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Abstract: In Infrastructure-as-a-Service (IaaS) clouds, users manage the systems in virtual machines (VMs) called
user VMs through remote management systems (RMSes). To allow users to manage their VMs during failures inside
the VMs, IaaS usually provides out-of-band remote management. This management is performed indirectly via an
RMS server in a privileged VM called the management VM. However, it is discontinued when a user VM is migrated.
This is because an RMS server in the management VM at the source host is terminated on VM migration. Even worse,
pending data is lost between an RMS client and a user VM. In this paper, we propose D-MORE for continuing out-
of-band remote management across VM migration. D-MORE provides a privileged and migratable VM called DomR
and performs out-of-band remote management of a user VM via DomR. During VM migration, it synchronously co-
migrates DomR and its target VM and transparently maintains the connections between an RMS client, DomR, and its
target VM. We have implemented D-MORE in Xen and confirmed that a remote user could manage his VM via DomR
after the VM has been migrated. Our experiments showed that input data was not lost during VM migration and the
overhead of D-MORE was acceptable.
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1. Introduction
Infrastructure as a Service (IaaS) provides virtual machines

(VMs) hosted in data centers. Users can set up the systems in
the provided VMs called user VMs and use them as necessary.
They usually manage their systems through remote management
systems (RMSes) such as Virtual Network Computing (VNC) and
Secure Shell (SSH). To allow users to access their systems even
on failures inside their VMs, IaaS often provides out-of-band re-
mote management via a privileged VM called the management
VM. Unlike usual in-band remote management, an RMS server
is run in the management VM, not in a user VM, and directly
interacts with the virtual devices of a user VM, such as a virtual
keyboard and a virtual video card. Even if the network of a user
VM is disconnected due to user’s configuration errors or if sys-
tem failures occur in a user VM, a user can continue to manage
such a VM.

However, out-of-band remote management is discontinued
when a user VM is migrated from the source to the destination
host. During VM migration, virtual devices in the management
VM at the source host are removed. Therefore an RMS server
interacting with the virtual devices is also terminated. To restart
remote management, a user has to identify the reason for the dis-
connection, look for a destination host, and reconnect to a new
RMS server at the host. This is a laborious task for a user and
becomes downtime in remote management. Even worse, inputs
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and outputs for remote management can be lost by VM migration.
Pending data in an RMS server and virtual devices is abandoned
when an RMS server and virtual devices are terminated. Since the
network connection between RMS client and server is also termi-
nated, in-flight packets containing inputs and outputs are lost and
are not retransmitted. Therefore, a user has to recover lost in-
puts by himself after migration. This causes inconvenience to a
user and becomes hidden downtime in remote management. If an
RMS redirects local devices such as USB storage to a remote user
VM, data loss between them is critical.

In this paper, we propose D-MORE [1], which is a system for
continuing out-of-band remote management across VM migra-
tion. Our idea involves running an RMS server and virtual de-
vices in a privileged and migratable VM called DomR and co-
migrating DomR with its target VM. To achieve the continuity of
remote management, D-MORE transparently maintains the con-
nections between an RMS client, DomR, and its target VM at the
levels of the virtual machine monitor (VMM) and the network.
The VMM is a software layer underlying VMs and manages the
interaction between VMs. In addition, D-MORE can prevent data
loss of inputs and outputs for remote management. Pending data
in a RMS server and virtual devices is preserved in DomR be-
cause it is migrated as a part of DomR. In-flight network packets
for delivering inputs and outputs are retransmitted by TCP even
if they are dropped during VM migration.

We have implemented D-MORE in Xen 4.3.2 [2]. To run
virtual devices in DomR, D-MORE allows DomR to establish
shared memory by mapping memory pages of a user VM. It also
allows DomR to intercept and establish event channels with a user
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VM. During the co-migration of DomR and its target VM, D-
MORE restores the states of memory mapping and event channels
to the destination host. To safely perform this state restoration at
the appropriate time and to prevent loss of data in shared mem-
ory, D-MORE synchronizes the migration processes of the two
VMs. We conducted several experiments to examine the conti-
nuity of out-of-band remote management and the performance of
D-MORE. From our experimental results, it was shown that the
remote management was continued across VM migration and that
no data was lost during co-migration. The performance of remote
management degraded during co-migration, but the overhead of
D-MORE was small during a normal run. The downtime dur-
ing co-migration was much less than that in traditional manual
reconnection and was deemed acceptable.

