
Virtual AMT for Unified Management of Physical and Virtual Desktops

Kenichi Kourai
Department of Creative Informatics

Kyushu Institute of Technology
Fukuoka, Japan

kourai@ci.kyutech.ac.jp

Kouki Oozono
Department of Creative Informatics

Kyushu Institute of Technology
Fukuoka, Japan

oozono@ksl.ci.kyutech.ac.jp

Abstract—To reduce the burden of administrators in enter-
prises, current PCs are equipped with Intel Active Management
Technology (AMT). AMT enables administrators to perform
hardware-level remote management of desktops even on system
failures. Recently, however, virtual desktops are emerging with
virtual machines (VMs), e.g., in Desktop as a Service (DaaS).
Since physical and virtual desktops are mixed in current
enterprises, administrators have to manage them using two
different tools: that for AMT and that for VMs. In this paper,
we propose vAMT, which is virtual AMT for VMs. vAMT
provides the same interfaces as AMT: WS-Management, SOAP,
and KVM interfaces. Using AMT and vAMT, administrators
can perform unified management of physical and virtual
desktops without being aware of the differences in most of the
operations. We have implemented vAMT and confirmed that
the existing management tools for AMT could also manage
virtual desktops.

I. INTRODUCTION

The number of desktops such as PCs used in enterprises
becomes enormous. Administrators in the IT department
have to manage all the desktops in all the departments. To
manage desktops located in remote departments, many man-
agement tools install agent software in target desktops [1],
[2]. Then they can install and update software, scan viruses,
and perform backups by communicating with the agents.
However, when a desktop is turned off, such software-level
management tools cannot access the desktop. Even when the
power is on, they cannot manage a desktop if the agent or
the operating system does not work correctly due to system
failures or attacks.

To improve the manageablity of desktops, current PCs
for enterprises are equipped with Intel Active Management
Technology (AMT) [3]. AMT is one of the core technologies
in Intel vPro and is implemented in an embedded processor
separated from main CPUs. It enables remote management
even if target desktops are turned off or even on system
failures. Using AMT, administrators can perform hardware-
level management of desktops. Management tools for AMT
can monitor and control the systems on the desktops without
depending on agents although they also use agents to provide
high-level management functions.

Recently, however, virtual desktops are emerging, e.g., in
Desktop-as-a-Service (DaaS) clouds. A virtual desktop runs

as a virtual machine (VM) in a server and only its screen is
displayed in user’s device. Since all the desktops cannot be
replaced with virtual desktops, physical and virtual desktops
are mixed in the current enterprises. In such an environment,
administrators have to manage these different desktops us-
ing different management tools because management using
AMT is applicable only to physical desktops. As a result,
the burden of desktop management increases.

In this paper, we propose virtual AMT named vAMT
for managing virtual desktops. vAMT provides the same
interfaces as those provided by AMT. The interfaces in-
clude WS-Management [4], Simple Object Access Protocol
(SOAP) [5], and Keyboard/Video/Mouse (KVM). Remote
management tools can monitor and control virtual desktops
through the WS-Management interface with Common In-
formation Model (CIM) [6] or the SOAP interface for Web
services. They can also provide out-of-band remote GUI
control of virtual desktops by Virtual Network Computing
(VNC) [7] with the RFB protocol [8].

Using both AMT and vAMT, administrators can perform
unified management of not only physical but also virtual
desktops. However, this cannot be achieved by simply pro-
viding the same interfaces. There are several differences
between physical and virtual desktops. One of the differ-
ences is that VMs are destroyed when virtual desktops are
turned off. Another is that VMs do not have sensors such as
temperature. To bridge the gap between physical and virtual
desktops, vAMT allows transparent management of turned-
off virtual desktops like turned-off physical ones. It also
emulates the functionalities of physical desktops as much as
possible.

We have implemented vAMT using OpenPegasus [9],
Axis2 [10], and Kernel-based Virtual Machine
(KVM) 1 [11]. For the WS-Management interface, we have
developed CIM providers for vAMT using CIMPLE [12].
For the SOAP interface, we have developed Web services
for vAMT using WSDL2Java included in Axis2. These
tools automatically generate templates of CIM providers
and Web services from the definition files provided by
Intel, respectively. Then we modified the templates so that

1Do not confuse the KVM interface and the KVM virtualization software.



vAMT monitors and controls a VM using libvirt [13]. We
confirmed that Intel System Defense Utility worked well
for both vAMT and AMT.

The rest of this paper is organized as follows. Section II
describes desktop management using AMT and emerging
virtual desktops. Section III proposes vAMT and Section IV
describes the interfaces provided by vAMT. Section V
explains the implementation details of vAMT and Section VI
shows experimental results. Section VII discusses related
work and Section VIII concludes this paper.

II. DESKTOP MANAGEMENT

A. AMT

AMT is a core technology in Intel vPro and enables the
remote management of physical desktops such as PCs at a
hardware level. AMT is implemented in a chip separated
from CPU and can control hardware such as physical KVM
and network interface cards (NICs). The basic functions are
detection, failure recovery, and protection. For detection,
AMT enables remote management tools to obtain informa-
tion on a target desktop even if the power of the desktop is
turned off. At boot time, AMT obtains information on hard-
ware and software of a desktop from system management
BIOS (SMBIOS) and stores it into its flash memory. Then
it returns the information anytime.

