KVM
so that it does not remove the file. This may lower VM
security but does not affect VM performance.

QEMU-KVM locates the memory file in a directory
where the HugeTLB filesystem is mounted. The HugeTLB
filesystem uses the huge page mechanism, which extends
a page size from 4 KB to 2 MB or 1 GB when a file on
it is mapped. We used a page size of 2 MB for memory-
mapped memory file. That large page size suppresses the
consumption of TLB entries for VM’s memory and makes
address translations faster. Then the impact on the memory
performance in the host operating system is minimized.

To enable IDSes to access the kernel data in the memory

KVMonitor QEMU-KVM

IDS

cr3 QMP command

host operating system

VM

CR3

memory
file

map map

Figure 4. Memory introspection using a memory file.

{ "execute": "cr3" }
{ "return": { "CR3": "0x000000001f96e000" } }

{ "execute": "xaddr",
"arguments": { "addr": "0xffffffff814a8340" } }

{ "return": { "paddr": "0x00000000014a8340" } }

Figure 5. The execution of the cr3 and xaddr commands using QMP.

of a VM using virtual addresses, KVMonitor provides an
API for translating a virtual address to a physical one. Since
the memory file mapped is the physical memory of a VM,
IDSes need to access it using physical addresses.

We have implemented two mechanisms for the address
translation. One is that KVMonitor translates virtual ad-
dresses by itself like Xen. First, KVMonitor obtains the
value of the CR3 register in a virtual CPU of a VM
by communicating with QEMU-KVM. For this purpose,
we added a new cr3 command for obtaining the value
to QEMU-KVM because QEMU-KVM provides only the
command for dumping the values of all registers in text. It
is time-consuming to obtain the dump of all registers and
analyze it.

KVMonitor executes the cr3 command using QEMU
monitor protocol (QMP). QMP is based on Javascript object
notation (JSON). When KVMonitor connects to QEMU-
KVM, QEMU-KVM returns version information. To enable
QMP, KVMonitor sends the qmp capabilities command.
Then it sends the cr3 command and receives the result, as
shown in the upper half of Fig. 5. QEMU-KVM finds the
CPU state stored in CPUArchState and obtains the value
of the CR3 register.

Using the obtained value, KVMonitor looks up a local
address in the memory-mapped file from a virtual address.
First, it translates a virtual address to a physical one by
traversing the page table. Since our target is x86 64, the
four-level page table is used in a VM. It calculates the local
address of the page global directory by adding the local
address to which the memory file is mapped and the physical
address of the page global directory, which is stored in the
CR3 register. From the page directory entry, KVMonitor
looks up the page upper directory, which is the next level
in the page directory. Similarly, it looks up the page middle
directory, the page table, and a target page frame number.
Then it calculates the physical address from the page frame
number and the page offset. Finally, it calculates the local
address corresponding the physical address.

The other mechanism is that QEMU-KVM performs ad-
dress translation. This is easy to implement because QEMU-
KVM has a debug function cpu get phys page debug
for that. To use this function, we added the xaddr QMP
command to QEMU-KVM. When KVMonitor executes the
xaddr command with a parameter of a virtual address using
QMP, QEMU-KVM invokes the function and translates the

host
operating system

qemu-nbdKVMonitor

IDS virtual
disk

/dev/nbd0

nbd module

QEMU-KVM

VM

Figure 6. Disk introspection using NBD.

address into a physical one. Then it returns the translated
address to KVMonitor, as shown in the bottom half of Fig. 5.

While IDSes analyze the memory of a VM with either
mechanism, KVMonitor suspends the VM for consistency.
Let us consider that IDSes access the process list by travers-
ing pointers. If the operating system in the VM concurrently
modifies some of the pointers to add or remove a process,
IDSes may crash due to an invalid pointer. To suspend and
resume a VM, we added the stop and cont QMP commands
to QEMU-KVM.

There are trade-offs between these two mechanisms. One
advantage of the former KVMonitor-centric mechanism is
efficiency. KVMonitor communicates with QEMU-KVM
only at once because it can translate a series of addresses
using the same value of the CR3 register. In the latter
QEMU-centric mechanism, KVMonitor has to communi-
cate with QEMU-KVM whenever it translates an address.
Another advantage is that the KVMonitor-centric approach
can naturally translate virtual addresses of a specific process
by traversing its page directory. On the other hand, the
advantages of the QEMU-centric mechanism are ease of
implementation and portability. The code for address trans-
lation is already in QEMU-KVM. In the KVMonitor-centric
mechanism, we have to implement address translation for
each processor architecture. KVM originally supported only
x86 but is ported to various processors such as S/390,
PowerPC, IA-64, and ARM.