This paper is an extended version of our previous paper [1]. In
this paper, we support not only VNC but also SSH as RMSes to
show the generality of D-MORE. Then we also show the perfor-
mance of remote management using SSH in D-MORE. In addi-
tion, we examine the overhead of D-MORE in further detail.

The organization of this paper is as follows. Section 2 de-
scribes issues in out-of-band remote management using the man-
agement VM and related work. Section 3 proposes D-MORE for
continuing out-of-band remote management across VM migra-
tion. Section 4 explains the implementation details in Xen and
Section 5 shows our experimental results. Section 6 concludes
this paper.

2. Motivation
2.1 Out-of-band Remote Management

To manage user VMs in IaaS clouds, a user usually connects
an RMS client on the user’s host to an RMS server running in
a user VM. This is called in-band remote management because a
user accesses a VM using functionalities provided inside the VM.
Examples of RMSes are VNC for graphical user interface (GUI)
management and SSH for character user interface (CUI) manage-
ment. However, this in-band remote management is not powerful
enough to manage a user VM at all times. If a user has just failed
the configurations of the network or firewall inside a VM, he can-
not manage the VM at all. At that time, he would have to abandon
that VM and recreate a new VM from scratch. As another case,
when an RMS server in a user VM is not running normally, an
RMS client cannot access the VM. For example, an RMS server
may crash due to bugs. It is not started until the operating system
in a VM has been booted normally.

To enable users to manage their VMs in such cases, it is nec-
essary for IaaS to provide out-of-band remote management. As
illustrated in Fig. 1, an RMS server is run for each user VM in a
privileged VM called the management VM. The management VM
is often provided in type-I VMMs such as Xen and Hyper-V and
has privileges for accessing all user VMs. It also provides virtual
devices to each user VM, e.g., a virtual keyboard and a virtual
video card. An RMS server in the management VM directly ac-
cesses virtual devices to interact with a user VM. Out-of-band re-
mote management does not rely on the network or an RMS server
in a user VM. A user can access his VM as if he locally logged
into the VM even on network failures in the VM. For example,

management VM

virtual
devicesRMS

client

RMS
server

user VM

Fig. 1 Out-of-band remote management of a user VM.

even if a user fails network configuration in a user VM, he could
fix the problem by modifying the configuration through a virtual
keyboard in the management VM. Even when the system in a
user VM crashes, the user may check kernel messages through
the virtual video card.

2.2 VM Migration in Out-of-band Remote Management
IaaS clouds migrate VMs for various purposes. VM migration

allows a running VM to be moved between hosts. In particular,
live migration [3] almost does not stop a VM during the migration
process by transferring most of the states with the VM running.
Using VM migration, IaaS providers can maintain physical hosts
without interrupting services provided by VMs. They can per-
form load balancing by migrating heavily loaded VMs to other
lightly loaded hosts. Conversely, they can save power if they
consolidate lightly loaded VMs into a fewer hosts. It has been
reported that VM migration for such dynamic consolidation was
done for 25% of VMs every four hours on average in the pri-
vate cloud of a large airline company [4]. This means that each
VM was migrated every 16 hours on average. In in-band remote
management, it is possible to continue VM management across
the migration of a user VM. An RMS server in a user VM is mi-
grated as a part of the VM and the network connection between
RMS client and server is preserved. At that time, a user using an
RMS client is not aware that his VM is migrated.

