
Analysis of the Impact of CPU Virtualization on Parallel Applications in Xen

Kenichi Kourai
Department of Creative Informatics

Kyushu Institute of Technology
Fukuoka, Japan

kourai@ci.kyutech.ac.jp

Riku Nakata
Department of Mechanical Information Science

Kyushu Institute of Technology
Fukuoka, Japan

rikuhana@ksl.ci.kyutech.ac.jp

Abstract—Recently, Infrastructure as a Service (IaaS) is
being used for parallel computing. In IaaS clouds, parallel
applications are run in virtual machines (VMs), which own
virtual CPUs (vCPUs). Application threads are scheduled to
vCPUs and then vCPUs are scheduled to physical CPUs
(pCPUs). This CPU virtualization can affect the performance
of parallel applications. According to our experiments in Xen,
the scalability of parallel applications in a VM was largely
different from that in a physical machine (PM). In this paper,
we analyze the root cause of such a difference in scalability.
As a result of our investigation, we found that the root cause
was both resource conflicts between pCPUs and conflict in
vCPU scheduling. In addition, we provide three methods for
avoiding these conflicts and improving scalability. Furthermore,
we confirmed that the optimal vCPU scheduling could be
effective for not only applications parallelized by Tascell but
also most of NAS Parallel Benchmarks.

Keywords-vCPU scheduling, virtual machines, scalability,
chip multi-threading, parallel computing

I. INTRODUCTION

Traditional parallel computing is usually performed using
dedicated computer clusters. Recently, cloud computing is
being used for running parallel applications. Since cloud
computing provides elasticity, users can use necessary re-
sources when they need. For example, they can use clouds
only when running parallel applications. According to run-
ning applications, they can use the necessary number of
CPUs and the necessary amount of memory. In addition,
cloud computing can reduce the cost for parallel computing
because users can pay only for used resources.

In particular, Infrastructure as a Service (IaaS) is used for
maximum flexibility. Users can run any parallel applications
with the operating system and libraries required by the
applications. IaaS clouds provide virtual machines (VMs)
to users and users can set up the entire system. A VM
often owns more than one virtual CPU (vCPU). Application
threads are scheduled to vCPUs by the operating system in a
VM. Then vCPUs are scheduled to physical CPUs (pCPUs)
by the hypervisor. This CPU virtualization can affect the
performance of parallel applications. Extra vCPU scheduling
is performed and the thread scheduler in a VM cannot obtain
physical information precisely.

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

)

VM
ideal (VM)
PM
ideal (PM)

Figure 1. The performance in a PM and a VM.

To compare the performance between a VM and a phys-
ical machine (PM), we executed an application parallelized
by Tascell [1], which is a framework for dynamic load
balancing. Fig. 1 shows the execution time of this application
for various numbers of threads in Xen 4.4 and Linux 3.13.
We explain the details of this experiment in Section III-B.
From this result, we found that scalability was largely dif-
ferent even if we exclude the fixed virtualization overhead.
The performance improvement gradually slowed down in a
PM, while it steeply slowed down in 4 threads in a VM.
Strangely, the performance in a VM improved well again in
more than 8 threads.

In this paper, we analyze the root cause of such a differ-
ence in scalability between a VM and a PM. Consequently,
we found that the reason why performance improvement
steeply slowed down was resource conflicts between pCPUs.
AMD Opteron 6376 shares several resources between two
CPU cores. In addition, the root cause of the strange
scalability was conflict between the vCPU and NUMA-
node affinities in vCPU scheduling. On the basis of our
observation, we provide three methods for avoiding these
conflicts. Disabling the node affinity and/or the vCPU affin-
ity could improve scalability. The optimal vCPU affinity
could achieve the highest scalability and the performance
became comparable to that even in a PM in 16 threads.

Furthermore, we conducted the same investigation for
other parallel applications such as another application par-
allelized by Tascell and the NAS Parallel Benchmarks [2].
Most of the benchmarks showed the similar difference in

memory memory

pCPU0 pCPU1 pCPU2 pCPU3

vCPU0 vCPU1 vCPU0 vCPU1

VM 1 VM 2

NUMA node 1 NUMA node 2

hypervisor

OS OS

thread thread

Figure 2. vCPU scheduling.

scalability between a VM and a PM and the optimal vCPU
affinity largely improved the performance in a VM.