B. Disk Introspection

To introspect a virtual disk with the qcow2 format, KV-
Monitor uses the network block device (NBD) for QEMU.
The qcow2 format is the default in KVM. It has an advantage
of saving a disk space because it allocates a real disk space
only to used disk blocks, not to the whole blocks. However, a
disk image of the qcow2 format cannot be directly mounted
in the host operating system. Using NBD, KVMonitor
mounts the disk image as a virtual block device and provides
IDSes with an execution environment for introspecting a
virtual disk.

NBD for QEMU consists of the nbd kernel module
and user-level qemu-nbd processes, as illustrated in Fig. 6.
KVMonitor first loads the nbd module into the kernel and
creates a block device like /dev/nbd0. Next, it binds the

device to the disk image for a VM by qemu-nbd, which
is an NBD server supporting the qcow2 format. When the
logical volume manager (LVM) is used, KVMonitor creates
a device map for each disk partition by the kpartx command
and activates logical volumes by the vgchange command.
Finally, KVMonitor mounts the block device to a specified
directory. Whenever IDSes access the directory, a block-
level request is transferred to qemu-nbd. Then, qemu-nbd
converts the requested block into a block of the raw format
and returns it. To maintain the integrity of the filesystem in
a virtual disk, KVMonitor mounts a disk image for a VM
in a read-only manner.

In addition, KVMonitor can introspect virtual disks with
the raw format because KVM supports that format as well.
Like Xen, KVMonitor associates an available loopback
device (e.g., /dev/loop0) to a disk image by the losetup
command. Then it creates device maps and mounts them
in a similar way to a disk image with qcow2. For the raw
format, KVMonitor does not use NBD.

C. Network Introspection

To introspect the network of a VM, an offloaded IDS
can capture packets from virtual NICs of the VM. For
virtual NICs, QEMU-KVM creates tap network devices
(e.g., vnet0) like Xen’s full virtualization. The tap devices
are connected to the network bridge and all the packets
from/to a VM can be captured. As another method, we could
use the functionality of QEMU-KVM for logging captured
packets in a file. However, this method cannot capture
packets when KVM uses an optimization called vhost-net,
which bypasses QEMU-KVM in network processing.

D. Transcall with KVMonitor

Transcall [28] provides an execution environment for ID-
Ses to transparently introspect a VM. Using Transcall, legacy
IDSes can be offloaded without any modifications. Transcall
consists of the system call emulator and the shadow filesys-
tem. The system call emulator traps the system calls issued
by IDSes, obtains necessary information on the guest kernel
from the memory of a VM, and returns it to IDSes. The
shadow filesystem provides the same filesystem view in a
VM. To achieve this, the shadow filesystem also provides the
proc filesystem, which provides information on the processes
and the networks in a VM. The shadow proc filesystem
analyzes the memory of a VM and provides necessary
information as pseudo files. For example, it traverses the
process list in the guest kernel, collects process information,
and creates pseudo files named stat and status for each
process.

We have ported Transcall developed for Xen to KVM
using KVMonitor. We modified the system call emulator and
the shadow proc filesystem so that they access the memory
of a VM using KVMonitor. In addition, we modified the

QEMU-KVM

IDS

host operating system

VMTranscall

system call
emulator

shadow
filesystem

KVMonitor

Figure 7. Offloading legacy IDSes using Transcall with KVMonitor.

shadow file system so that it accesses the directory to which
the disk image for a VM is mounted by KVMonitor.

IV. EFFECTIVENESS OF KVMONITOR

We conducted several experiments to confirm that KV-
Monitor achieved efficient VM introspection in terms of
memory introspection and enabled effective IDS offloading.
We used a PC with an Intel Xeon E5630 processor, which
was equipped with 12 MB of L3 cache, 6 GB of DDR3 PC3-
8500 memory, 250 GB of SATA HDD, and gigabit Ethernet,
respectively. We ran modified KVM 1.1.2 as the hypervisor
and Linux 3.2.0 as the host operating system. We created a
VM with one virtual CPU, 512 MB of memory, a 20 GB
disk, and gigabit Ethernet. We ran fully virtualized Linux
2.6.27.35 for the guest operating system and used the ext3
filesystem.

A. Efficiency of Memory Introspection

First, we compared the performance of memory intro-
spection in KVMonitor with that in LibVMI 0.8 [21].
LibVMI is an open source library for VM introspection and
supports KVM. In this experiment, we applied the patch
provided by LibVMI to QEMU-KVM. The patch is for
accessing the physical memory of VMs faster by adding the
pmemaccess QMP command because the original QEMU-
KVM provides only a command for dumping memory in
text. This command returns memory contents in binary for
memory reads.