However, in out-of-band remote management, VM manage-
ment is discontinued on VM migration, as shown in Fig. 2. When
a user VM has been migrated, its virtual devices in the manage-
ment VM at the source host are removed. The migrated VM uses
new virtual devices created in the management VM at the desti-
nation host. At the same time, an RMS server in the management
VM at the source host is terminated because it loses the access to
the removed virtual devices. As a result, an RMS client is discon-
nected from the RMS server. To restart remote management, a
big burden is imposed on the user. First, a user has to identify the
reason why an RMS client is disconnected. The possible cause is
not only VM migration but also network failures or system fail-
ures in a user VM or the management VM. If the disconnection
is due to VM migration, a user has to look for a destination host
where a user VM has been migrated, e.g., from a management
console provided in a cloud. Then he has to reconnect to an RMS
server in the management VM at that host. At that time, he has to
enter the password for the connection again. This can lower the
efficiency of the VM management.

Worse than that, inputs and outputs for remote management
can be lost when a user VM is migrated. If input data has been
sent from an RMS client but has not yet been received by an RMS
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Fig. 2 VM migration during out-of-band remote management.

server, in-flight network packets containing that data are dropped.
Since the network connection between RMS client and server is
terminated, dropped packets are not retransmitted at the network
level. Usually, an RMS client does not have a mechanism for data
retransmission at the application level. If input data received by
an RMS server has not yet been sent to a virtual device, it is lost
when the RMS server terminates. If a virtual device has received
input data but does not send it to a user VM, the data is also lost
by the removal of the virtual device. Similarly, output data can be
lost in virtual devices, an RMS server, or the network.

Such data loss causes inconvenience to users and is critical in
some cases. When keyboard inputs are lost, a user has to type
them again to recover data loss. This is troublesome, for exam-
ple, when he inputs large text in a copy-and-paste manner. He
has to identify which part of the text has been pasted correctly
and then paste only the lost part again. When console outputs are
lost, such manual recovery is impossible because output data is
generated by a user VM. Unless a user records all the outputs in a
log file or using the GNU screen utility, he can never receive lost
information. When an RMS redirects local devices such as USB
storage to a remote user VM, data loss between them is critical.
If data sent from a user VM to local USB storage is lost, files in
the storage can be corrupted. Conversely, if data sent from local
USB storage to a user VM is lost, read errors occur in a user VM.

Furthermore, security on a client side can become lower be-
cause the network address of an RMS server is changed every
VM migration. Nowadays, for security, client-side firewalls are
often configured so that they permit outbound packets only to
minimum hosts and network ports. However, the IP address of
an RMS server is changed from that of the management VM at
the source host to that of the destination host. Likewise, the port
number assigned to an RMS server is changed. Since the man-
agement VM runs many RMS servers for the corresponding user
VMs, it assigns a port number in order. To support VM migration
in out-of-band remote management, client-side firewalls have to
permit accesses to all the IP addresses used in all the management
VMs in a cloud and all the port numbers that can be used by an
RMS server. If attackers intrude into client hosts, they can mount
stepping-stone attacks against more hosts in the cloud.
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Fig. 3 Switching VNC servers by a VNC proxy.

2.3 Previous Approaches
To continue out-of-band remote management across VM mi-

gration, there are two approaches different from D-MORE. The
first approach is using a VNC proxy, as illustrated in Fig. 3. To
manage a user VM, a VNC client accesses the VNC server in the
management VM via a VNC proxy. When a user VM is migrated,
a VNC proxy can switch the connection of the VNC server from
the source to the destination host. For example, a console proxy
in CloudStack [5] can support this functionality. Even if the con-
nection between the VNC proxy and the server is switched, the
connection between the VNC client and the proxy is preserved.
However, a user cannot access his VM until the VNC proxy de-
tects the VM migration and then reconnects to the VNC server at
the destination host. This reconnection can take a certain time. In
addition, all of the pending data in the VNC server and virtual de-
vices are lost at the source host. Since the connection is preserved
but some data is lost, it is difficult for the user to notice any data
loss. Another disadvantage is that an RMS proxy has to be devel-
oped for each RMS. D-MORE does not need the development of
RMS proxies.

