
Secure Out-of-band Remote Management
Using Encrypted Virtual Serial Consoles in IaaS Clouds

Kenichi Kourai
Department of Creative Informatics

Kyushu Institute of Technology
Fukuoka, Japan

kourai@ci.kyutech.ac.jp

Tatsuya Kajiwara
Department of Creative Informatics

Kyushu Institute of Technology
Fukuoka, Japan

kajita@ksl.ci.kyutech.ac.jp

Abstract—In Infrastructure-as-a-Service (IaaS) clouds, users
manage the systems in virtual machines (VMs) through remote
management systems such as Secure Shell (SSH). IaaS often
provides out-of-band remote management using virtual serial
consoles (VSCs). Using VSCs, even on failures inside their VMs,
users can directly access their systems through a virtual serial
device running in the management VM. However, the manage-
ment VM is not always trustworthy in IaaS. Attackers in the
management VM can easily eavesdrop on inputs and outputs
in remote management. To prevent such information leakage,
this paper proposes SCCrypt, which provides encrypted VSCs
to the management VM. Encrypted VSCs are securely achieved
by the trusted virtual machine monitor (VMM). They decrypt
console inputs encrypted by SSH clients, while they encrypt
console outputs, which are decrypted by SSH clients. For
this purpose, the VMM correctly identifies the inputs and
outputs by tracking device state without the cooperation of the
management VM or user VMs. At reconnection to encrypted
VSCs, the VMM re-encrypts pending console outputs by
reversely applying encryption process of a stream cipher. We
have implemented SCCrypt in Xen and the OpenSSH client
and confirmed that the overhead was small enough.

Keywords-Virtual machines, remote management, informa-
tion leakage, IaaS clouds, insider attacks

I. INTRODUCTION

Infrastructure as a Service (IaaS) provides users with
virtual machines (VMs) hosted in data centers. Its users
can set up their systems in the provided VMs called user
VMs and use them as necessary. They usually manage their
systems through remote management systems such as Secure
Shell (SSH). To allow users to access their systems even on
failures inside their VMs, IaaS often provides out-of-band
remote management using virtual serial consoles (VSCs).
Unlike traditional remote management, an SSH server is run
in a special VM called the management VM, not in a user
VM, and directly interact with a virtual serial device for a
user VM. Even if the network of a user VM is disconnected
due to configuration errors, a user can continue to manage
the VM.

However, this out-of-band remote management increases
security risks because the management VM is not always
trustworthy in IaaS [1]–[4]. The management VM may be

compromised by outside attackers if it is not well main-
tained. If some of the administrators are malicious, they
may mount insider attacks [5]. Such attackers can easily
eavesdrop on inputs and outputs in remote management by
replacing an SSH server with a malicious one. For example,
they can extract passwords from console inputs sent from
an SSH client and steal sensitive or private information
from console outputs. In addition, they may execute arbitrary
commands inside user VMs by sending console inputs.

To solve this security problem, we propose SCCrypt,
which protects sensitive information in out-of-band remote
management against attackers in the management VM. SC-
Crypt provides encrypted VSCs to the management VM.
Encrypted VSCs are securely achieved using the virtual
machine monitor (VMM). The VMM is a software layer un-
derlying VMs and can be trusted by several techniques [6]–
[9]. In an encrypted VSC, console inputs encrypted by an
SSH client are securely decrypted by the trusted VMM.
In contrast, console outputs are securely encrypted by the
VMM and they are decrypted by an SSH client. At that
time, the VMM correctly identifies the inputs and outputs by
tracking device state without cooperation of the management
VM or user VMs. When an SSH client reconnects to an
encrypted VSC, the VMM decrypts pending console outputs
in a virtual serial device by reversely applying encryption
process of a stream cipher and re-encrypts them.

We have implemented SCCrypt for both fully virtualized
(HVM) and para-virtualized (PV) guest operating systems in
Xen [10]. For HVM guests, the VMM traps I/O instructions
to virtual serial devices and extracts input and output data
using I/O port addresses and tracked device state. For PV
guests, the VMM identifies buffers called console rings allo-
cated in user VMs and mediates the accesses by virtual serial
devices. Our experimental results show (1) that attackers
in the management VM could not steal console inputs and
outputs and (2) that the overhead of SCCrypt was small
enough.

The organization of this paper is as follows. Section II
describes issues in out-of-band remote management via the
management VM. Section III proposes SCCrypt for protect-



SSH
server

SSH
client

user terminal management VM user VM

virtual
serial device

serial
driver

virtual serial
console (VSC)

Figure 1. Out-of-band remote management using a virtual serial console.

ing sensitive information in out-of-band remote management
and Section IV explains the implementation details in Xen.
Section V shows our experimental results. Section VI de-
scribes related work and Section VII concludes this paper.