The organization of this paper is as follows. Section II
explains the basics of CPU virtualization. Section III shows
the performance comparison between a VM and a PM
and analyzes the root cause of the difference in scalability.
Section IV provides three methods for avoiding two kinds
of conflicts. Section V shows the performance in other
parallel applications. Section VI discusses related work and
Section VII concludes this paper.

II. CPU VIRTUALIZATION

A VM often owns more than one vCPU, whose number
is usually less than that of pCPUs. Application threads are
scheduled to vCPUs by the operating system in a VM and
then vCPUs are scheduled to pCPUs by the hypervisor,
as illustrated in Fig. 2. vCPU scheduling is indispensable
when the total number of vCPUs owned by VMs is more
than the number of pCPUs. Also, it is necessary when
pCPUs are temporarily used for other purposes, e.g., I/O and
system management. If there are no constraints for vCPU
scheduling, pCPUs are assigned to arbitrary vCPUs.

As one of the constraints, users can set the vCPU affinity
to a VM. The vCPU affinity enables the static binding of
vCPUs to specific pCPUs. A vCPU can be assigned to a
pCPU, or a group of vCPUs can be assigned to a group
of pCPUs. In the latter case, the vCPUs in a group are
dynamically scheduled to only an assigned group of pCPUs.
One of the advantages of the vCPU affinity is to reduce
communication between processors by scheduling vCPUs to
only one processor. Another advantage is to use CPU cache
effectively by one-to-one assignment.

The other constraint on vCPU scheduling is the awareness
of non-uniform memory access (NUMA). In the NUMA
architecture, a processor and its local memory consist of
a NUMA node, as shown in Fig. 2. A processor can access
local memory faster than remote memory of the other
NUMA nodes. Therefore, the vCPU scheduler attempts to
assign one or small number of nodes to a VM if possible.
This is called the node affinity. Only pCPUs included in
assigned nodes are scheduled to vCPUs.

III. ANALYSIS

A. Experimental Setup

We used a PC with two AMD Opteron 6376 2.3 GHz
processors (16 cores for each) and 320 GB of memory. For
virtualization software, we used Xen 4.4.0 [3] and ran Linux
3.13.0 in Dom0, which is a special VM for managing VMs.
We created a target VM with 16 vCPUs and 4 GB of memory
and assigned 16 CPU cores to it. In the VM, we ran Linux
3.13.0 as a fully virtualized guest. When we used this PC
as a PM without Xen, we ran Linux 3.13.0.

For a parallel application, we used the calculation of the
Fibonacci number that was parallelized using Tascell [1].
Tascell is a framework for backtracking-based dynamic load
balancing. Whenever a worker is requested by another idle
worker, it temporarily backtracks and restores the oldest
task-spawnable state. Thereby it spawns as a large task as
possible. For example, the calculation of fib(10) needs
the recursive calculation of fib(9) and fib(8). If worker
A is requested by worker B while it is calculating fib(9),
it spawns fib(8) as a new task and then worker B
calculates it. Fibonacci is a representative of searching appli-
cations. We call Fibonacci parallelized by Tascell as tascell-
fib. In our experiment, tascell-fib calculated fib(48).

For all experiments, we ran tascell-fib 10 times and
calculated the average.

B. Comparison between a VM and a PM

To examine the virtualization overhead in the execution
of a parallel application, we measured the execution time of
tascell-fib in a VM and a PM. The execution time includes
only parallel computation, not application setup such as
dynamic loading of shared libraries. We changed the number
of threads that tascell-fib used from 1 to 16. We assigned
16 cores in only one processor to a VM, considering NUMA
nodes. Fig. 1 shows the results. Note that this figure uses
a logarithmic scale for both axes. We also show the ideal
execution time calculated from the execution time in a single
thread. The coefficients of variance (CV) were 1.4% for a
VM and 11% for a PM at maximum.