To measure the performance of memory introspection,
we have developed an out-of-VM memory benchmark for
reading memory from the outside of a VM. This benchmark
accesses each physical memory page of a VM by 4 KB and
copies the contents to a local buffer by memcpy as fast as
possible. At this time, the translation from virtual to physical
addresses of a VM is not performed. The benchmark results
are shown in Fig. 8. KVMonitor was 32 times faster than
LibVMI. The cause was that LibVMI had to issue QMP
commands to QEMU-KVM for each memory access to the
VM. KVMonitor could map the memory file for the VM at
first and access the mapped memory directly.

Second, we examined how the performance of memory
accesses inside a VM was affected in KVM by using a

9.6

0.3

host
0

2

4

6

8

10

re
ad

 th
ro

ug
hp

ut
 (

G
B

/s
)

KVMonitor
LibVMI

Figure 8. The throughput of memory reads in KVMonitor and LibVMI.

8.6

6.6

8.5

6.3

read write
0

2

4

6

8

10

th
ro

ug
hp

ut
 (

G
B

/s
)

memory file
malloc

Figure 9. The throughput of memory reads and writes inside a VM.

memory file as the memory of the VM. The original QEMU-
KVM allocates the memory of a VM by malloc, while the
KVMonitor-enabled QEMU-KVM maps a memory file and
uses it as the memory of a VM. Using a memory-mapped
file may suffer from extra overhead. For this experiment, we
have developed an in-VM memory benchmark for accessing
memory inside a VM. This benchmark reads or writes 128
MB of the memory allocated by malloc. To avoid the
speedup due to processor cache, this benchmark accesses
larger amount of memory than the L3 cache of a processor.
Fig. 9 shows the performance of memory reads and writes
inside a VM. Using a memory file did not degrade the
performance for both reads and writes. On the contrary, it
was slightly improved probably because the number of TLB
misses decreased thanks to the HugeTLB filesystem.

Third, we compared the performance of address trans-
lation between KVMonitor using the cr3 command and
the xaddr command. Using the cr3 command, KVMonitor
obtains the value of the CR3 register from QEMU-KVM
and performs address translation by itself. For the xaddr
command, QEMU-KVM translates a virtual address and
returns a physical one to KVMonitor. For this experiment,
we have developed an out-of-VM benchmark for traversing
the process list in a VM and obtaining all process names and
IDs. Fig. 10 shows the execution time of this benchmark.

41.2

77.8

host
0

10

20

30

40

50

60

70

80

90

ex
ec

ut
io

n
tim

e
(m

s)

cr3
xaddr

Figure 10. The time for traversing the process list in a VM.

KVMonitor using the cr3 command was 1.9 times faster
than that using the xaddr command. This is due to the
difference of the number of communication with QEMU-
KVM. The xaddr command is executed for each address
translation, whereas the cr3 command is executed only at
once because the value does not change during this bench-
mark. In the following experiments, we used KVMonitor
using the cr3 command.

B. IDS Offloading

We offloaded three types of IDSes to the host operating
system using KVMonitor. First, we executed the offloaded
Tripwire 2.4.1.2 [30] and monitored the virtual disk of the
VM. Tripwire is a host-based IDS for checking the integrity
of disks. In advance, we recorded the normal state of the
file system in the VM by running Tripwire. After that, we
added, deleted, and modified three files, respectively. Then,
we checked the integrity of the disk by running Tripwire
again. As a result, the offloaded Tripwire could detect the
changes to the three files correctly, as shown in Fig. 11.

Next, we executed the offloaded Snort 2.9.2 [33] and
monitored the network of the VM. Snort is a network-based
IDS for checking network packets. We configured Snort so
that it monitored the tap device for the VM. Then we ran
nmap 5.21 [34] and performed portscans against the VM. We
confirmed that alert logs were recorded in the host operating
system correctly, as shown in Fig. 12.

Finally, we executed the offloaded chkrootkit 0.49 [31]
using Transcall. Chkrootkit is a host-based IDS for detect-
ing installed rootkits. It obtains information on processes
and networks by using the ps and netstat commands and
inspects several files. For the system with the normal state,

Rule Name ... Added Removed Modified
Monitor Filesystems 1 1 1
Total Objects scanned: 67082
Total violations found: 3

Figure 11. Inconsistency detections by the offloaded Tripwire.