II. MOTIVATION

A. Out-of-band Remote Management in Clouds

To manage user VMs in IaaS clouds, a user usually
connects an SSH client at his host to an SSH server running
in a user VM. This is called in-band remote management
because a user accesses a VM using functionalities provided
inside the VM. However, this in-band remote management
is not powerful enough to manage a user VM at any times.
If a user has just failed the configurations of the network or
firewall inside a VM, he cannot manage the VM at all. At
that time, he would have to abandon that VM and recreate
a new VM from scratch. As another example, when an SSH
server in a user VM is not running normally, an SSH client
cannot access the VM. For example, an SSH server is not
started until the operating system in a VM has been booted
normally. It may crash by bugs.

To enable users to manage their VMs in such cases,
IaaS often provides out-of-band remote management. As
illustrated in Fig. 1, an SSH server is run in a privileged VM
called the management VM. The management VM is often
provided in type-I VMMs such as Xen and Hyper-V and
has privileges for accessing all user VMs. The SSH server
accesses a virtual serial console (VSC) provided for each
user VM. A VSC consists of a virtual serial device in the
management VM and a serial driver in a user VM. Out-of-
band remote management does not rely on the network or an
SSH server in a user VM. A user can access his VM as if he
locally logged into the VM even on network failures in the
VM. For example, even if a user fails network configuration
in a user VM, he could fix the problem by modifying the
configuration using a VSC.

This out-of-band remote management relies on the man-
agement VM, but the management VM is not always trust-
worthy in clouds [1]–[4]. Since user VMs can be migrated
between data centers, it is not guaranteed that they are run
in data centers where all the administrators are trusted. If
the management VM is managed by lazy administrators, it

may have vulnerabilities in software or configurations. In
this case, vulnerable management VMs may be penetrated
by outside attackers. Worse, if administrators themselves are
malicious, they can act as inside attackers [5].

If such attackers abuse the privileges of the management
VM, they can eavesdrop on or tamper with inputs and
outputs in remote management. Even if the network is
encrypted between a client host and the management VM,
the data processed by an SSH server in the management
VM is not encrypted. For console inputs, attackers can
modify the SSH server and the virtual serial device and then
easily obtain input data. For example, attackers can extract
passwords from the inputs to a login prompt. In addition,
they can send input data to a user VM and make the VM
execute arbitrary commands. For console outputs, attackers
can steal sensitive information output to the console. For
example, when a user edits configuration files, attackers can
obtain displayed passwords in them.

B. Threat Model and Assumptions

We assume that IaaS providers themselves are trusted.
This assumption is widely accepted [1]–[4]. To guarantee
this, it is natural that a small number of trusted administra-
tors are responsible for the maintenance of the infrastructure
in IaaS. The other average administrators may be lazy or
malicious. We do not consider physical attacks because
server rooms should be strictly protected in data centers.

We assume that the management VM can be malused by
outside attackers or untrusted administrators in IaaS. Such
attackers could take the root privilege in the management
VM and even modify the operating system kernel. In this
paper, we focus on the protection of sensitive information
sent between an SSH client and a user VM in out-of-
band remote management. We do not consider the integrity
and availability of out-of-band remote management. Also,
the confidentiality of user VMs is out of scope. It can be
protected by several techniques [2], [4].

III. SCCRYPT

In this paper, we propose SCCrypt, which enables se-
cure out-of-band remote management to prevent informa-
tion leakage to the management VM. For this purpose,
SCCrypt provides encrypted VSCs to the management VM.
An encrypted VSC receives encrypted console inputs from
the management VM, decrypts them, and sends them to
a user VM. Conversely, it receives unencrypted console
outputs from a user VM, encrypts them, and sends them
to the management VM. Console inputs and outputs are
encrypted and decrypted by an SSH client, respectively.
Even if attackers in the management VM eavesdrop on
encrypted VSCs, information leakage is prevented because
all the console inputs and outputs are encrypted.

A research question is where such encryption and de-
cryption can be done securely. It is straightforward to



encrypt and decrypt data in the management VM, but the
management VM is not trusted in clouds. If an SSH server or
a virtual serial device decrypts and encrypts console inputs
and outputs, respectively, attackers can tamper with such a
component in the management VM and easily steal sensitive
information. Another possible location is a serial driver in a
user VM. However, it is not desirable to modify the existing
device driver because users cannot use favorite operating
systems. This is critical in IaaS clouds.