The second approach is using SPICE [6], which is an RMS de-
veloped for KVM and allows USB redirection. SPICE supports
VM migration at the protocol level. When a user VM is migrated,
a SPICE server in the management VM notifies a SPICE client of
the destination host, as shown in Fig. 4. Then a SPICE client
switches the connection to a SPICE server at the destination host.
At that time, a user using a SPICE client is not aware that his VM
is migrated. In addition, no data is lost when seamless migration
is enabled. One disadvantage is that VM management depends
on a specific RMS. D-MORE enables users to use any RMSes
such as VNC and SSH. Another disadvantage is that the network
address of a SPICE server changes every VM migration. In D-
MORE, the address of an RMS server does not change because
the server is migrated with DomR.

2.4 Related Work
Special-purpose VMs proposed so far have similarities to

DomR although they are not migratable except for a guard VM
in VMCoupler [7], [8]. Stub domains [9], [10] in Xen and Qemu
VM in Xoar [11] can run QEMU to provide virtual devices to a
user VM. They support fully virtualized user VMs, while DomR
supports para-virtualized user VMs. Therefore, stub domains
and Qemu VM do not need a capability for intercepting event
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Fig. 4 VM migration support in SPICE.

channels, which are used as para-virtualized interrupt channels.
On the other hand, driver domains [12] in Xen can run backend
drivers in the kernel for para-virtualized VMs. Since driver do-
mains are unprivileged, they use grant tables to share the memory
pages of user VMs. Grant tables allow any VMs to map only
memory pages permitted by other VMs. A driver domain can
establish event channels with a user VM by making it explicitly
specify that driver domain as the backend. Currently, only sev-
eral backend drivers such as a network driver can run in driver
domains.

A guard VM in VMCoupler [7], [8] is a privileged and migrat-
able VM, which is used as the base of DomR. It runs intrusion
detection systems to monitor the inside of the target VM. It can
map the memory of its target VM, access virtual disks of the tar-
get, and capture packets from/to the target. However, a guard
VM does not have a capability for intercepting event channels
because it does not need to interact with the target VM. Service
domains (SDs) in a self-service cloud computing platform [13]
have a capability for accessing target VMs. SDs can monitor the
memory of target VMs and intercept disk access between fron-
tend and backend drivers. DomB [14] is used to boot user VMs
more securely. Instead of Dom0, it can load a kernel image into
the user VM’s memory and set up the user VM. These VMs are
not designed for running virtual devices for user VMs.

Similar to D-MORE, VMCoupler enables synchronized co-
migration of a guard VM and its target VM. It synchronizes
two migration processes mainly for secure monitoring, while
D-MORE maintains continuity of out-of-band remote manage-
ment. Therefore the synchronization in co-migration is largely
different between VMCoupler and D-MORE. VMCoupler per-
forms coarse-grained synchronization using only the VM states
at four points. D-MORE performs fine-grained synchronization
using various states of migration at seven points. In addition, co-
migration in VMCoupler does not consider writable shared mem-
ory because memory monitoring needs only read-only mapping.

For concurrent migration of multiple co-located VMs, live
gang migration [15] has been proposed. It transfers memory
contents that are identical across VMs only once to reduce the
migration overhead. It tracks identical memory contents across
VMs and performs memory de-duplication for all the migrated
VMs. It also applies differential compression to nearly identical
memory pages. Unlike D-MORE, live gang migration does not

source host

RMS
client co-migration

destination host

virtual
devices

RMS
server

user VM management
VM

DomR

device
drivers

management
VM

shared
memory

VMM

VMM

interrupt
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Fig. 5 The system architecture of D-MORE.

synchronize between the migration processes of multiple VMs.
This approach can be incorporated into D-MORE to reduce co-
migration time.

For virtualization software different from Xen, KVM [16] runs
QEMU including a VNC server and virtual devices on the host
operating system. Since a VM also runs on QEMU in KVM, it
might be possible to continue out-of-band remote management
by migrating a QEMU process with the state of a VM. However,
process migration [17] is not easier than VM migration. VMware
vSphere Hypervisor [18] runs a VNC server and virtual devices
in the VMM and enables out-of-band remote management with-
out the management VM. However, when a user VM is migrated,
the connection to a VNC server is terminated.