[**] [1:1421:11] SNMP AgentX/tcp request [**]
[Classification: Attempted Information Leak] ...
01/28-10:47:13.406931
192.168.0.68:47962 -> 192.168.0.81:705

Figure 12. An alert log of the offloaded Snort.

$ transcall chkrootkit ps netstat
ROOTDOR is ’/’
Checking ’ps’...INFECTED
Checking ’netstat’...INFECTED

Figure 13. Tamper detections by the offloaded chkrootkit.

the offloaded chkrootkit was executed correctly and was
reported no rootkits. When we tampered with ps and netstat
in the VM, the offloaded chkrootkit was reported the tamper
correctly, as shown in Fig. 13.

C. Cross-view Diff

To detect hidden processes, we compared the result of
the offloaded ps command with that of the ps command
in the VM. In this experiment, we tampered with the ps
command in the VM so that it did not show the init process.
Since the offloaded ps command showed the init process
correctly as in Fig. 14, we could find the hidden init process
by comparing those results.

Similarly, to detect hidden network ports, we compared
the results between the offloaded netstat command and the
netstat command in the VM. In this experiment, we tampered
with the netstat command so that it did not show port
5900. By comparison between those results, we could find
the hidden port 5900 because only the offloaded netstat
command showed port 5900 as in Fig. 15.

V. PERFORMANCE COMPARISON

We compared the performance of VM introspection and
the performance of offloaded IDSes in KVM with those in
Xen. For Xen, we used the same PC as the one running
KVM. In the PC, we ran Xen 4.1.3 as the hypervisor and
fully virtualized Linux 3.2.0 as the operating system in

$ transcall ps -A
PID TTY TIME CMD
1 ? 00:00:00 init
2 ? 00:00:00 kthreadd

Figure 14. The execution result of the offloaded ps command.

$ transcall netstat -ant
Proto ... Local Address Foreign Address State
tcp 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0.0.0.0:5900 0.0.0.0:* LISTEN

Figure 15. The execution result of the offloaded netstat command.

9.6

8.6

0.2

8.1

host guest
0

2

4

6

8

10

12

re
ad

 th
ro

ug
hp

ut
 (

G
B

/s
)

KVM
Xen

Figure 16. The throughput of memory reads.

Dom0. In this paper, we focused only on full virtualization
that was also supported by KVM. We created a VM with the
same number of virtual CPU, the same amount of memory,
a disk with the same size, and gigabit Ethernet as the VM in
KVM. We ran the same guest operating system and used the
same filesystem. We did not use PV drivers in both VMs.

To compare the performance of VM introspection between
KVM and Xen, we conducted experiments in the following
four configurations:

• KVM host for introspecting the VM from the host
operating system in KVM

• Xen host for introspecting DomU from Dom0 in Xen
• KVM guest for monitoring resources inside the VM
• Xen guest for monitoring resources inside DomU

A. Memory Introspection

First, we compared the performance of memory intro-
spection in KVM with that in Xen. For Xen, we have
developed a tool similar to LibVMI because LibVMI for
Xen is efficient. For KVM host and Xen host, we used the
out-of-VM memory benchmark in Section IV-A. We have
developed a Xen version of the benchmark, which maps
each memory page of a VM by 4 KB, copies the contents
to a local buffer, and then unmaps the page. For KVM guest
and Xen guest, we used the in-VM memory benchmark in
Section IV-A.

Fig. 16 shows the performance of memory reads. The
performance in KVMonitor was 48 times faster than that
in Xen. The reason is that Xen has to repeat mapping and
unmapping for each memory page of a VM. KVMonitor
could map the whole memory at first and access it like heap
memory. Xen also provides the API for mapping multiple
memory pages of a VM at batch, but the time for mapping
multiple pages was proportional to the number of pages.
Therefore, the performance of memory introspection was
similar even when we performed batch mapping. In addition,
we could not map the whole memory of a VM by using the
API because of a too large number of memory pages. Even
if we could map the whole memory of a VM, we have to

1.9

224

host
0

50

100

150

200

250

300
ex

ec
ut

io
n

tim
e

(m
s)

KVM
Xen

Figure 17. The execution time of the IDS for kernel checking.

re-map it again whenever the allocation of physical memory
to a VM is changed. In KVM, the allocation of physical
memory to a mapped memory file may be changed, but the
host operating system hides it. As a result, we can continue
to use the mapped memory file.

Moreover, KVM host was 11% faster than KVM guest
although KVM guest did not need to map memory. This
is because KVM guest suffered from the overhead of CPU
and memory virtualization for executing the benchmark. The
performance in a VM was 7% better in KVM that that in
Xen.