Therefore, SCCrypt encrypts and decrypts data for an
encrypted VSC in the VMM, as illustrated in Fig. 2. The
VMM is a software layer underlying VMs and manages
the interaction between VMs. The integrity of the VMM
can be guaranteed by several techniques. Remote attestation
with TPM [6] enables the trusted authority to check the
integrity at boot time. HyperGuard [7], HyperCheck [8], and
HyperSentry [9] can securely monitor the VMM at runtime
using System Management Mode (SMM) in the commodity
x86 processor families. We assume that such infrastructure
for trusting the VMM is securely maintained by trusted
administrators in IaaS.

Using the trusted VMM, SCCrypt encrypts and decrypts
console inputs and outputs as follows. For console inputs,
an SSH client encrypts input data and sends it to an SSH
server in the management VM. Note that this encryption
is different from the usual encryption done by SSH. After
the SSH server writes the encrypted data to a virtual serial
device, the device transmits the data to a user VM via the
VMM. At that time, the VMM decrypts the data. For console
outputs, the VMM intercepts output data when the serial
driver in a user VM writes it to a virtual serial device. Then
it encrypts the data and, instead of the serial driver, writes
the encrypted data to the virtual serial device. The data is
sent to an SSH client via an SSH server and is decrypted
by the client.

A challenge is how the VMM identifies console inputs to
be decrypted and outputs to be encrypted. The traditional
VMM does not recognize the details of a virtual serial
device in the management VM and a serial driver in a
user VM. However, the VMM cannot rely on information
from an untrusted virtual serial device. In addition, it cannot
obtain extra information from an unmodified serial driver.
In SCCrypt, therefore, the VMM identifies necessary data
without the cooperation of the device and the driver. It tracks
the state of a virtual serial device and a serial driver from
only the interactions between the management VM and a
user VM. Based on the tracked state and the knowledge of
the standard of serial devices, the VMM can extract only
console inputs and outputs. Further details are explained in
the next section.

In SCCrypt, an SSH client securely shares a session key
with the VMM whenever it connects to an encrypted VSC.
First, it obtains the public key of the VMM from the trusted
key server outside a cloud. We assume that the public key is

SSH
server

user terminal management VM user VM

en-/decrypt

SSH client

virtual
serial device

VMM de-/encrypt

serial
driver

encrypted VSC

Figure 2. The architecture of SCCrypt.

registered by trusted cloud administrators in advance. Then
the SSH client generates a session key, encrypts it with the
public key, and sends it to the VMM. The VMM decrypts
the encrypted session key with its private key and uses it for
decrypting console inputs and encrypting console outputs.
It should be noted that the SSH client has to send the
session key via the management VM due to the lack of the
communication ability in the VMM. Attackers can obtain
the encrypted key but cannot decrypt it because the private
key is stored in the VMM.

At reconnection, it is challenging to process pending
console outputs in a virtual serial device. While an SSH
client is not connected to an encrypted VSC, console outputs
from a user VM are stored in the buffer of a virtual
serial device. When an SSH client is reconnected to the
encrypted VSC, output data in the buffer is sent to the
client. However, the SSH client cannot decrypt it because
SCCrypt has encrypted the output data with an old session
key. Therefore, the VMM decrypts output data in the buffer
with an old session key and re-encrypts it with a new session
key before the data is sent to an SSH client. Since SCCrypt
uses a stream cipher, output data encrypted by the VMM
can be usually decrypted only by an SSH client. To enable
the VMM to decrypt such data, the VMM reversely applies
the encryption process to encrypted data.

IV. IMPLEMENTATION

We have implemented SCCrypt in Xen 4.1.3 [10] and
the OpenSSH 6.0p1 client. In Xen, the management VM
and a user VM are called Dom0 and DomU, respectively. A
virtual serial device is a part of QEMU running in Dom0. As
guest operating systems, SCCrypt supports fully virtualized
and para-virtualized Linux operating systems. The former
is called HVM guests, which can be run in VMs without
any modification. The latter is called PV guests, which are
modified for running in VMs. In the current implementation,
SCCrypt targets the x86-64 architecture.



SSH
server

Dom0 DomU (HVM)

VMM

decrypt

xenconsole

virtual
serial device

QEMU

encrypt

OUTIN

serial
driver

Figure 3. The encrypted delivery of console inputs and outputs for HVM
guests.