For failure recovery, AMT enables remote management
tools to control hardware of a target desktop. AMT can re-
boot a desktop when the operating system does not respond.
Even when the operating system cannot boot, AMT can boot
a desktop using a remote disk image including hardware
diagnostic tools and identify the problem. Furthermore,
AMT provides out-of-band remote GUI control of a desktop
and directly accesses a video card, a keyboard, and a mouse.
Even if the network is unreachable due to configuration
errors in the operating system, remote management tools
can still access the desktop with the network of AMT.

For protection, AMT can monitor the behavior of agents
running on top of the operating system in a target desktop.
Agents for AMT can send heartbeats to AMT periodically.
If the heartbeats are interrupted for some reason, e.g., by
intruders, AMT can send alerts to administrators. In addition,
AMT can restrict network accesses from the desktop by
controlling NICs. For example, it can deny all the commu-
nication until the compromised system is recovered.

B. Virtual Desktops

Virtual desktops are emerging desktop usage. Unlike a
physical desktop running as a client PC, a virtual desktop
runs as a VM in a server machine. In particular, cloud-based
virtual desktops are called Desktop as a Service (DaaS). In
a virtual desktop, only the screen of a VM is displayed in
user’s device such as a PC and a smart device, and keyboard
and mouse inputs are sent to the VM via a network. Such
desktop virtualization enables administrators to consolidate

desktops in a server. As a result, it becomes easier to install
and update software and to maintain the system. From the
users’ point of view, their desktops can be used everywhere.

Currently, administrators have to manage both physical
and virtual desktops remotely because these desktops are
mixed in many enterprises. The transition from physical
to virtual desktops is in progress. Even if the transition
is complete, physical desktops such as PCs may be still
necessary for running virtual desktops. In addition, it is
difficult to use virtual desktops for laptop PCs because
they can be used in an environment where network is
unreachable. Recent virtual desktops are being usable in
network-unreachable environments, but the functionality is
restricted.

In such an environment, administrators have to use at least
two different management tools to manage two different
types of desktops. Since AMT is only for physical desktops,
management tools for AMT cannot manage virtual desk-
tops. In contrast, those for virtual desktops cannot manage
physical desktops with AMT. This makes the burden of
desktop management increase. Administrators have to first
distinguish physical and virtual desktops and then use an
appropriate tool. Since most of management tools have
different user interfaces, administrators can be confused
when they switch tools. Another approach is to add the
support for virtual desktops to management tools for AMT,
or to add the support for AMT to management tools for
virtual desktops. However, the burden of the developers of
management tools is large in any case.

On the other hand, physical and virtual desktops have
many similarities in terms of remote management. Since
both desktops can run the same software, administrators
manage it in the same way, for example, using remote GUI
control. On system failures, both desktops can be recovered
by reboots. Therefore, it is desirable that administrators can
deal with both desktops using the same tools for common
management tasks.

III. VIRTUAL AMT

This paper proposes vAMT, which is virtual AMT for
VMs. Like AMT for managing physical desktops, vAMT
enables administrators to manage virtual desktops using
the WS-Management, SOAP, and KVM interfaces. Remote
management tools can access vAMT by sending WS-
Management requests or SOAP requests. They can also
access vAMT for out-of-band remote GUI control of virtual
desktops by VNC with the RFB protocol. Using both AMT
and vAMT, administrators can perform unified management
of physical and virtual desktops using the existing manage-
ment tools for AMT, as shown in Fig. 1. They do not need
to be aware of the differences between physical and virtual
desktops in most of the operations.

The architecture of vAMT is illustrated in Fig. 2. The pri-
mary components of vAMT are a WS-Management server,



AMT AMT vAMT

VM

vAMT

VM

...
...

physical desktops

virtual desktops

management
tool

server

Figure 1. The system overview using both AMT and vAMT.

CIM
providers

Web
servicesCIMOM

WS-Man
server

SOAP
server

Web server

VNC
server

dispatcher

VM

vAMT

hypervisor

Figure 2. The system architecture of vAMT.

a SOAP server, and a VNC server. When a request is sent in
WS-Management, the WS-Management server converts it to
a corresponding CIM request and sends the CIM request to
CIM object manager (CIMOM). CIMOM delivers the CIM
request to an appropriate CIM provider, which is prepared
for each function of vAMT. It monitors and controls a VM
by accessing virtual hardware of the VM. On the other hand,
when a request is sent in SOAP, the SOAP server invokes an
appropriate Web service, which is prepared for each category
of vAMT functions. When a VNC request is sent, the VNC
server handles it by accessing virtual hardware of a VM.

vAMT can be accessed by specifying the same IP address
as a target VM. This is the same as AMT, which can be
accessed using the IP address of the PC equipped with AMT.
The dispatcher of vAMT dispatches various accesses for one
IP address by port numbers. For example, it delivers packets
to port 16992 to the Web server, which further dispatches
requests to either the WS-Management server or the SOAP
server by URLs. It delivers packets to port 5900 to the VNC
server. The other packets are delivered to a VM.

What to consider for vAMT are the differences between
physical and virtual desktops. One of the biggest differences
is the state when the power of a desktop is turned off.
For physical desktops, PCs always exist because they are
concrete hardware. For virtual desktops, however, VMs
are destroyed after they stop. To absorb this difference,
vAMT allows transparent management of turned-off virtual

desktops like turned-off physical ones. Using vAMT, man-
agement tools for AMT are not aware that target virtual
desktops are turned on or off.