These results show that fixed virtualization overhead was
24% at least from the performance in a single thread.
This overhead comes from vCPU scheduling and memory
virtualization using Intel Extended Page Table (EPT). In both
a VM and a PM, the performance improvement slowed down
as the number of threads increased. However, scalability
in more than 4 threads was largely different. Whereas the
performance improvement gradually slowed down in a PM,
it steeply slowed down in a VM. The performance difference
was maximized in 8 threads and the execution time in a
VM was 72% longer than that in a PM. Strangely, the
performance improved largely again after the number of
threads exceeded 8. Then the improvement slowed down
again in more than 12 threads.

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

)

vCPU scheduler only
thread scheduler only
both schedulers

Figure 3. The performance with one scheduler disabled.

C. Identifying a Problematic Scheduler

The strange scalability can be due to the thread scheduler
in the operating system, the vCPU scheduler in the hyper-
visor, or both. To examine which scheduler causes such a
phenomenon, we first disabled the thread scheduler. For this
purpose, we configured tascell-fib so that it assigned each
thread to a different vCPU exclusively. This CPU affinity
can prevent the operating system from scheduling threads
to arbitrary vCPUs. Next, we disabled the vCPU scheduler
by assigning pCPUs to vCPUs one by one. This vCPU
affinity can prevent the hypervisor from scheduling vCPUs
to arbitrary pCPUs.

Fig. 3 shows the execution time of tascell-fib for various
numbers of threads. When the thread scheduler was disabled,
the execution time became 6-9% shorter than that when both
schedulers were enabled. However, scalability was almost
the same in both cases. On the other hand, when the vCPU
scheduler is disabled, the scalability was different from
that when both schedulers were enabled. As the number
of threads increased, the performance improvement slowed
down more gradually like a PM in Fig. 1. From these results,
we conclude that only the vCPU scheduler is problematic.

D. Impact of pCPU Distribution

We assumed that the reason of the strange scalability
in a VM was pCPU assignment from only one processor.
To examine whether this assumption is correct or not, we
changed pCPU distribution m-n between two processors by
configuring the vCPU affinity. m-n means that m and n
pCPUs are assigned from processor 1 and 2, respectively. We
assigned 16 pCPUs in total from two processors to a VM.
pCPUs in each processor were consecutively assigned from
the lowest number (0 and 16, respectively). Fig. 4 shows the
execution time for nine different distributions. The CV was
less than 10% at maximum, except for 2-14.

These results show that the performance was largely
affected by pCPU distribution in more than 4 threads. 0-16
is the worst until the number of threads exceeded nine. One
of the best distributions was 8-8, which means that pCPUs
are evenly assigned from two processors. The performance
improved almost ideally until 8 threads. Compared with 0-

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

) 0-16
1-15
2-14
3-13
4-12
5-11
6-10
7-9
8-8
ideal

Figure 4. The performance in various pCPU distributions.

0 2 42 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
pCPU number

0

20

40

60

80

100

C
P

U
 u

til
iz

at
io

n
(%

)

0-16
8-8

Figure 5. The pCPU usage in 8 threads for distributions 0-16 and 8-8.

16, this distribution improved the performance by up to
38%. However, the performance improvement still slowed
down in more than 8 threads. Interestingly, the performance
in 16 threads was better than 8-8 when the m and n in
distributions are odd. For example, 7-9 was similar to 8-8
and outperformed 8-8 in 16 threads. Instead, the performance
was worse than 8-8 in 8 threads.

E. Difference of pCPU Usage

To examine the difference of pCPU usage, we measured
the pCPU utilization in 8 threads, using xenmon. We
focused on 0-16 and 8-8, where the performance difference
was the largest in 8 threads. Fig. 5 shows the results. Xen
assigned the number 0-15 to pCPUs in processor 1 and the
number 16-31 to those in processor 2. In 8-8, four pCPUs (1,
3, 4, and 6) in processor 1 and four pCPUs (16, 19, 20, and
22) in processor 2 were mainly used. In 0-16, in contrast,
eight pCPUs (16-23) in processor 2 were used. These results
match the configured pCPU assignments. However, only the
first half of the pCPUs in processor 2 was densely used in
0-16, whereas both processors were sparsely used in 8-8.