A. Output Delivery from HVM Guests

In the out-of-band remote management using a traditional
VSC, the delivery of console outputs to a HVM guest are
performed as follows. When the operating system in DomU
outputs data to a serial console, a serial driver writes the data
to a serial port using the OUT instruction. At that time, the
VMM traps the instruction using the function of Intel VT-
x, as illustrated in Fig. 3. It emulates the instruction and
sends the output data to QEMU in Dom0. The virtual serial
device in QEMU receives the data and stores the data in
a FIFO buffer. Then it sends the data to xenconsole via
a pseudo-terminal (PTY). Xenconsole is executed by an
SSH server to connect the server to the virtual serial device.
Then it sends the data to the SSH server and finally the
server sends it to an SSH client.

SCCrypt encrypts the output data when the VMM emu-
lates the OUT instruction. The OUT instruction specifies an
I/O port address and written data. The VMM encrypts the
data with RC4 when the address is 0x3F8, to which the
transmitter holding buffer of COM1 is mapped. Since a vir-
tual serial device has multiple contexts, the data is encrypted
only if the following three conditions are satisfied. First, the
FIFO buffers must be enabled. They are enabled at the boot
time of an HVM guest and any data is not transmitted until
that. Second, the virtual serial device must not be in the
divisor latch access mode. The mode is used to set the baud
rate of the transmission. Third, the device must not be in
the loopback mode. The mode is used to test the device
at boot time and written data are not transmitted. However,
the traditional VMM does not recognize the context of the
device in QEMU because QEMU runs in untrusted Dom0.

To recognize the context in the VMM, the VMM watches
all the writes to a virtual serial device. When the FIFO
enabling bit is set to the FIFO control register, which is
mapped to I/O port address 0x3FA, the VMM can know that
the FIFO buffers are enabled and starts to encrypt written
data. Similarly, while the divisor latch access bit is set to the
line control register, which is mapped to 0x3FB, the VMM
considers that the device is in the divisor latch access mode

and ignores written data. While the loopback mode bit is set
to the modem control register, which is mapped to 0x3FC,
the VMM considers the device in the loopback mode and
does not encrypt written data.

B. Input Delivery to HVM Guests

In the traditional systems, console inputs are delivered to
an HVM guest as follows. When an SSH server in Dom0
receives input data sent from an SSH client, it sends the data
to QEMU via xenconsole, as in Fig. 3. The virtual serial
device in QEMU stores the data in a FIFO buffer. When the
serial driver in DomU executes the IN instruction to read
input data, the VMM traps and emulates the instruction. It
communicates with the virtual serial device in Dom0 and
receives data in the FIFO buffer. Finally it stores the received
data in the EAX register as a return value.

SCCrypt decrypts input data when the VMM stores it in
the EAX register. Since the IN instruction specifies an I/O
port address like the OUT instruction, the VMM decrypts
the data received from the virtual serial device with RC4
when the address is 0x3F8, to which the receiver buffer is
mapped. As in the output delivery, the input data is decrypted
only if the FIFO buffer is enabled and if the virtual serial
device is in neither the divisor latch access mode nor the
loopback mode.

C. Output Delivery from PV Guests

The delivery of console outputs from a PV guest is largely
different from that from an HVM guest in the interaction
between Dom0 and DomU. In Xen, the split-driver model
is used for PV guests. As shown in Fig. 4, a virtual serial
device is implemented as the console backend driver in
QEMU, whereas a serial driver is implemented as the con-
sole frontend driver in DomU. When the operating system in
DomU outputs data to a serial console, the frontend driver
writes the data to a ring buffer called a console ring for
outputs. Traditionally, the backend driver in Dom0 directly
reads the data in the console ring by sharing it with DomU.
This means that the VMM cannot recognize console outputs
at all and cannot encrypt them.

For SCCrypt, we have modified the backend driver so
that the driver issues a hypercall for reading data in the
console ring to the VMM. A hypercall is similar to a system
call to the operating system. When the hypercall is issued,
the VMM reads data in the console ring, encrypts it with
RC4, and returns it to the backend driver. The backend
driver cannot directly access the console ring any longer. The
VMM can prohibit the backend driver from directly sharing
it or encrypt DomU’s memory including the console ring
using SRE [2] or VMCrypt [4]. Note that we do not need
the modification of the frontend driver in DomU.

Since the traditional VMM is not aware of a console
ring in DomU, our VMM identifies a console ring from
information stored in the memory page called start info.



SSH
server

Dom0 DomU (PV)

VMM

decrypt

xenconsole

console
backend driver

QEMU

console
ring

hypercall write

encrypt

read

console
frontend driver

Figure 4. The encrypted delivery of console inputs and outputs for PV
guests.