Another difference is the functionalities between PCs
and VMs. For example, PCs have physical sensors such
as temperature and management tools should monitor the
status of the sensors. In contrast, VMs do not have such
sensors. As specific features, they can be newly created and
be migrated to other hosts by management tools. Therefore
vAMT emulates the functionalities of PCs as much as
possible, whereas it does not support VM-specific operations
because those are not included in the AMT specification.
Such operations are still done using VM-specific tools.

IV. VAMT INTERFACES

vAMT provides three interfaces to remote management
tools. These interfaces are used for obtaining information
from vAMT and a target VM and for controlling the VM.

A. WS-Management Interface

To allow remote management using the CIM extended
for AMT, vAMT provides the WS-Management interface.
WS-Management became a standard interface from AMT
version 6.0. CIM is used through this interface. It adopts an
object-oriented hierarchical architecture to make it easy to
express target components and track mutual dependencies
among them.

CIM is composed of classes, properties, methods, modi-
fiers, references, and associations. A class defines properties
and methods that its instances commonly have. A property
has a name, a data type, and a value. The value expresses
the characteristics of its class. A method is invoked for
operating an instance of the class defining the method.
A modifier provides additional information on a class, a
method, a method parameter, a property, a reference, and
an association. A reference is a special data type indicating
a pointer to another instance. An association is a type of
class including more than two references and expresses the
relationship between instances of different classes.

To define CIM classes, the managed object format (MOF)
language is used. MOF is an extension of BNF notation for
syntax and is defined in the CIM specification [6]. Fig. 3
illustrates an example of a CIM class described in MOF. This
example defines three classes, CIM Processor, CIM Chip,
and CIM Realizes. For brevity, these definitions are a bit
different from actual classes defined in AMT.

CIM Processor is a class inherited the
CIM LogicalDevice class, which handles logical
information on a device. It has the Number property
for a CPU number and the Enable method for enabling
and disabling CPUs. The Key modifier in the Number
property indicates that the property is used for identifying
an instance. Such a property is called a key property. The IN



class CIM_Processor : CIM_LogicalDevice {
[Key] uint32 Number;
uint32 Enable([IN] boolean Enabled);

};

class CIM_Chip : CIM_PhysicalElement {
[Key] string Tag;

};

class CIM_Realizes {
[Key] CIM_PhysicalElement REF Antecedent;
[Key] CIM_LogicalDevice REF Dependent;

};

Figure 3. CIM classes described in MOF.

modifier in the parameter of the Enable method indicates
that the parameter is used for an input.

CIM Realizes is an association class whose prop-
erties are references to CIM PhysicalElement and
CIM LogicalDevice. REF after each data type indicates
that the property is a reference. This class associates log-
ical and physical information on a device. For example,
an instance of CIM Processor is associated with that
of CIM Chip, which inherits the CIM PhysicalElement
class.

To operate CIM classes and instances, CIM operations are
used. For example, remote management tools can obtain all
the instances of the specified CIM class by the Enumerate-
Instances operation. To obtain one specific instance, they
specify one or several key properties using the GetInstance
operation. They can also invoke the specified method of a
CIM class with parameters and obtain a return value. These
operations are bound to WS-Management operations [14].

B. SOAP Interface

To allow remote management using Web services for
AMT, vAMT provides the SOAP interface. This interface
was deprecated from AMT version 6.0, but many tools
continue to use this interface. The support was removed from
AMT version 9.0. To define Web services, Web services
description language (WSDL) is used. WSDL is based on
XML and is used for describing the functionality offered by
Web services.

A WSDL document is mainly composed of port types,
operations, messages, and types. A port type defines related
operations collectively. An operation defines a method with
input messages (method parameters) and output parameters
(return values). A message defines data with a type. A type
defines a data type.

Fig. 4 illustrates an example of a Web service described
in WSDL. Note that this example omits several defini-
tions. This example defines RemoteControl operation in
the RemoteControlSoapPortType port type. This port type
manages the power of a VM and how to boot it. The input
message of the operation is RemoteControlIn, whereas the

<types>
<element name="RemoteControl">
<element name="Command"

type="RemoteControlCommand"/>
</element>

</types>

<message name="RemoteControlIn">
<part name="parameters" element="RemoteControl">

</message>

<portType name="RemoteControlSoapPortType">
<operation name="RemoteControl">
<input message="RemoteControlIn"/>
<output message="RemoteControlOut"/>

</operation>
</portType>

Figure 4. A Web service described in WSDL.

output message is RemoteControlOut. The RemoteCon-
trolIn message is composed of the RemoteControl type,
which contains the RemoteControlCommand type. In this
example, we omit the definition of the RemoteControlOut
message.

C. KVM Interface

To enable out-of-band remote GUI control of a VM,
vAMT provides the KVM interface. Using VNC, remote
management tools can monitor the screen of a VM and
control the keyboard and the mouse of a VM. Unlike in-band
remote management, they connect to vAMT using VNC and
vAMT directly accesses virtual hardware of a VM. This
out-of-band management does not depend on the system
state inside a VM. Even if network failure occurs inside
a VM, remote tools can access the VM. vAMT provides
two methods for this out-of-band remote management. One
method uses a default port and allows remote tools to
connect to vAMT in the standard VNC protocol. The other
method uses a redirection port and enables remote tools
to securely connect to vAMT using a proprietary protocol.
Currently, vAMT does not support the redirection port.