Next, we examined the performance of checking the guest
kernel in a VM. We have developed an IDS for reading the
code area of the guest kernel. This IDS translates virtual
addresses to physical ones by 4 KB and reads the contents
from the start of the kernel to the end. For the address
translation, this IDS accesses the page tables in a VM. As
shown in Fig. 17, KVM host was 118 times faster than
Xen host in the same reason of the above experiment. In
Xen, the IDS had to map many pages for traversing the page
directory as well as accessing the code area of the kernel.

B. Disk Introspection

To measure the performance of file reads, we used the
IOzone 3.414 [35]. In this experiment, IOzone created 1
GB of a file in the virtual disk of the VM in advance and
read it sequentially. We mounted the disk image of the VM
and accessed the file in KVM host and Xen host, while
we directly accessed it in KVM guest and Xen guest.
To exclude the influences of the filesystem cache in the
operating systems, we erased the cache using the proc
filesystem for each run of IOzone. We ran IOzone 10 times
for each configuration.

Fig. 18 shows the average read throughput. In this ex-
periment, we used the qcow2 format in KVM and the raw
format in Xen, which are default formats. The throughputs of
Xen host and KVM host were almost the same although
these used different disk formats. For in-VM benchmarking,
KVM guest was 4.6% worse than Xen guest. This is due

70.4 68.1
70.9 71.4

host guest
0

10

20

30

40

50

60

70

80

90

100

re
ad

 th
ro

ug
hp

ut
 (

M
B

/s
)

KVM (qcow2)
Xen (raw)

Figure 18. The throughput of file reads.

70.4 70.9 70.5 71.470.4 69.9 68.1 68.6

KVM_host Xen_host KVM_guest Xen_guest
0

10

20

30

40

50

60

70

80

90

100

re
ad

 th
ro

ug
hp

ut
 (

M
B

/s
)

raw
qcow2

Figure 19. The throughput of file reads in different formats of disk images.

to the qcow2 format. For the comparison between out-
of-VM and in-VM benchmarking, KVM host was 3.4%
better than KVM guest. Xen host was almost the same
as Xen guest.

Next, we measured the read throughput for two different
formats of disk images. In KVM and Xen, we used both
the raw and qcow2 formats. Xen also supports the qcow2
format by using the blocktap mechanism. To introspect a
virtual disk with the qcow2 format in Xen, we used NBD
for QEMU as KVMonitor did. Fig. 19 shows the results
for all the combination of disk format and virtualization
software. For the out-of-VM benchmarking, the difference
between the raw and qcow2 formats was small. In addition,
KVM host and Xen host were almost the same. For the
in-VM benchmarking, the qcow2 format degraded read
throughput by 3 or 4%, compared with the raw format.

Finally, we measured the time needed for executing the
offloaded Tripwire. As in the above experiment, we used the
four combination of disk format and virtualization software.
To make Tripwire check the equivalent filesystem in both
formats, we converted the disk image in the raw format into
that in the qcow2 format. We configured Tripwire so that it
checked the whole disk.

As shown in Fig. 20, the execution times were almost the
same in KVM and Xen for the same disk format. However,

7.49

9.41

7.54

9.19

host (raw) host (qcow2)
0

2

4

6

8

10

ex
ec

ut
io

n
tim

e
(m

in
)

KVM
Xen

Figure 20. The execution time of the offloaded Tripwire.

6.2

10.4

host
0

2

4

6

8

10

12

pa
ck

et
 lo

ss
 r

at
e

(%
)

KVM
Xen

Figure 21. The packet loss rates of the offloaded Snort.

the qcow2 format degraded the performance of the offloaded
Tripwire by 18 or 20%, compared with the raw format. As
a result, the performance of disk introspection in KVM is
20% lower than that in Xen when the default format is used.
This is due to the overhead of NBD used for converting
the qcow2 format into the raw format at runtime. Unlike
the above experiment using IOzone, Tripwire accesses too
many files and directories. When sequential reads are done
for a file, the readahead mechanism of the operating system
can hide the latency caused by NBD. However, that latency
cannot be completely hidden when all the accesses are not
sequential.