F. Resource Conflicts between pCPUs

From the difference of pCPU usage between 0-16 and 8-
8, we suspected that the reason why performance improve-
ment slowed down was resource conflicts between pCPUs.
Opteron 6376 processors we used adopt the Clustered Multi-
Thread microarchitecture. In this architecture, two cores are
packaged as a module and share several resources such
as an instruction decoder, L2 cache, and a floating-point
unit (FPU). Therefore, the performance can degrade when
two cores in a module are competing. To examine such
competing modules, we measured the pCPU utilization every

0 4 8 12 16
of threads

0

1

2

3

4

5

6

of

 c
om

pe
tin

g
m

od
ul

es

0-16
8-8

Figure 6. The number of competing modules.

processor 1 processor 2

 module

 core

Figure 7. The pCPU usage by 16 threads in 7-9.

second and calculated the average number of modules in
which the two cores were used simultaneously. We multi-
plied the utilization of two pCPUs belonging to the same
module and considered it the ratio of module contention.
For example, when 50% of one core and 50% of the other
core are used, the ratio is 0.25.

Fig. 6 shows the average number of competing modules
and the standard deviation in distributions 0-16 and 8-8.
Compared with Fig. 4, the number of competing modules
has a strong correlation with the performance. When the
number of threads increases, the performance improvement
is small if the number of competing modules also increases.
Otherwise, the performance improves almost ideally in pro-
portion to the number of threads. For 0-16, the performance
did not improve well between 4 and 8 threads and between
12 and 16 threads because the number of competing modules
increased. In contrast, the number of competing modules
did not increase between 8 and 12 threads and therefore
the performance improvement was significant. For 8-8, the
change of the number of competing modules was largely
different. This caused the difference of scalability between
0-16 and 8-8.

It should be noted that, when m and n in distributions are
odd, the number of used modules becomes nine, not eight,
in 16 threads. For 7-9, for example, four modules are used
in processor 1 and five modules are used in processor 2,
as illustrated in Fig. 7. Therefore the number of competing
modules is only seven. This means that only one core is
used for the remaining two modules. From this reason, the
performance in 16 threads is better than when m and n are
even.

G. Conflict in vCPU Scheduling

The next research question is why module contention
happens so early only in 0-16. First, we inspected how CPU

processor 1 processor 2

 module

 core

Figure 8. The pCPU usage by 8 threads in 8-8.

processor 1 processor 2

 module

 core

Figure 9. The change of the pCPU usage in 0-16.

cores were used when we increased the number of threads.
For 8-8, only one core in each module was used until 8
threads, as illustrated in Fig. 8. This means that CPU cores
were used so that they did not compete. In more than 8
threads, there were no modules with two idle cores because
only cores in 8 modules were assigned to a VM. Therefore
the other core in each module with one busy core was used.
This pCPU usage means that the vCPU scheduler in Xen
correctly considers modules in Opteron. For 0-16, on the
other hand, the other core in a module with one busy core
was used when the number of threads exceeded four, as
illustrated in Fig. 9. In more than 8 threads, modules with
two idle cores were used again. This pCPU usage is largely
different from that in 8-8.

To examine why the vCPU scheduler performed such
pCPU usage, we investigated the source code of Xen.
Consequently, we found that the root cause was the conflict
between the vCPU and NUMA-node affinities. Opteron 6376
has two NUMA nodes and each node consists of eight CPU
cores. In our PC, Xen assigned the numbers 0 and 1 to the
nodes in processor 1 and the numbers 2 and 3 to those in
processor 2. When a VM is created by the xl command, the
command automatically sets the node affinity to the VM. In
our experiments, nodes 0 and 2 were assigned to a VM.

In addition to such automatically set node affinity, we
manually set the vCPU affinity to a VM. In our PC, nodes
0, 1, 2, and 3 contain pCPUs 0-7, 8-15, 16-23, and 24-
31, respectively. For distribution 8-8, we assigned pCPUs
0-7 from processor 1 and 16-23 from processor 2 to a
VM. These pCPUs were contained in nodes 0 and 2. In
this case, the vCPU affinity did not conflict with the node
affinity. Therefore, the vCPU scheduler first used eight non-
competing cores in nodes 0 and 2 and then competing cores
in these nodes, as shown in Fig. 8.