3. D-MORE
In this paper, we propose D-MORE, which can continue out-of-

band remote management after the migration of user VMs. The
system architecture of D-MORE is shown in Fig. 5. D-MORE
provides a privileged and migratable VM called DomR for remote
management of a user VM. DomR runs only an RMS server and
virtual devices for its target VM. Therefore DomR does not re-
quire many resources. For example, one virtual CPU and 128
MB of memory are sufficient. An RMS client connects to an
RMS server in DomR and accesses a user VM through virtual
devices in DomR. When a user VM is migrated, D-MORE co-
migrates the corresponding DomR as well to the same destination
host. During migration, D-MORE transparently maintains all the
connections between an RMS client, DomR, and its target VM.
Specifically, it preserves the connections between virtual devices
in DomR and the target VM at the VMM level. In addition, it pre-
serves the connection between an RMS client and an RMS server
in DomR at the network level, similar to typical VM migration.

DomR has capabilities necessary for running virtual devices.
Traditionally, virtual devices could run only in the management
VM because they need to access a user VM. First, DomR has a
capability for establishing shared memory with its target VM. Us-
ing buffers allocated in shared memory, virtual devices in DomR
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exchange data with device drivers in the target VM. For example,
when an RMS server in DomR writes keyboard input received
from an RMS client to a virtual keyboard, the virtual keyboard
writes it to a keyboard buffer in shared memory. A keyboard
driver in the target VM reads the data from the keyboard buffer
and processes it. Second, DomR has a capability for establishing
interrupt channels with its target VM. Through interrupt channels,
virtual devices in DomR send virtual interrupts to device drivers
in the target VM. For example, a virtual interrupt is sent when
new data is written to the buffer in shared memory.

After the co-migration of DomR and its target VM, D-MORE
reconnects DomR to its target VM. During VM migration, DomR
is disconnected from the target VM once because all connections
between VMs are lost except for network connections. Specifi-
cally, D-MORE re-establishes the shared memory and interrupt
channels between DomR and its target VM. To do this, D-MORE
saves the states of memory sharing and interrupt channels at the
source host. Then it transfers those states with the other states
of the VMs to the destination host. At the destination host, D-
MORE restores the saved states transparently to DomR and the
target VM. Consequently, virtual devices in DomR and device
drivers in the target VM can continue their execution from arbi-
trary points even if they are accessing shared memory or interrupt
channels.

D-MORE synchronizes two migration processes in the co-
migration of DomR and its target VM for three purposes. The
first purpose is to reconnect DomR to the target VM at appropri-
ate timings. Since shared memory is constructed using the mem-
ory of the target VM, it is restored after the memory of the target
VM has been restored. For consistency, interrupt channels are
saved and restored while both VMs are stopped. The second pur-
pose is to guarantee transfer of the latest data in shared memory
to the destination host. Even if DomR modifies shared memory at
any time, the migration process for the target VM is responsible
for transferring its latest version. DomR must not modify it after
the target VM has been migrated. The third purpose is to reduce
the downtime of both DomR and the target VM by stopping them
as late as possible.

Using D-MORE, no inputs or outputs for out-of-band remote
management are lost during co-migration. First, pending data
in an RMS server and virtual devices is preserved. Since an
RMS server and virtual devices are migrated as part of DomR,
they can continue to process such pending data at the destination
host. Second, it is guaranteed that data written to the buffer in
shared memory is preserved by the above synchronization in co-
migration. Third, in-flight network packets from an RMS client
to an RMS server are retransmitted by TCP although they may
be dropped temporarily by migrating DomR. D-MORE preserves
the TCP connection between the RMS client and server by run-
ning an RMS server in DomR. This can address the users’ incon-
venience of manually recovering input data after VM migration
and eliminate hidden downtime in remote management. It is not
necessary that users themselves prepare data loss. Furthermore,
data corruption during VM migration can be prevented even when
users redirect local USB devices.