C. Network Introspection

To examine the performance of the offloaded Snort, we
measured a packet loss rate of Snort when we sent as
many packets as possible to the VM. We used the traffic
generator named D-ITG 2.8.0-rc1 [36]. Since we could not
compile D-ITG for the system in our VM, we prepared
another VM where we installed the same system as the
host in this experiment. The results are shown in Fig. 21.
The packet loss rate of Snort in KVM host was 41% lower
than that in Xen host. Dom0 can access the virtual NIC
for the VM without virtualization overhead, but all the
resources but the devices are virtualized because Dom0 is

0.59

1.10

0.14

0.26

KVM_host Xen_host KVM_guest Xen_guest
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ex
ec

ut
io

n
tim

e
(s

ec
)

ps
shadow procfs

Figure 22. The execution time of the offloaded ps.

also a VM. Therefore, Snort running in Dom0 suffered from
virtualization overhead.

D. Ps Command

For KVM and Xen, we measured the execution time of
the ps command offloaded using Transcall. The ps command
is not an IDS, but it is often used for IDSes to obtain process
information. Chkrootkit in the next subsection is an example.
For comparison, we also measured the execution times of the
ps command running inside the VM. We ran ps 10 times for
each configuration.

The average execution times were shown in Fig. 22.
KVM host was 46% faster than Xen host. The execution
times include creating the shadow proc filesystem in Trans-
call. For KVM host and Xen host, The creation times
were 0.26 and 0.80 second, respectively. The cause of the
differences between KVM and Xen is mainly this time.
Compared with KVM guest and Xen guest, KVM host
and Xen host were 4.2 times slower, respectively.

E. Chkrootkit

We measured the execution time of chkrootkit offloaded
using Transcall. Since chkrootkit monitors files as well as
the internal data of the guest kernel in a VM, we erased
the filesystem cache whenever we ran chkrootkit. For disk
images, we used the qcow2 format for KVM and the raw for-
mat for Xen, which are the defaults. For comparison, we also
measured the execution time of chkrootkit running inside the
VM. We ran chkrootkit 10 times for each configuration.

The average execution times were shown in Fig. 23. In
addition to the time for creating the shadow proc filesystem,
KVM host and Xen host include the time for mounting the
disk image of the VM. The ratio to the total execution time
was smaller: 5.8% in KVM host and 5.4% in Xen host. In-
cluding these setup times, the execution time of KVM host
was 63% shorter than that of Xen host. Compared with
KVM guest, the execution time of KVM host was 2 times
longer. On the other hand, the execution time of Xen host
was 2.7 times longer than that of Xen guest. Therefore, the

35.0

17.7

55.4

20.7

host guest
0

10

20

30

40

50

60

70
ex

ec
ut

io
n

tim
e

(s
ec

)

KVM
Xen

Figure 23. The execution time of the offloaded chkrootkit.

performance degradation due to IDS offloading was smaller
in KVM.

VI. RELATED WORK

VM introspection in KVM has been studied by several
researchers. However, SIM [22], process implanting [23],
and process out-grafting [24] securely run IDSes and their
target system in the same VM to reduce the overhead
of VM introspection. This is called an in-VM approach,
while ours is called an out-of-VM approach. For SIM, the
paper compared the performance between the in-VM and
out-of-VM approaches, but the comparison was done only
for active monitoring by hooks. For example, monitoring
process creation and tracing system calls are done. The
out-of-VM approach is not good at such active monitoring
because VM introspection is done very frequently. For the
performance comparison, a hypercall for mapping a memory
page like Xen was implemented in the KVM module, but
the performance is much low.

There are several studies for enabling memory intro-
spection in QEMU or KVM. VMwatcher [4] monitors a
temporary memory file created in QEMU with KQEMU [37]
support. For QEMU without KQEMU support, the authors
built their own library for allowing VMwatcher to access
the physical memory of a VM. Pathogen [25] maps a file
for the physical memory of a VM by modifying QEMU-
KVM. However, the implementation details of them are not
presented and any experiments are not performed. EXTE-
RIOR [18] extended KVM and QEMU to collect the value
of the CR3 register, but there are no implementation details
in the paper.

LibVMI [21] is an open source library for VM introspec-
tion and supports both Xen and KVM. It is an updated
version of XenAccess [20] supporting only Xen. LibVMI
provides two methods for accessing the physical memory of
a VM. One is using the existing QMP command for dumping
memory contents in text. The other is adding a new QMP
command for obtaining memory contents to QEMU-KVM.
The latter method is faster than the former, but it requires

a patch for QEMU-KVM. Nevertheless, the performance
of memory introspection is low because memory contents
are transferred from QEMU-KVM to IDSes. In contrast,
KVMonitor can directly access the physical memory of a
VM through the memory-mapped file for the memory.