For 0-16, on the other hand, we assigned pCPUs 16-31

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

)

8-8
0-16 (default node affinity)
0-16 (correct node affinity)

Figure 10. The performance of 0-16 with the correct node affinity.

from processor 2 to a VM. These pCPUs were contained
in nodes 2 and 3. This vCPU affinity conflicted with the
node affinity, which assigned nodes 0 and 2. Since pCPUs
in node 2 preceded those in node 3 due to the node affinity,
the vCPU scheduler first used four non-competing cores in
node 2 and then four competing cores in node 2, as shown
in Fig. 9. After that, it used four non-competing cores in
node 3 and then four competing cores in node 3.

IV. IMPROVING SCALABILITY

We provide three methods for avoiding resource conflicts
between pCPUs and/or conflict between the vCPU and node
affinities in vCPU scheduling.

A. Disabling the Node Affinity

To avoid conflict between vCPU and node affinities,
we have developed a tool for disabling the node affinity.
Specifically, the tool sets the affinity to all the nodes by
issuing a hypercall to the hypervisor. When we set the vCPU
affinity after that, the corresponding nodes are automatically
reset to the VM as the correct node affinity. For example,
the node affinity was set to nodes 2 and 3 for the vCPU
affinity to pCPUs 16-31. It is more desirable to disable the
node affinity when we set the vCPU affinity, but this requires
modification to Xen itself. Therefore we have developed an
independent tool.

Using this tool, we measured the performance for 0-16
with the correct node affinity. Fig. 10 and Fig. 11 show
the execution time and the number of competing modules,
respectively. The performance improved by disabling the
node affinity and became almost the same as that in 8-
8. However, the degree of module contention was slightly
different. In 0-16 with the correct node affinity, the number
of competing modules was less than that in 8-8 when the
number of threads was more than 12.

It should be noted that the node affinity is not set when we
set the vCPU affinity, not manually, in the configuration file
of a VM. However, this is not a good way because the vCPU
affinity strongly depends on processors. When we migrate
a VM to another host, the numbers of processors and their
cores can be different. According to processors, we should
change the vCPU affinity. For example, if a destination host

0 4 8 12 16
of threads

0

1

2

3

4

5

of

 c
om

pe
tin

g
m

od
ul

es

8-8
0-16 (default node affinity)
0-16 (correct node affinity)

Figure 11. The number of competing modules with no node affinity.

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

)

w/ node affinity
w/o node affinity
ideal

Figure 12. The performance with no vCPU affinity.

has only one processor with 16 cores, the vCPU affinity to
pCPUs 16-31 is invalid.

B. Disabling the vCPU Affinity

As another method, we disabled the vCPU affinity simply
by not setting it. By default, the node affinity is automatically
set to a VM when we do not set the vCPU affinity. Therefore,
the VM could use pCPUs 0-7 and 16-23, which were
corresponding to nodes 0 and 2. This pCPU assignment is
the same as 8-8. In addition, when we disabled the node
affinity using our tool, the VM could use all the pCPUs 0-
31. Fig. 12 and Fig. 13 show the execution time and the
number of competing modules, respectively, for both cases.
With the node affinity, the performance was similar to that
for 8-8 although it was not exactly the same.

With no node affinity, on the other hand, the perfor-
mance improved well until 16 threads. Theoretically, module

0 4 8 12 16
of threads

0

1

2

3

4

5

6

of

 c
om

pe
tin

g
m

od
ul

es

w/ node affinity
w/o node affinity

Figure 13. The number of competing modules with no vCPU affinity.

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

)

PM
optimal
ideal (VM)

Figure 14. The performance with the optimal vCPU affinity.

contention should be avoided completely because all the
16 modules in two processors can be used. However, the
number of competing modules was not zero, particularly,
between 14 and 16 threads.

C. Optimal vCPU Affinity

To avoid module contention completely, we assigned only
one core per module to a VM using the vCPU affinity.
Specifically, we used only pCPUs with even numbers. In this
case, the node affinity was not substantially affected because
usable pCPUs were across all the nodes. Fig. 14 shows the
result in this optimal vCPU affinity. The CV was 2.7% at
maximum. The number of competing modules became zero
and the performance improved well until 16 threads. In 16
threads, the performance was 4.6% higher than that with no
vCPU and node affinities.