This page is set up by Dom0 for each DomU when Dom0
boots DomU. The VMM first obtains the virtual address of
the start info page from the RSI register of a virtual CPU
for DomU. The address is set by Dom0 at the boot time of
DomU. Next, the VMM translates the virtual address into
a physical page frame number by examining the page list
of DomU. Then it maps the start info page and obtains
information on a console ring.

D. Input Delivery to PV Guests

As in the delivery of output data, we have modified the
console backend driver so that it writes input data to a
console ring for inputs in DomU using a hypercall added
for SCCrypt. Traditionally, when the backend driver receives
input data from an SSH server via xenconsole, it directly
writes the data to the console ring in DomU. Then the
frontend driver in DomU reads the data from the console
ring. In SCCrypt, the VMM can decrypt input data passed
from the backend driver with RC4 and write the decrypted
data to the console ring, as illustrated in Fig. 4.

E. Re-encryption at Reconnection

When an SSH client reconnects to an encrypted VSC,
the VMM re-encrypts pending console outputs. Such data
is stored in a virtual serial device for HVM guests or the
console backend driver for PV guests while an SSH client
is not connected. Some data is also left in PTY if it has
not been read by xenconsole. To re-encrypt such data,
xenconsole first pauses a user VM to prevent new console
outputs from being sent. For PV guests, it sends the flush
command and makes the backend driver write output data
in the buffer to PTY, as shown in Fig. 5. The buffer can
store pending data up to 1 MB by default. For HVM guests,
output data in the transmit shift register and the FIFO buffer
is automatically resent unless a retry count exceeds the
maximum. After that, xenconsole reads all the pending
output data from PTY.

Since only the VMM can re-encrypt output data, xencon-
sole issues a hypercall with the received pending data. The

SSH
server

Dom0

VMM

xenconsole

console
backend driver

PTY
pending
outputs

flush

hypercall

re-encrypt

Figure 5. The re-encryption of pending console outputs.

VMM first restores unencrypted data from data encrypted
with an old session key and then encrypts obtained data
with a new session key. Since it cannot simply decrypt the
data that is encrypted with RC4, it reverses the encryption
process, inspecting the internal state of RC4 associated with
the old session key. The internal state consists of an array S
with 256 elements and two indexes i and j. The encryption
process of RC4 increases i by one, adds j to S[i], and
swaps S[i] and S[j]. Then it calculates XOR between data
and S[k], where k is S[i] + S[j]. Note that the arithmetic
operations are done with modulo 256. Its reverse process is
to calculate XOR between encrypted data and S[k]. For the
successive restoration, it also swaps S[i] and S[j], subtracts j
from S[i], and decreases i by one. Such a reverse operation is
applicable to other ciphers such as AES-CTR. This process
is done from the newest data in a reverse order. Finally,
xenconsole resumes a user VM and sends re-encrypted
output data to an SSH client.

F. Connection to encrypted VSC

In SCCrypt, all of the input data are encrypted by an SSH
client. This causes one issue when a user connects to an
encrypted VSC. For a new connection, a user needs to log
in Dom0 using an SSH client and to execute the xenconsole
command. Since the SSH client cannot distinguish that
command input to a shell from inputs to an encrypted
VSC, the command input is also encrypted. Consequently, a
user cannot execute that command correctly. To prevent the
input of the xenconsole command from being encrypted,
SCCrypt uses the remote command execution in SSH. When
an SSH client is executed with a remote command, the
command is sent to an SSH server in a manner different
from normal inputs. Therefore the SSH client can keep that
command unencrypted.

V. EXPERIMENTS

We conducted experiments to confirm the prevention of
information leakage by SCCrypt and examine its overhead.
For a server machine, we used a PC with one Intel Core i7
870 2.93 GHz processor, 4 GB of memory, and a Gigabit



Ethernet NIC. We ran a modified version of Xen 4.1.3
for the x86-64 architecture. For comparison, we also used
unmodified vanilla Xen. We assigned eight virtual CPUs and
1 GB of memory to DomU and eight virtual CPUs and 3
GB of memory to Dom0. In DomU, we ran Linux 3.2.0 as
HVM and PV guests. In Dom0, we ran the OpenSSH 5.9p1
server on Linux 3.2.0. For a client machine, we used a PC
with one Intel Xeon E5630 2.53 GHz processor, 6 GB of
memory, and a Gigabit Ethernet NIC. We ran a modified
version of the OpenSSH 6.0p1 client on Linux 3.2.0.