D. Other Interfaces

AMT also provides other interfaces: Serial over LAN
(SOL) for serial console, IDE Redirection (IDER) for
mounting a remote image, Remote Management and Control
Protocol (RMCP) in Alert Standard Format (ASF) [15] for
pings. SOL and IDER use the redirection port with pro-
prietary protocols. vAMT does not support these interfaces
currently.

V. IMPLEMENTATION

A. System Architecture

Fig. 5 depicts the detailed system architecture of vAMT.
For the WS-Management server and the CIMOM, we used



OpenPegasus Tomcat

VM

QEMU-KVM

WS-Man
server

CIMOM

Linux

Apache
web server

CIM
providers Web

services

Axis2

libvirtd rfbproxy

HTTP VNC

Figure 5. The detailed system architecture of vAMT.

OpenPegasus 2.11.1 [9]. To handle requests from manage-
ment tools for AMT, we have modified OpenPegasus. One
modification is using the default namespace (root/cimv2)
when any namespace is not specified. OpenPegasus re-
quires specifying a namespace in a selector, whereas several
management tools we tried do not specify any names-
pace. Another modification is using the IP address and
port number of OpenPegasus when an end-point reference
(EPR) is “default.” OpenPegasus requires specifying an EPR
explicitly, whereas several management tools for AMT do
not. In addition, we modified OpenPegasus so that it accepts
WS-Management requests in which CIM classes do not start
with “CIM ”. AMT uses not only CIM classes starting
with “CIM ” but also those starting with “AMT ” and
“IPS ” as an AMT extension. Also, we added the digest
access authentication [16] in HTTP to OpenPegasus, which
supported only the basic access authentication. The digest
access authentication is required by many management tools.

For the SOAP server, we used Apache Axis2/Java
1.6.2 [10] with the Apache Tomcat 6.0.35 [17]. Axis2
contains various tools for generating and deploying Web
services. CIM providers in OpenPegasus and Web services
in Tomcat access the libvirt daemon 1.1.4 [13] to monitor
and control a VM. The Apache web server [18] is used for
dispatching requests to the WS-Management server and the
SOAP server.

For the VNC server, we used QEMU-KVM 0.12.5 [19].
QEMU-KVM is a user space tool of the KVM virtualization
software and provides a VNC server for connecting to its
VM. Rfbproxy [20] is used for supporting a turned-off VM,
as described in Section V-E.

B. CIM Providers for vAMT

To create CIM providers for managing VMs, we used
CIMPLE 2.0.24 [12]. CIMPLE generates templates of CIM
providers from MOF in which CIM classes are described.
Specifically, it generates two C++ classes from one CIM
class. One is a class directly corresponding to a CIM class
and defines members corresponding to the properties in the
CIM class. The other is a class corresponding to a CIM
provider for the CIM class and defines member functions

such as enum instances and get instance. These func-
tions are invoked when CIM operations such as Enumer-
ateInstances and GetInstance are executed.

We used the MOF files included in SDK provided by Intel.
We modified the syntax check of CIMPLE slightly so that
it could parse MOF files for AMT. The original CIMPLE
does not permit that the same key properties appear in both
a super class and a subclass, but the MOF files for AMT
violate this constraint.

To monitor and control VMs from vAMT, we used the lib-
virt virtualization library 1.1.4 [13]. Libvirt enables vAMT
to handle VMs running on top of various virtualization
software in a unified manner. For example, vAMT can
obtain a domain object using the virDomainLookupBy-
Name function with a VM name. Note that vAMT specifies
virtualization software in the virConnectOpen function
invoked at first. The library communicates with the libvirt
daemon and the daemon accesses QEMU-KVM.

Fig. 6 shows the function prototypes of the CIM
provider for the CIM Processor class in Fig. 3. The
enum instances function is executed for enumerating all
the instances of the class. CIMPLE generates only a function
header and a return statement in the body. This function
creates the same number of instances of CIM Processor
as virtual CPUs. Then it sets a different CPU number to
the Number property of each instance. Finally, it registers
the instances to the parameter handler to return them to a
remote tool.

The get instance function is executed for obtaining one
specific instance of the class. The parameter model stores
only the value of the key property Number requested by
a remote tool. This function searches the instance whose
property Number has the same value as model. If only one
instance is found, the function sets all the properties of the
instance to the parameter instance. Otherwise, it returns an
error. In this example, the function returns information on
the virtual CPU with the specified CPU number.

The Enable function is executed when a remote tool
invokes the Enable method using a CIM operation. The
target instance is specified by the parameter self and the
method parameter is passed by the parameter Enabled of
this function. In this example, the status of the virtual CPUs
is maintained in the array of the cpuinfo objects. If the value
of Enabled is true and the target virtual CPU is not enabled,
the function enables it. If the value of Enabled is false and
the target virtual CPU is enabled, the function disables it.
Then it re-calculates the number of enabled virtual CPUs and
changes the actual CPU assignment to the specified VM by
using the virDomainSetVcpus function in libvirt. Finally,
it sets zero to the parameter return value if the request is
successfully executed.