Even compared with the performance in a PM, that in a
VM was slightly better in 16 threads. This is because CPU
assignment in a PM was not optimal. In the default CPU
scheduling in a PM, the number of competing modules was
4.0. When we set the CPU affinity using Linux cgroup as it
was optimal, it could also avoid resource conflicts in each
module. As a result, the performance in a PM became the
same as that in a VM when we used 16 threads.

V. OTHER PARALLEL APPLICATIONS

For other parallel applications, we examined whether the
conflict between the vCPU and node affinities occurred and
whether the optimal vCPU affinity improved performance.
We executed each application in distributions 0-16, 8-8, and
the optimal vCPU affinity. We ran each application 10 times
and calculated the average.

A. N-Queen Parallelized by Tascell

As another application parallelized by Tascell, we ran N-
Queen, called tascell-nq. Fig. 15a shows the execution time
when N was 16. Like tascell-fib, the performance in 0-
16 was also lower than that in 8-8, but the difference was
smaller than that in tascell-fib. The performance degradation
due to using 0-16 was 24% at maximum in tascell-nq, while
that was 38% in tascell-fib.

fib nq BT CG DC EP FT IS LU MG SP UA
0.8

1.0

1.2

1.4

1.6

1.8

2.0

no
rm

al
iz

ed
 r

at
io

instruction fetch stall
FPU dispatch stall
L2 cache miss
LLC miss

Figure 16. The severity of resource conflicts in 0-16 over 8-8 in 8 threads.

To examine the cause, we measured detailed resource
conflicts in 8 threads using hardware performance counters.
Fig. 16 shows the ratio of the number of events in 0-16
to that in 8-8 for shared resources in each module. The
ratio is normalized by the number of events per second to
compare different resources and benchmarks. For tascell-fib
and tascell-nq, the cause of the performance degradation in
0-16 was instruction fetch stalls in the instruction decoders.
In tascell-nq, the ratio in the instruction fetch stall was
lower than that in tascell-fib. This is the reason why the
performance difference was smaller.

Like tascell-fib, the optimal vCPU affinity improved the
performance. Surprisingly, in 16 threads, the performance
in a VM was 7.5% higher than that in a PM. At that time,
the number of competing modules was 5.2 and this was
larger than that in tascell-fib. When we set the optimal CPU
affinity in a PM, the performance became 2.3% higher in 16
threads than that in a VM.

B. NAS Parallel Benchmarks

Without Tascell, we ran the NAS Parallel Benchmarks [2]
using OpenMP. These benchmarks are different from
tascell-fib and tascell-nq in that most of them use floating
point and access a larger amount of memory. Fig. 15(b)-(l)
show the results of 10 benchmarks. Note that we measured
DC in both the out-of-core and in-core modes, which use
disks and only memory to store results, respectively. In most
of the benchmarks, the performance in 0-16 was less than
that in 8-8, except for DC in the out-of-core mode and EP.
For DC in that mode, the scalability in a VM was very
low as shown in Fig. 15(d). This is due to the overhead
of storage virtualization. Since we focus on the impact of
CPU virtualization in this paper, we consider only the in-
core mode below. In contrast, EP mainly executed floating-
point computation with little communication and therefore
scaled very well without regard to pCPU assignments. As
in Fig. 16, the degree of resource conflicts was almost the
same between 0-16 and 8-8 for EP.

According to Fig. 16, there are several causes for the
performance differences between 0-16 and 8-8. For DC and
LU, instruction fetch stalls were the cause of the perfor-
mance degradation in 0-16. Unlike tascell-fib and tascell-

1 2 4 8 16
of threads

4

8

16

32

64

128

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(a) N-Queen with Tascell

1 2 4 8 16
of threads

4

8

16

32

64

128

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(b) BT

1 2 4 8 16
of threads

16

32

64

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(c) CG

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(d) DC (out-of-core)

1 2 4 8 16
of threads

2

4

8

16

32

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(e) DC (in-core)

1 2 4 8 16
of threads

4

8

16

32

64

128
tim

e
(s

ec
)

PM
0-16
8-8
optimal

(f) EP

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(g) FT

1 2 4 8 16
of threads

1

2

4

8

16

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(h) IS

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(i) LU

1 2 4 8 16
of threads

2

4

8

16

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(j) MG

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(k) SP

1 2 4 8 16
of threads

4

8

16

32

64

tim
e

(s
ec

)

PM
0-16
8-8
optimal

(l) UA

Figure 15. The performance of various parallel applications.

nq, FPU dispatch stalls in the instruction decoders degraded
the performance for CG, UA, LU, and SP. In addition, last-
level cache (LLC) misses were another cause for CG, MG,
DC, FT, and SP. In Opteron 6376, LLC is shared in each
node, not in each module. In 8 threads, only one node was
used in 0-16, while two nodes were used in 8-8. Therefore 0-
16 was subject to LLC misses more. In contrast, the impact
of L2 cache misses was limited.