A. Attempts at Eavesdropping

To confirm that SCCrypt prevents Dom0 from eavesdrop-
ping on inputs to a VSC, we embedded a custom keylogger
into a virtual serial device in Dom0. This keylogger recorded
console inputs sent from an SSH client. Using an SSH
client, we logged into DomU by typing a user name and
a password. Without SCCrypt, the plain-text password was
recorded. When SCCrypt was enabled, the password was
encrypted by the SSH client and the keylogger recorded
encrypted one. For console outputs, we embedded custom
screen capture into the virtual serial device. This screen
capture recorded console outputs sent by DomU. When we
used vanilla Xen, the plain-text outputs were recorded. With
SCCrypt enabled, encrypted ones were recorded. Neverthe-
less, we could log into DomU and manage DomU correctly.

B. Response Time of Console Inputs

To examine the overhead of SCCrypt, we measured the
response time of console inputs. The response time was the
time from when an SSH client sent a console input until it
received a console output caused by its remote echo. We
measured the response time 100 times and obtained the
average and standard deviation. Then we compared the result
in SCCrypt with that in vanilla Xen for HVM and PV guests.

Fig. 6 shows the results. For a HVM guest, the response
time in SCCrypt was 2.9% shorter than that in vanilla Xen.
The reason is unclear because we have just added extra
code for SCCrypt to the VMM. However, this means that
the overhead of encryption and decryption by RC4 was
negligible. For a PV guest, on the other hand, the response
time in SCCrypt was longer than that in vanilla Xen. The
overhead of SCCrypt was 11%. This is because the virtual
serial device in Dom0 issued hypercalls to the VMM for
accessing I/O rings. Note that the response time for a PV
guest is still shorter than that for an HVM guest in SCCrypt.

C. Throughput of Console Outputs

To examine the performance of SCCrypt under a heavy
workload, we measured the throughput of console outputs.
In this experiment, we logged into DomU using a VSC
and wrote a text file of 10 million characters to a serial
console by the cat command. We compared the throughput
in SCCrypt with that in vanilla Xen for HVM and PV guests.

HVM PV
0.0

0.4

0.8

1.2

1.6

2.0

2.4

re
sp

on
se

 ti
m

e 
(m

s)

vanilla

SCCrypt

Figure 6. The response time of console inputs.

HVM PV
0

100

200

300

400

500

600

th
ro

ug
hp

ut
 (

cp
s)

vanilla

SCCrypt

Figure 7. The throughput of console outputs.

Fig. 7 shows the results in characters per second (cps). For
an HVM guest, the throughput in SCCrypt was 5.6% higher
than that in vanilla Xen. The reason is probably the same
as that why the response time was shorter. For a PV guest,
on the other hand, the throughput in SCCrypt was almost
the same as that in vanilla Xen. Unlike the experiment for
the response time, the virtual serial device in Dom0 could
obtain many outputs from a console ring at once. Therefore
the number of issued hypercalls was reduced. It should be
noted that the throughput for a PV guest was much higher
than that for an HVM guest.

D. CPU Overhead for Console Inputs

We measured the CPU utilization when we sent inputs to
an encrypted VSC periodically. For periodic console inputs,
we used the keyboard auto-repeat in the X Window System
at a client machine. We configured the repeat rate to 2, 10.9,
and 30 cps. The system default was 10.9 cps. We measured
the CPU utilization of Dom0 and DomU for 10 seconds
without inputs and successive 60 seconds with inputs. When
Dom0 issued hypercalls, the CPU time consumed by the
VMM was accounted for Dom0. When an HVM guest
executed I/O instructions, which were trapped by the VMM,
the CPU time was accounted for DomU. Then we compared
the result in SCCrypt with that in vanilla Xen for HVM and
PV guests.

Fig. 8 shows the changes of the CPU utilization of Dom0
and DomU for HVM and PV guests in SCCrypt when the
repeat rate was 10.9 cps. When we started the keyboard



0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

C
P

U
 u

til
iz

at
io

n 
(%

)

elapsed time (sec)

Dom0 (HVM)

DomU (HVM)

Dom0 (PV)

DomU (PV)

Figure 8. The change of the CPU utilization for console inputs in SCCrypt.

HVM PV
0

5

10

15

20

25

30

C
P

U
 u

til
iz

at
io

n 
(%

)

Dom0 (vanilla)

Dom0 (SCCrypt)

DomU (vanilla)

DomU (SCCrypt)

Figure 9. The CPU utilization for console inputs.

auto-repeat at time 10 seconds, the CPU utilization of Dom0
suddenly increased, while that of DomU almost did not
increase. The CPU utilization of DomU gradually increased
over time. It was almost the same between HVM and PV
guests except for two spikes in DomU for a PV guest.