Volatility [38] is an open source memory forensics frame-
work written in Python and supports memory dumps from
Windows, Linux, and OS X. It provides virtual address trans-
lation, analysis of the kernel memory, an API for adding new
functionality. Although it is not used for VM introspection
by itself, XenAccess and LibVMI provide Python adapters
called PyXa [20] and its successor PyVMI [21], respectively.
Using them, Volatility can perform VM introspection for
running VMs in Xen and KVM. However, compared with
the implementation in C, the performance of VM introspec-
tion may be lower.

IDS offloading has been often studied for virtualization
at a hardware level, as in Xen and KVM. In contrast,
HyperSpector [39] achieves IDS offloading for virtualization
at the operating system level, as in Linux Containers (LXC).
It runs IDSes and their target system in two different
virtual execution environments, respectively. Since these
environments share the operating system, IDSes can monitor
the target system efficiently. In KVM, it is challenging to
efficiently monitor a strongly isolated VM.

VII. CONCLUSION

In this paper, we first proposed KVMonitor for achieving
efficient VM introspection in KVM. KVMonitor enables
offloaded IDSes to access the memory, virtual disks, and vir-
tual networks of a VM. For memory introspection, KVMon-
itor was 32 times faster than LibVMI. Using KVMonitor,
we have ported Transcall for Xen to KVM and showed that
legacy IDSes could detect intrusions. Next, we compared
the performance of VM introspection between KVM and
Xen. The kernel memory checking with KVMonitor was
118 times faster than that in Xen. The execution time of
the offloaded Tripwire was almost the same for the same
disk format. The execution of the offloaded Tripwire was
20% slower in KVMonitor when we used the default disk
format, but the execution time was almost the same for the
same disk format. From these results, we concluded that VM
introspection in KVM was more efficient than or the same
as that in Xen.

One of our future work is to compare how offloaded
IDSes affect the performance of monitored VMs and how
the workloads in monitored VMs affect offloaded IDSes
between Xen and KVM. In addition, we need to conduct
performance comparison with other virtualization software
such as VMware and Microsoft Hyper-V. Another future
work is to integrate the memory introspection in KVMonitor
with LibVMI. Through the interface of PyVMI, we could
improve the performance of Volatility for running VMs in
KVM.

ACKNOWLEDGMENT

This work was supported in part by JSPS KAKENHI
Grant Number 25330086.

REFERENCES

[1] T. Garfinkel and M. Rosenblum, “A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection,” in Proc.
Network and Distributed Systems Security Symp., 2003, pp.
191–206.

[2] VMware, Inc., “VMware Workstation,” http://www.vmware.
com/products/workstation.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. Symp. Operating Systems Principles,
2003, pp. 164–177.

[4] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware Detection
through VMM-based “Out-of-the-box” Semantic View Re-
construction,” in Proc. Conf. Computer and Communications
Security, 2007, pp. 128–138.

[5] B. Payne, M. Carbone, and W. Lee, “Secure and Flexible
Monitoring of Virtual Machines,” in Proc. Annual Conf.
Computer Security Applications, 2007, pp. 385–397.

[6] B. Hay and K. Nance, “Forensics Examination of Volatile
System Data Using Virtual Introspection,” ACM SIGOPS
Operating Systems Review, vol. 42, no. 3, pp. 75–83, 2008.

[7] B. D. Payne, M. Carbone, M. I. Sharif, and W. Lee, “Lares:
An Architecture for Secure Active Monitoring Using Virtu-
alization,” in Proc. Symp. Security and Privacy, 2008, pp.
233–247.

[8] A. Srivastava and J. Giffin, “Tamper-resistant, Application-
aware Blocking of Malicious Network Connections,” in Proc.
Intl. Symp. Recent Advances in Intrusion Detection, 2008, pp.
39–58.

[9] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether:
Malware Analysis via Hardware Virtualization Extensions,”
in Proc. Conf. Computer and Communications Security, 2008,
pp. 51–62.

[10] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang, “HIMA:
A Hypervisor-Based Integrity Measurement Agent,” in Proc.
Annual Computer Security Applications Conf., 2009, pp. 461–
470.

[11] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee,
“Virtuoso: Narrowing the Semantic Gap in Virtual Machine
Introspection,” in Proc. Symp. Security and Privacy, 2011,
pp. 297–312.

[12] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy,
“Self-service Cloud Computing,” in Proc. Conf. Computer
and Communications Security, 2012, pp. 253–264.

[13] J. Hizver and T. Chiueh, “Real-time Deep Virtual Machine
Introspection and Its Applications,” in Proc. Intl. Conf. Virtual
Execution Environments, 2014, pp. 3–14.