In all the benchmarks, the performance in the optimal
vCPU affinity was higher than that in 8-8 as well. Fur-
thermore, in BT, DC, LU, SP, and UA, it outperformed
even that in a PM when the number of threads was large.
This is because the number of competing modules in a PM
was between 0.7 and 4.1. When we used the optimal CPU
assignment in a PM, the performance became slightly better
than that in a VM. For CG, FT, and MG, on the other hand,
the performance in a PM was higher than the optimal vCPU
affinity by default. Since the number of competing modules
for them was similar to the others, the root cause is not
that the default CPU scheduling was better for them. We
examined the causes of resource conflicts using hardware
performance counters, but we could not find any strong
correlation. Identifying this root cause is our future work.

VI. RELATED WORK

There are several researches for thread schedulers that
are aware of chip multi-threading (CMT). MASA [4] assists
thread scheduling for Intel’s Hyper-Threading by dynami-
cally adjusting the CPU affinity. It detects resource conflicts
in a CPU core (package) using the hardware performance
counter and swaps two threads between two CPU cores
to equalize the loads. Bulpin et al. [5] has implemented a
similar thread scheduler in the Linux kernel. The scheduler
calculates a performance ratio from single-thread and dual-
thread executions in one CPU core and schedules threads to
maximize throughput. Fedorova et al. [6] simulates a CMT
processor to understand resource conflicts and proposes
a CMT-savvy thread scheduler. The scheduler schedules
threads with high cycles per instruction (CPI) and those with
low CPI in one CPU core. These approaches can be also
applied to the vCPU scheduler.

AMD’s Clustered Multi-Thread has similarities to Intel’s
Hyper-Threading, but these have different performance bot-
tlenecks. In the former microarchitecture, two CPU cores
in one module share one instruction decoder and one L2
cache, while they have two independent integer units. In the
latter, on the other hand, two threads in one CPU core have

two independent instruction decoders, while they share one
integer unit and one L1/L2 cache. Therefore, the instruction
decoder is a bottleneck only in AMD’s processors, whereas
the integer unit and the L1 cache are bottlenecks only in
Intel’s processors. In any cases, it is important to perform
microarchitecture-aware vCPU scheduling.

There are two well-known problems on vCPU scheduling.
These problems cause a long waiting time for lock waiters in
VMs with multiple vCPUs. One problem is lock-holder pre-
emption (LHP) [7]. A lock-holder vCPU can be preempted
by the vCPU scheduler when vCPUs in other VMs are
waiting for pCPU. If there is a lock waiter on another vCPU,
the lock waiter has to wait for the lock holder to release the
lock. However, the lock holder cannot release the lock until
the lock-holder vCPU is rescheduled after other vCPUs use
up pCPU. The other problem is vCPU stacking [8]. When a
lock-holder vCPU is preempted, a lock-waiter vCPU can be
scheduled on the same pCPU. In this case, the lock-holder
vCPU can wait in the run queue on the same pCPU. Since
the lock waiter is waiting for the lock holder to release a
lock, the lock-waiter vCPU does nothing.

To solve these problems, co-scheduling has been proposed
[9]–[11]. It schedules all the vCPUs of the same VM to
sufficient number of pCPUs simultaneously. Whenever a
lock-holder vCPU is preempted, lock-waiter vCPUs are also
preempted. Each vCPU is scheduled to a different pCPU.
However, co-scheduling introduces CPU fragmentation and
priority inversion. Even if several pCPUs are available,
vCPUs cannot use them until the sufficient number of pCPUs
becomes available. Such available but unused pCPUs are
wasted. In addition, a vCPU with higher priority can be
scheduled after a vCPU with lower priority. If all the pCPUs
are used, emergent vCPUs has to wait until the end of the
current time slice.