Fig. 9 shows the average CPU utilization and the standard
deviation while we sent inputs. This figure compares the
CPU utilization of Dom0 and DomU for HVM and PV
guests between vanilla Xen and SCCrypt. The repeat rate
was 10.9 cps. For an HVM guest, the CPU utilization of
Dom0 in SCCrypt was 4.2% lower than that in vanilla Xen.
For a PV guest, in contrast, that in SCCrypt was 19% higher
than that in vanilla Xen. These match the results of the
response time. When we compare the CPU utilization of
Dom0 between PV and HVM guests that for a PV guest
was lower than that for an HVM guest in vanilla Xen. In
SCCrypt, however, that for a PV guest became 5.4% higher
than that for an HVM guest. Note that the CPU utilization
was almost not affected by the difference of the repeat rate.

E. CPU Overhead for Console Outputs

We measured the CPU utilization when we executed a
benchmark that periodically wrote characters to a serial
console in DomU. We configured the output rate to 0, 10,
100, or 1000 cps. We conducted this experiment as in the
previous section. Fig. 10 is the CPU utilization of Dom0
and DomU for a PV guest in vanilla Xen and SCCrypt. We

0 10 100 1000
0

20

40

60

80

100

120

C
P

U
 u

til
iz

at
io

n 
(%

)

output rate (cps)

Dom0 (vanilla)

Dom0 (SCCrypt)

DomU (vanilla)

DomU (SCCrypt)

Figure 10. The CPU utilization for console outputs for a PV guest.

omitted the results for an HVM guest because they were
almost the same as those for a PV guest.

As the output rate became large, the CPU utilization of
DomU increased. This is due to the CPU consumption by the
benchmark itself. The CPU utilization of Dom0 increased as
well, but the increase was 69% even at 1000 cps in SCCrypt.
Only for a PV guest, the difference of the CPU utilization
of Dom0 between vanilla Xen and SCCrypt increased. At
1000 cps, the CPU utilization in SCCrypt was 23% higher
than that in vanilla Xen.

VI. RELATED WORK

FBCrypt [11] prevents information leakage in out-of-band
remote management for VNC. It encrypts keyboard and
mouse inputs and video outputs using the VMM and a VNC
client. FBCrypt is similar to SCCrypt, but there are two
major differences. One is that FBCrypt strongly depends on
VNC. SCCrypt can use other remote management systems
using VSCs, e.g., web-based Ajaxterm [12], because it
decouples encrypted VSCs from SSH. The other difference
is that FBCrypt does not need to process pending outputs in
a virtual video card at reconnection. A VNC client requests
full-screen data again at that time. In SCCrypt, the correct
processing of pending console outputs is crucial. In addition,
out-of-band remote management using VSCs is often more
desirable because VNC is heavyweight.

So far, out-of-band remote management without the man-
agement VM has been proposed. Xoar [13] runs a virtual
serial device and probably an SSH server in a dedicated
VM called Console VM. Since Console VM provides a
single service, it is more difficult for outside attackers to
intrude into it. However, if the SSH server is compromised,
attackers can eavesdrop on sensitive information on out-of-
band remote management. Untrusted administrators in IaaS
can normally log in Console VM and easily obtain such
information. Similarly, stub domains [14] are VMs used for
running QEMU in Xen. Out-of-band remote management
using a VNC server in QEMU is possible. Since QEMU is
run as the only application on top of Mini-OS, it is difficult
to run an SSH server in such a VM and perform remote



management using VSCs.
VMware vSphere Hypervisor runs a VNC server and

virtual devices in the VMM. The VNC server can directly
access virtual devices for user VMs. In vSphere, therefore,
information leakage via the management VM does not occur.
However, attackers can steal sensitive information in remote
management if they can compromise the VNC server in
the VMM. They can take over even the control of the
VMM itself. SCCrypt preserves the confidentiality in remote
management by the VMM even in the case that an SSH
server in the management VM is compromised.

Several researchers have proposed systems that encrypt
data for user VMs in underlying layers. The secure runtime
environment (SRE) [2], [15] and VMCrypt [4] prevent
information leakage from the memory of user VMs to the
management VM. When the management VM maps memory
pages of a user VM, the VMM encrypts their contents. This
architecture is complementary to SCCrypt in that it prevents
the management VM from stealing information inside user
VMs.