For association classes, CIM providers are implemented
similarly. Let us consider the enum instances function
of the CIM Realizes class in Fig. 3. First, the function



Enum_Instances_Status enum_instances(const CIM_Processor* model, Enum_Handler<CIM_Processor>* handler);
Get_Instance_Status get_instance(const CIM_Processor* model, CIM_Processor*& instance);
Invoke_Method_Status Enable(const CIM_Processor* self, const Property<boolean>& Enabled,

Property<uint32>& return_value);

Figure 6. The function prototypes of the CIM provider for CIM Processor.

management
tool

CPU0 CPU1 CIM_Processor

CIM_Realizes

Chip0 Chip1 CIM_Chip

enumerate

vAMT

instances

enumerate

Figure 7. Obtaining CPU information.

creates two instances of CIM Chip and CIM Processor,
respectively, and sets the values to only their key properties.
Next, it creates an instance of CIM Realizes and sets the
above two instances to its members as references. At this
time, these are casted to their super classes. Finally, it
registers the instance to handler. From all the registered
instances, CIMPLE finds all the instances associated with a
requested instance and returns them to a remote tool.

A remote tool combines these CIM providers and obtains
CPU information as shown in Fig. 7. It first obtains all
the instances of CIM Processor. For each instance, it
obtains associated instances of CIM Chip by requesting
EnumerateInstances for CIM Realizes. Similarly, it ob-
tains instances of CIM Location, which are associated with
each instance of CIM Chip. CIM Location is a CIM class
for the physical position and address of a device. For the
association class, CIM PhysicalElementLocation is used.
Finally, the remote tool can obtain necessary information
from the properties of all the obtained instances.

As another example, the power management of a
VM requires three CIM providers when only the WS-
Management interface is used. First, a remote tool ob-
tains the value of the PowerState property of the
CIM AssociatedPowerManagementService class to ex-
amine the power status of a VM. Next, it obtains an
instance of the CIM ComputerSystem class for the tar-
get system of the power management. Finally, it in-
vokes the RequestPowerStateChange method of the
CIM PowerManagementService class to execute the
power management using libvirt.

There are 264 CIM classes for vAMT. Since all CIM
classes are not used in real management tools, we prioritized
CIM classes by examining the real uses in several manage-

ment tools. Then we have implemented 39 providers.

C. Web Services for vAMT

To create Web services for managing VMs, we used a
tool named WSDL2Java included in Apache Axis2/Java.
WSDL2Java generates templates of Web services from
WSDL. Specifically, it generates multiple Java classes for
all the port types and the types from one WSDL file. A class
for a port type has methods corresponding to the operations
defined in the port type. We used the WSDL files included
in SDK provided by Intel.

Let us explain the implementation of the RemoteControl
operation for the RemoteControlSoapPortType port type
in Fig. 4. The remoteControl method is executed when a
remote tool requests this operation. The parameter types and
the return type correspond to the types of input and output
messages, respectively. In this example, the method obtains
the requested command type from the RemoteControl
object in the input parameter and manages the power of
a VM according to the value. After the command execution,
the method returns the status.

To monitor and control VMs, we used the libvirt-java
binding tool 0.5.1 [13]. This tool provides a Java application
programming interface (API) so that Java programs can
use the functionality of libvirt. In the example of the Re-
moteControl operation, the method invokes the shutdown
method for the Domain object, which corresponds to a target
VM.

In general, many operations in web services for AMT
return not only status but also various information with
complex data structure to a remote tool. For example, the
CbFilterEnumerate operation in the CircuitBreaker web
service returns information on packet filtering with the data
structure as in Fig. 8. In addition to the status, CbFil-
terEnumerateResponse consists of a filter name such as
“NoPing,” an IP address, a network mask, etc. For such
operations, we created many Java objects and assembled the
data structure by using the accessors defined for properties.

There are 522 operations in 23 Web services for vAMT.
We prioritized these operations on the basis of the real
uses in several management tools and have implemented 20
operations.

D. Request Redirection

To redirect requests to appropriate servers as in Fig. 2,
vAMT configures static network address and port translation



CbFilterEnumerateResponse
PT_STATUS

UnsignedInt
CircuitBreakerFilterInfoType

CircuitBreakerFilterType
FilterName_type0
CircuitBreakerFilterDirectionType
CircuitBreakerProfileType
UnsignedInt
CircuitBreakerPacketType

CircuitBreakerPacketTypeChoice_type0
CircuitBreakerPacketIPType

CircuitBreakerIPPacketType
CircuitBreakerIPPacketTypeChoice_type0

CircuitBreakerIPv4Type
CircuitBreakerIPv4AddressAndMaskType

CircuitBreakerFilterIPAddressDirectionType
IPv4AddressStringType
IPv4AddressStringType

UnsignedByte
bool

UnsignedInt

Figure 8. The data structure of a response to the CbFilterEnumerate
operation.

(NAPT) using iptables in the host operating system. For WS-
Management and SOAP requests, a pair of the IP address
of a VM and port 16992 is translated into that of the IP
address of the host and the port of the web server in vAMT.
For VNC requests, the IP address of a VM and port 5900
are translated into the IP address of the host and the VNC
server in vAMT, respectively. The redirected port numbers
are different for each vAMT to coexist multiple vAMTs. For
example, requests to VM1 are redirected to ports 6992 and
5901, whereas those to VM2 are to ports 6993 and 5902.

vAMT further redirects requests to either the WS-
Management server or the SOAP server using a reverse
proxy in the web server. If the URL specified in an
HTTP request starts with /wsman, the request is redirected
to the WS-Management server. If the URL starts with
/*Service such as /RemoteControlSoapService,
the request is redirected to the SOAP server.