Balance scheduling [8] spreads vCPUs of a VM on dif-
ferent pCPUs and prevents both lock-holder and lock-waiter
vCPUs from entering the run queue of the same pCPU.
This scheduling can avoid vCPU stacking, but it cannot
prevent LHP. Demand-based scheduling [12] is scheduling
driven by inter-processor interrupts (IPIs) between vCPUs.
This can effectively reduce synchronization latency without
sacrificing the throughput of non-communicating vCPUs.
However, this scheduling lacks support for spinlock-based
synchronization. VCPU-Bal [13] dynamically adjusts the
total number of runnable vCPUs of VMs. Thereby, the
hypervisor can assign each vCPU to a different pCPU and
avoid LHP and vCPU stacking. One disadvantage is that the
operating systems have to be modified.

VII. CONCLUSION

In this paper, we analyzed the root cause of the difference
in scalability between a VM and a PM. Our main findings
are (1) that resource conflicts occur between two CPU cores
in each module of Opteron 6376 processors and (2) that

strange scalability in a VM is caused by conflict between
the vCPU and NUMA-node affinities in vCPU scheduling.
On the basis of our observation, we provided three methods
for avoid these conflicts. Furthermore, we confirmed that
the optimal vCPU affinity was effective for not only appli-
cations parallelized by Tascell but also most of NAS Parallel
Benchmarks.

Our future work is to develop a vCPU scheduler that can
automatically disable the NUMA-node affinity according to
workloads. To be comparable to the optimal vCPU affinity,
the scheduler should completely avoid contention between
two CPU cores in each module.

ACKNOWLEDGMENT

This work was supported in part by JSPS KAKENHI
Grant Number 26280023.

REFERENCES

[1] T. Hiraishi, M. Yasugi, S. Umatani, and T. Yuasa,
“Backtracking-based Load Balancing,” in Proc. Symp. Princi-
ples and Practice of Parallel Programming, 2009, pp. 55–64.

[2] NASA Advanced Supercomputing Division, “NAS Paral-
lel Benchmarks,” http://www.nas.nasa.gov/publications/npb.
html.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. Symp. Operating Systems Principles,
2003, pp. 164–177.

[4] J. Nakajima and V. Pallipadi, “Enhancements for Hyper-
Threading Technology in the Operating System – Seeking
the Optimal Scheduling,” in Proc. Workshop on Industrial
Experiences with Systems Software, 2002.

[5] J. Bulpin and I. Pratt, “Hyper-Threading Aware Process
Scheduling Heuristics,” in Proc. USENIX Annual Technical
Conf., 2005.

[6] A. Fedorova, C. Small, D. Nussbaum, and M. Seltzer,
“Chip Multithreading Systems Need a New Operating System
Scheduler,” in Proc. ACM SIGOPS European Workshop,
2004.

[7] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski,
“Towards Scalable Multiprocessor Virtual Machines,” in Proc.
Conf. Virtual Machine Research and Technology Symposium,
2004.

[8] O. Sukwong and H. S. Kim, “Is Co-scheduling Too Expensive
for SMP VMs?” in Proc. Conf. Computer Systems, 2011, pp.
257–272.

[9] VMware, Inc., “Co-scheduling SMP VMs in VMware ESX
Server,” 2008.

[10] C. Weng, Z. Wang, M. Li, and X. Lu, “The Hybrid Scheduling
Framework for Virtual Machine Systems,” in Proc. Intl. Conf.
Virtual Execution Environments, 2009, pp. 111–120.

[11] Y. Bai, C. Xu, and Z. Li, “Task-aware Based Co-scheduling
for Virtual Machine System,” in Proc. Symp. Applied Com-
puting, 2010, pp. 181–188.

[12] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng, “Demand-
based Coordinated Scheduling for SMP VMs,” in Proc. Intl.
Conf. Architectural Support for Programming Languages and
Operating Systems, 2013, pp. 369–380.

[13] X. Song, J. Shi, H. Chen, and B. Zang, “Schedule Processes,
not VCPUs,” in Proc. Asia-Pacific Workshop on Systems,
2013.