[14] Trend Micro, Inc., “Deep Security,” http://www.trendmicro.
com/us/enterprise/cloud-solutions/deep-security/.

[15] VMware Inc., “Server Virtualization & Cloud Infrastruc-
ture: VMware vSphere,” http://www.vmware.com/products/
vsphere.

[16] F. Bellard, “QEMU,” http://qemu.org/.
[17] J. Dike, “The User-mode Linux Kernel Home Page,” http:

//user-mode-linux.sourceforge.net/.
[18] Y. Fu and Z. Lin, “EXTERIOR: Using a dual-VM Based

External Shell for guest-OS Introspection, Configuration, and
Recovery,” in Proc. Intl. Conf. Virtual Execution Environ-
ments, 2013, pp. 97–110.

[19] Red Hat, Inc., “Kernel Based Virtual Machine,” http://www.
linux-kvm.org/.

[20] B. Payne, “XenAccess Library,” http://code.google.com/p/
xenaccess/.

[21] ——, “LibVMI,” http://code.google.com/p/vmitools/.
[22] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-VM

Monitoring Using Hardware Virtualization,” in Proc. Conf.
Computer and Communications Security, 2009, pp. 477–487.

[23] Z. Gu, Z. Deng, D. Xu, and X. Jiang, “Process Implanting:
A New Active Introspection Framework for Virtualization,”
in Proc. Intl. Symp. Reliable Distributed Systems, 2011, pp.
147–156.

[24] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, “Process
Out-grafting: An Efficient “out-of-VM” Approach for Fine-
grained Process Execution Monitoring,” in Proc. Conf. Com-
puter and Communications Security, 2011, pp. 363–374.

[25] A. Roberts, R. McClatchey, S. Liaquat, N. Edwards, and
M. Wray, “Introducing Pathogen: A Real-Time Virtual Ma-
chine Introspection Framework,” in Proc. Conf. Computer and
Communications Security, 2013, pp. 1429–1432.

[26] X. Jiang and X. Wang, ““Out-of-the-Box” Monitoring of
VM-based High-interaction Honeypots,” in Proc. Intl. Conf.
Recent Advances in Intrusion Detection, 2007, pp. 198–218.

[27] Y. Fu and Z. Lin, “Space Traveling across VM: Automatically
Bridging the Semantic Gap in Virtual Machine Introspection
via Online Kernel Data Redirection,” in Proc. Symp. Security
and Privacy, 2012, pp. 586–600.

[28] T. Iida and K. Kourai, “Transcall,” http://www.ksl.ci.kyutech.
ac.jp/oss/transcall/.

[29] Y. M. Wang, D. Beck, B. Vo, R. Roussev, and C. Verbowski,
“Detecting Stealth Software with Strider GhostBuster,” in
Proc. Intl. Conf. Dependable Systems and Networks, 2005,
pp. 368–377.

[30] G. Kim and E. Spafford, “The Design and Implementation
of Tripwire: A File System Integrity Checker,” in Proc. ACM
Conf. Computer and Communications Security, 1994, pp. 18–
29.

[31] N. Murilo and K. Steding-Jessen, “chkrootkit – Locally
Checks for Signs of a Rootkit,” http://www.chkrootkit.org/.

[32] K. Kourai and H. Utsunomiya, “Synchronized Co-migration
of Virtual Machines for IDS Offloading in Clouds,” in Proc.
Intl. Conf. Cloud Computing Technology and Science, 2013,
pp. 120–129.

[33] M. Roesch, “Snort – Lightweight Intrusion Detection for
Networks,” in Proc. USENIX System Administration Conf.,
1999.

[34] G. Lyon, “Nmap – Free Security Scanner For Network
Exploration & Security Audits,” http://nmap.org/.

[35] W. D. Norcott, “IOzone Filesystem Benchmark,” http://www.
iozone.org/.

[36] A. Botta, A. Dainotti, and A. Pescapè, “A Tool for the
Generation of Realistic Network Workload for Emerging Net-
working Scenarios,” Computer Networks (Elsevier), vol. 56,
no. 15, pp. 3531–3547, 2012.

[37] F. Bellard, “QEMU Accelerator,” http://wiki.qemu.org/
KQemu/Doc.

[38] A. Walters, “Volatility – An Advanced Memory Forensics
Framework,” http://code.google.com/p/volatility/.

[39] K. Kourai and S. Chiba, “HyperSpector: Virtual Distributed
Monitoring Environments for Secure Intrusion Detection,” in
Proc. Intl. Conf. Virtual Execution Environments, 2005, pp.
197–207.