E. Management of Turned-off VMs

To monitor a turned-off VM, vAMT obtains information
on it from its configuration. When a VM is running, the run-
time of the virtualized system manages the latest information
such as the number of virtual CPUs, the memory size of
the VM. However, it does not manage such information for
turned-off VMs. Fortunately, initial values of such informa-
tion are stored in VM configuration when a VM is created.
vAMT can obtain most appropriate information from either
the runtime or the configuration by using libvirt.

To access a turned-off VM using VNC, vAMT uses a
VNC proxy server called rfbproxy. For a turned-off VM,
a VNC server for it does not exist because QEMU-KVM
including a VNC server runs only while a VM is running.
Therefore, when a management tool connects to vAMT for
a turned-off VM, rfbproxy returns a dummy black screen

and ignores keyboard and mouse inputs. This behavior is
the same as that of AMT in a turned-off PC. To return
such a dummy screen, we recorded a black screen using the
function of rfbproxy in advance. Then rfbproxy continues to
play back the recorded events. For a turned-on VM, rfbproxy
simply redirects requests to the VNC server in QEMU-
KVM.

F. Support for VM Migration

VMs can be migrated to another host in various reasons.
Since vAMT runs in the outside of a migrated VM, it could
not monitor or control the VM after the migration. In the
current implementation, vAMT is restarted at the destination
host of the VM migration.

To seamlessly support the migration of a target VM,
there are two possible ways. One is that vAMT remotely
manages the VM migrated to another host. Requests to
vAMT can be redirected from iptables in the destination
host. Then vAMT can monitor and control the remote VM
by communicating with the libvirt daemon in the destination
host. One drawback is inefficiency in the communication for
the request redirection and libvirt between the source and
destination hosts. Another drawback is that administrators
cannot shut down the source host still running vAMT after
the target VM has been migrated. The other drawback is that
vAMT may lose several requests while vAMT switches its
target hosts.

The other way is running vAMT in another VM and
migrating together with the target VM using the technique
proposed in VMCoupler [21]. After co-migration, vAMT
can manage the target VM as before migration. The commu-
nication for the request redirection and libvirt is performed
efficiently inside the destination host. Administrators can
shut down the source host because vAMT is not running.
In addition, it is not necessary that vAMT is aware of the
migration of the target VM.

VI. EXPERIMENTS

We conducted experiments to confirm that management
tools for AMT could be used for vAMT. For a physical
desktop with AMT 7.1.4, we used a PC with one Intel Core
i7 3.4 GHz processor and 2 GB of memory and ran Windows
7. For a virtual desktop with vAMT, we used a VM with one
virtual CPU and 1 GB of memory and ran Linux 3.2.0 as
the guest operating system. For running the VM, we used a
PC with one Intel Core i7 2.93 GHz processor and 4 GB of
memory and ran Linux 2.6.32 as the host operating system
and QEMU-KVM 0.12.5 as the virtualization software. To
run management tools remotely, we used a PC with one Intel
Xeon W3550 3.06 GHz processor and 6 GB of memory and
ran Windows 7. All the PCs and the VM are connected with
Gigabit Ethernet.



Figure 9. The asset management screen in System Defense Utility.

A. Comparison of Behaviors

To confirm the behavior of vAMT, we used Intel System
Defense Utility as a management tool for AMT.

1) Connection: When we connected to AMT, the tool
used 40 CIM classes and five Web services and sent 189
requests to AMT in total. Until it established the connection,
it obtained the capabilities of AMT, hardware information
of a desktop, etc. When we connected to vAMT using the
same tool, the tool used 26 CIM classes and five Web
services and sent 97 requests to vAMT in total. The reason
of the difference between AMT and vAMT is that vAMT
does not support several requests yet. However, the tool
could establish the connection to vAMT because it ignores
functions that are not indispensable.

After the connection was established, the hardware infor-
mation of the target desktop was shown in the asset man-
agement tab, as shown in Fig. 9. When the tool connected to
vAMT, information on the VM was shown in the Computer
System and Memory areas. For example, the manufacturer
is “Red Hat, Inc.” and the memory size is 1024 MB. In
the Motherboard area, the same information as the PC was
shown.

2) Power Management: When we changed the
power status of the physical desktop with AMT,
the tool sent one WS-Management request and one
SOAP request. When we selected the Remote Control
tab, the tool obtained the power status with the
CIM AssociatedPowerManagementService class
and showed it on the screen. When we executed the power
management, the tool changed the power status with the
RemoteControlService operation and obtained the power
status again.

Using the screen shown in Fig. 10, we confirmed that the
tool could perform the power management for the virtual
desktop with vAMT in the same way. To examine the actual
power status, we obtained the power status using the virsh
tool [13] in the PC running the VM. As a result, the power
status of the VM was changed as requested.

Figure 10. The remote control screen in System Defense Utility.

Figure 11. The VNC screen in System Defense Utility.

3) VNC: When the tool accessed to AMT with VNC, it
sent only VNC requests, neither WS-Management nor SOAP
requests. We confirmed that the tool could access to vAMT
and showed the VNC screen of the virtual desktop as in
Fig. 11.

B. Performance

To compare the performance of vAMT with that of
AMT, we used Windows Remote Management (WinRM)
and command-line tools included in the SDK provided
by Intel. We measured the time needed to execute each
command for AMT and vAMT 10 times.