BitVisor [16] can prevent information leakage from stor-
age and network of a user VM. It is similar to SCCrypt
in that the VMM transparently encrypts I/O of a user VM
without the help of the management VM. However, BitVisor
does not provide a means of remote management.

CloudVisor [3] runs the security monitor underneath the
VMM and encrypts the memory and storage of the user
VMs in the security monitor. Since it distrusts not only
the management VM but also the VMM, it can prevent
information leakage even from the VMM. However, the
security monitor does not encrypt inputs and outputs in
remote management.

VII. CONCLUSION

In this paper, we proposed SCCrypt for enabling secure
out-of-band remote management in IaaS clouds. To prevent
information leakage via the management VM, SCCrypt
provides encrypted VSCs to the management VM. Console
inputs and outputs are securely decrypted and encrypted in
the trusted VMM, respectively. The VMM correctly identi-
fies the inputs and outputs by tracking device state without
the cooperation of the management VM or user VMs. To
support the change of a session key at the reconnection
to an encrypted VSC, the VMM re-encrypts pending con-
sole outputs by reversely applying encryption process. We
have implemented SCCrypt for fully virtualized and para-
virtualized guest operating systems in Xen. We confirmed
that the security in out-of-band remote management was
enhanced and that the overhead of SCCrypt was small
enough.

One of our future work is to apply SCCrypt to other re-
mote management systems using VSCs, e.g., Ajaxterm [12].
This would be easy because SCCrypt provides encrypted

VSCs independently from SSH. Another direction is to sup-
port stronger stream ciphers such as AES-CTR, as supported
in FBCrypt [11].

ACKNOWLEDGMENT

This work was supported in part by JSPS KAKENHI
Grant Number 25330086.

REFERENCES

[1] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards
Trusted Cloud Computing,” in Proc. Workshop Hot Topics
in Cloud Computing, 2009.

[2] C. Li, A. Raghunathan, and N. K. Jha, “Secure Virtual
Machine Execution under an Untrusted Management OS,” in
Proc. Intl. Conf. Cloud Computing, 2010, pp. 172–179.

[3] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant
Cloud with Nested Virtualization,” in Proc. Symp. Operating
Systems Principles, 2011, pp. 203–216.

[4] H. Tadokoro, K. Kourai, and S. Chiba, “Preventing Infor-
mation Leakage from Virtual Machines’ Memory in IaaS
Clouds,” IPSJ Online Transactions, vol. 5, pp. 156–166, 2012.

[5] TechSpot News, “Google Fired Employees for
Breaching User Privacy,” http://www.techspot.com/news/
40280-google-fired-employees-for-breaching-user-privacy.
html, 2010.

[6] Trusted Computing Group, “TPM Main Specification,” http:
//www.trustedcomputinggroup.org/, 2011.

[7] J. Rutkowska, R. Wojtczuk, and A. Tereshkin, “Xen 0wning
Trilogy,” Black Hat USA, 2008.

[8] J. Wang, A. Stavrou, and A. Ghosh, “HyperCheck: A
Hardware-Assisted Integrity Monitor,” in Proc. Int. Symp.
Recent Advances in Intrusion Detection, 2010, pp. 158–177.

[9] A. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and
N. Skalsky, “HyperSentry: Enabling Stealthy In-context Mea-
surement of Hypervisor Integrity,” in Proc. Conf. Computer
and Communications Security, 2010, pp. 38–49.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. Symp. Operating Systems Principles,
2003, pp. 164–177.

[11] T. Egawa, N. Nishimura, and K. Kourai, “Dependable and
Secure Remote Management in IaaS Clouds,” in Proc. Intl.
Conf. Cloud Computing Technology and Science, 2012, pp.
411–418.

[12] A. Lesuisse, “Ajaxterm,” https://github.com/antonylesuisse/
qweb.

[13] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield, “Breaking Up is Hard to Do:
Security and Functionality in a Commodity Hypervisor,” in
Proc. Symp. Operating Systems Principles, 2011, pp. 189–
202.

[14] S. Thibault, “Stub Domains,” in Xen Summit Boston 2008,
2008.

[15] C. Li, A. Raghunathan, and N. K. Jha, “A Trusted Virtual
Machine in an Untrusted Management Environment,” IEEE
Trans. Services Computing, vol. 5, no. 4, pp. 472–483, 2012.

[16] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai, Y. Oyama,
E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato, “BitVi-
sor: A Thin Hypervisor for Enforcing I/O Device Security,”
in Proc. Intl. Conf. Virtual Execution Environments, 2009, pp.
121–130.


