
Dynamic and Secure Application Consolidation with
Nested Virtualization and Library OS in Clouds

Kouta Sannomiya
Kyushu Institute of Technology
kouta@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ci.kyutech.ac.jp

In IaaS clouds, users can reduce costs by optimizing in-
stance deployment as necessary. The most popular optimiza-
tion is scale-out and scale-in, which adjust the number of
instances. However, when there exists only one instance, a
user cannot reduce the number of instances even if the in-
stance is under utilization. The optimization for only one in-
stance is scale-up and scale-down, which adjust the amount
of resources allocated to an instance. Unfortunately, most
of the existing clouds achieve this optimization by switch-
ing instance types offline because they cannot dynamically
change the amount of resources of an instance. When a user
switches instance types of his instance, he has to stop all the
applications in the instance. This causes service downtime.
In addition, cost reduction is limited by the cost of the mini-
mum instance provided by clouds.

For further optimization, a user can consolidate applica-
tions in multiple instances into one instance. This is called
application consolidation. For example, when tightly cou-
pled applications such as web servers and a database are run-
ning across multiple instances and they are under utilization,
a user can run these applications in one instance and reduce
the cost. Later, when the instance becomes over utilization,
a user can de-consolidate the applications to multiple in-
stances again and perform load balancing. Like scale-up and
scale-down, however, this causes service downtime when a
user moves applications between instances. This problem
can be mitigated by using process migration, but a security
issue arises due to consolidating applications. Since multiple
applications run in the same instance, isolation among them
becomes weaker than before consolidation.

To solve these problems, we propose FlexCapsule, which
can dynamically optimize instance deployment by running
each application in a lightweight virtual machine (VM)
called an app VM, as illustrated in Fig.1. FlexCapsule
uses nested virtualization to run app VMs inside an in-
stance, which is also a VM. Since FlexCapsule can mi-
grate an app VM with an application as necessary, it can
reduce service downtime on application consolidation and
de-consolidation. In addition, it guarantees security between
consolidated applications thanks to strong isolation between
app VMs.

instance1

Management VM1

App VM1

Host hypervisor

Guest hypervisor

instance 2

FlexCapsule OS

Application1 OS Sever

Linux OS

App VM2

 FlexCapsule OS

Application2

Figure 1. The architecture of FlexCapsule.

To reduce the overhead of extra virtualization, FlexCap-
sule uses an library operating system (OS) called FlexCap-
sule OS, which is optimized for app VMs. FlexCapsule OS
is para-virtualized to avoid the overhead of full virtualization
in nested virtualization. Therefore it provides support for
VM migration and suspends and resumes devices by itself.
Since FlexCapsule OS enables running only one application,
it does not provide any protection. In addition, it needs only
a small amount of memory.

FlexCapsule provides an OS server in each instance to
manage multiple app VMs like traditional processes. Since
each app VM is self-contained, the OS server manages app
VMs from the outside. For example, the OS server pro-
vides information on app VMs to the FlexCapsule shell as
if app VMs were processes. Furthermore, the OS server is
used for cooperation between app VMs. For example, since
FlexCapsule OS does not support multi-process, FlexCap-
sule achieves fork by duplicating app VMs. When an appli-
cation in an app VM calls fork(), FlexCapsule OS communi-
cates with the OS Server. Then the OS server creates a child
app VM from the parent app VM and returns an identifier of
the child VM to the parent VM. It returns zero to the child
VM like the original fork().

We have implemented FlexCapsule in Xen 4.2. We have
added support for VM migration and fork to Xen’s Mini-OS.
Using FlexCapsule, we measured migration performance of
an app VM. As a result, the migration time was 2 times
shorter in the minimum memory footprint, compared with
migrating a VM where Linux is installed. The downtime was
about 0.3 second and it was 0.1 second shorter than the VM
running Linux.