1) Obtaining the AMT Version: To obtain version in-
formation of AMT, we used WinRM, which can send
WS-Management requests by specifying a CIM class and
its properties. In this experiment, WinRM executed the
GetInstance operation for the CIM SoftwareIdentity class
with the InstanceID property. Then AMT returned an
instance in which the value of the property was “AMT.”

For AMT and vAMT, we measured the time needed for
obtaining the AMT version. The results are shown in Fig. 12.
When the PC was turned off, it took more than 2 seconds
to obtain the AMT version. This is because the AMT chip
is in the sleep mode. The successive execution took 392 ms
to complete. When the PC was turned on, it took only 112
ms to obtain the version. For vAMT, the execution time was



0

500

1000

1500

2000

2500

ex
ec

ut
io

n 
tim

e 
(m

s)
AMT (power off, 1st)
AMT (power off, 2nd)
AMT (power on)
vAMT

Figure 12. The time for obtaining the AMT version.

system info CPU info power off
0

500

1000

1500

2000

ex
ec

ut
io

n 
tim

e 
(m

s)

AMT
vAMT

Figure 13. The execution time of commands for AMT and vAMT.

64 ms. This shows that vAMT could handle requests in a
shorter time than AMT. The reason is because the hardware
performance of the AMT chip is lower than that of the CPU
running vAMT. In the following experiments, we turned on
the PC and measured the performance of AMT.

2) Obtaining Hardware Information: To obtain
hardware information of a physical desktop with
AMT, we used the AssetDisplay command. When the
command obtained system information, it used three
CIM classes: CIM BIOSElement for BIOS information,
CIM Chassis for a manufacturer and a model name,
and CIM ComputerSystemPackage for a global unique
identifier. It sent 12 WS-Management requests for both
AMT and vAMT. The left two bars in Fig. 13 show the
average execution time. As in the above experiment, vAMT
was faster then AMT.

When the command obtained CPU information, it
used five CIM classes, as described in Section V-B:
CIM Processor, CIM Chip, CIM Location,
CIM Realizes, CIM PhysicalElementLocation. The
former three are for obtaining instances and the latter two
are for association. The middle two bars in Fig. 13 show
the average execution time. It is shown that AMT is much
slower than vAMT. Compared this execution time with the
above time for obtaining system information, the execution
time for vAMT was almost the same, but that for AMT was
1.9 times slower. This may be caused by using association

classes, which have to search association information for a
requested instance.

3) Power Management: To change the power status of a
physical desktop with AMT, we used the RemoteControlUn-
typed command. When the command turned the power off,
it used one CIM class, CIM PowerManagementService.
The right two bars in Fig. 13 show the average execution
time. Similar to the other experiments, vAMT changed the
power status faster than AMT, but the difference was smaller.
This is because this command sent only one request.

VII. RELATED WORK

There are several hardware-level management interfaces.
Wake on LAN (WOL) enables only turning on a PC by a
special network message. Intelligent Platform Management
Interface (IPMI) [22] is similar to AMT and enables remote
management without depending on CPUs and the operat-
ing system. It can monitor temperatures, power status, fan
status, etc. even when the operating system is down. HP’s
implementation is called iLO and Dell’s is called iDRAC.
However, IPMI cannot be used for desktop management
because it is for server platforms and is not equipped with
PCs.

For IPMI, several IPMI simulators have been developed
such as the MIMIC IPMI simulator [23] and the OpenIPMI
lanserv simulator [24]. In particular, the lanserv simulator
can be used with a virtual IPMI device of QEMU-KVM,
which is provided as patches [25]. The lanserv simulator
can receive requests from remote management tools and
communicate with the virtual IPMI device to manage a
VM. In addition, agents inside a VM can access the virtual
IPMI device and use the functionalities of IPMI through
the lanserv simulator. These simulators are mainly used for
testing management tools without server hardware equipped
with IPMI. Our vAMT can be also used for such a purpose.

Until Intel AMT SDK 2.x, the AMT emulator was in-
cluded in the SDK. It is mainly for developing management
tools before AMT hardware was released. However, the em-
ulator was removed from SDK 3.0. It may have similarities
to vAMT, but it supported only the SOAP interface.

To manage not only physical machines but also VMs
through CIM, the CIM specification extended for virtualiza-
tion [26] is defined. Using this extension, management tools
can manage both physical and virtual desktops. In addition,
this extension supports VM-specific operations such as cre-
ation and migration. Xen-CIM [27] is the first implementa-
tion of this specification for Xen. Libvirt-CIM [28] manages
Linux virtualization platforms using libvirt. However, this
extension requires the modification to the existing man-
agement tools. Management tools have to differentiate two
types of desktops and use different CIM classes for them.
Since AMT does not support this extension, management
tools for AMT cannot be used for managing VMs without
modification.



Several cloud management software such as Cloud-
Stack [29] and OpenStack [30] support not only VMs
but also physical machines called bare metal. Traditional
Infrastructure-as-a-Service (IaaS) clouds provide users with
VMs whenever requested. Recently, they also provide bare
metal in the same manner. IPMI is used for the power man-
agement of bare metal and Preboot Execution Environment
(PXE) is used for booting the operating system. Although
cloud management software can handle a mix of VMs and
bare metal, it needs to be aware of the differences between
VMs and bare metal. In addition, managed bare metal has
to be server machines equipped with IPMI.

Desktop management tools can achieve unified desktop
management by being combined with management tools
for virtual desktops. For example, VMware Horizon Mi-
rage [2] can manage not only physical desktops but also
virtual desktops with VMware Horizon View [31]. Microsoft
System Center Configuration Manager [1] can manage both
types of desktops, for example, with XenDesktop [32]. How-
ever, only the maintenance of desktop images and agent-
based desktop management are mainly supported because
such tools provide only software-level management. Several
software-level tools also support AMT, but they can manage
only physical desktops, not virtual ones, using AMT.

VIII. CONCLUSION

In this paper, we proposed vAMT for managing virtual
desktops. vAMT has the same interfaces with AMT and en-
ables administrators to manage physical and virtual desktops
using the existing management tools in a unified manner.
We have implemented vAMT and confirmed that we could
monitor and control virtual desktops with vAMT.

Our future work is implementing all the CIM providers
and Web services for vAMT. In the current implementation,
we have implemented only a minimal set of them as a proof
of concept. For example, packet filtering is not supported.
Another direction is implementing unsupported interfaces
such as SOL. In addition, we need to implement a local
interface of AMT, which is accessed from agents inside
desktops. Through the interface, the agents can register soft-
ware information to vAMT for detection and send heartbeats
to vAMT for protection.

ACKNOWLEDGMENT

This research was supported in part by JSPS KAKENHI
Grant Number 25330086.

REFERENCES

[1] Microsoft, “System Center Configuration Manager:
Unified Device Management,” http://www.microsoft.
com/systemcenter/configurationmanager/.

[2] VMware, “VMware Horizon Mirage Desktop Management,”
http://www.vmware.com/products/horizon-mirage.

[3] Intel Corp., “Intel Active Management Technology,” http://
www.intel.com/amt/.

[4] DMTF, “Web Services for Management Specification Version
1.1.1,” 2012.

[5] World Wide Web Consortium, “SOAP Version 1.2,” 2007.
[6] DMTF, “Common Interface Model Infrastructure Version

2.7.0,” 2012.
[7] T. Richardson, Q. S.-F. K. R. Wood, and A. Hopper, “Virtual

Network Computing,” IEEE Internet Computing, vol. 2, no. 1,
pp. 33–38, 1998.

[8] T. Richardson, “The RFB Protocol Version 3.8,” http://www.
realvnc.com.

[9] The Open Group, “OpenPegasus,” http://www.openpegasus.
org/.

[10] Apache Software Foundation, “Apache Axis2,” http://axis.
apache.org/.

[11] Red Hat, Inc., “Kernel Based Virtual Machine,” http://www.
linux-kvm.org/.

[12] K. Schopmeyer and M. Brasher, “CIMPLE,” http://www.
simplewbem.org/.

[13] Red Hat, Inc., “libvirt: The Virtualization API,” http://libvirt.
org/.

[14] DMTF, “WS-Management CIM Binding Specification Ver-
sion 1.2.0,” 2011.

[15] ——, “Alert Standard Format Specification Version 2.0,”
2003.

[16] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart, “HTTP Authentica-
tion: Basic and Digest Access Authentication,” RFC 2617,
1999.

[17] Apache Software Foundation, “Apache Tomcat,” http://
tomcat.apache.org/.

[18] ——, “The Apache HTTP Server Project,” http://httpd.
apache.org/.

[19] A. Kivity, “QEMU-KVM Fork for x86,” http://wiki.qemu.org/
KVM.

[20] T. Waugh, “rfbproxy,” http://rfbproxy.sourceforge.net/.
[21] K. Kourai and H. Utsunomiya, “Synchronized Co-migration

of Virtual Machines for IDS Offloading in Clouds,” in Proc.
Int’l Conf. Cloud Computing Technology and Science, 2013,
pp. 120–129.

[22] Intel, Hewlett-Packard, NEC, and Dell, “Intelligent Platform
Management Specification Second Generation v2.0,” 2004.

[23] Gambit Communications, Inc., “MIMIC IPMI Simulator,”
http://www.gambitcomm.com/site/products/IPMISimulator.
shtml.

[24] C. Minyard, “OpenIPMI,” http://sourceforge.net/projects/
openipmi/.

[25] ——, “[Qemu-devel] [PATCH 00/20] Add an IPMI de-
vice to QEMU,” http://lists.gnu.org/archive/html/qemu-devel/
2013-05/msg04335.html.

[26] DMTF, “CIM System Virtualization Model Version 1.0.0,”
2007.

[27] G. S. Bestor and J. Fehlig, “Open Standard CIM Management
for Xen,” Xen Summit, 2006.

[28] Red Hat, Inc., “Libvirt-CIM: The Virtualization CIM API,”
http://libvirt.org/CIM/.

[29] Apache Software Foundation, “Apache CloudStack: Open
Source Cloud Computing,” http://cloudstack.apache.org/.

[30] OpenStack Project, “OpenStack Open Source Cloud Comput-
ing Software,” https://www.openstack.org/.

[31] VMware, “VMware Horizon View Virtual Desktop Manage-
ment,” http://www.vmware.com/products/horizon-view.

[32] Citrix Systems, Inc., “Virtual Desktop Delivery, Virtual Apps
on Demand,” http://www.citrix.com/products/xendesktop/.