D-MORE can support any RMS servers that can run in an out-

of-band manner in DomR. This is because DomR provides a vir-
tual keyboard, a virtual mouse, a virtual video card, and a virtual
serial console as virtual devices. For GUI management, RMS
servers such as a VNC server can basically run with a virtual key-
board, a virtual mouse, and a virtual video card. For CUI man-
agement, RMS servers such as an SSH server can run with only
a virtual serial console. Since D-MORE does not depend on the
protocols used between RMS clients and servers, it can perform
co-migration even if any RMS servers are used in out-of-band re-
mote management. At that time, any data is not lost without any
support of RMSes.

In addition, no network address of an RMS server is changed
when a user VM is migrated. Since an RMS server runs inside
DomR, it can continue to use the same IP address as DomR. The
IP address of DomR is not changed even after DomR has been
migrated. Likewise, an RMS server can continue to use the same
port number as the one before migration. Therefore client-side
firewalls need only one rule for permitting access to an RMS
server in DomR. Even if a client host is compromised, attack-
ers can access only the DomR and not any management VMs in
the cloud. Instead of these advantages, DomR is created per user
VM and consumes one IP address. Using an extra global IP ad-
dress is costly for clouds. To solve this problem, D-MORE can
assign a private IP address to DomR and perform network address
and port translation (NAPT). For example, when a user accesses
the global IP address of a user VM and port 5910, the access is
translated to the private IP address of DomR and port 5900 for an
RMS server.

4. Implementation
We have implemented D-MORE in Xen 4.3.2 [2]. In Xen, the

VMM runs on top of the hardware and executes VMs. The man-
agement VM is called Dom0 and a user VM is called DomU.
We have developed DomR by extending our guard VM [7], [8].
DomR runs para-virtualized Linux for running virtual devices. In
the current implementation, D-MORE supports DomU running
para-virtualized Linux. It targets the x86-64 architecture and sup-
ports VNC and SSH as RMSes.

In this section, we mainly focus on the differences from our
previous work [1].

4.1 Connection between DomR and DomU
When DomU is booted, D-MORE binds the DomU to new

DomR. To establish shared memory with the target DomU,
DomR maps memory pages of that DomU. Thereafter, both
DomR and DomU can access the same memory pages. In ad-
dition, DomR can intercept and establish event channels with
DomU as para-virtualized interrupt channels. An event channel
is a logical connection between two VMs and is used for sending
events such as virtual The. interrupts implementation details are
explained in Refs. [1], [7], [8].

4.2 Virtual Devices in DomR
DomR runs QEMU [19] that is customized for Xen to pro-

vide virtual devices and a VNC server necessary for out-of-band
remote management. In traditional out-of-band remote manage-
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Fig. 6 The split-driver model with DomR.

ment, QEMU runs in Dom0. For para-virtualized DomU, the
split-driver model is used in Xen, as illustrated in Fig. 6. Vir-
tual devices are implemented as backend drivers in QEMU. Fron-
tend drivers in DomU communicate with the backend drivers to
use virtual devices. For that communication, I/O rings and event
channels are used. An I/O ring is a ring buffer for passing data
and is allocated in shared memory.

For the support of remote management using VNC, see our
previous paper [1].
4.2.1 SSH Support

To support remote management using SSH, DomR provides a
virtual serial console for both inputs and outputs. The initializa-
tion is similar to that of the other para-virtual devices. One of the
differences is that the console frontend and backend drivers use
console rings for communication, instead of I/O rings. An I/O
ring stores device-specific events, whereas a console ring simply
stores input and output characters. When the console frontend
driver connects to its backend driver, the backend driver maps
the page for console rings and binds an event channel. Unlike
the other para-virtual devices, the page for console rings and an
unbound event channel are allocated by a migration manager in
Dom0, instead of the frontend driver in DomU, just after a VM is
created.

Unlike a VNC server, an SSH server in DomR is connected
to the console backend driver in QEMU via the xenconsole com-
mand. This is because an SSH server runs outside QEMU. After
a user logs in DomR using SSH, he executes xenconsole, speci-
fying a target VM. When an SSH server receives a console input
from an SSH client, it sends the input to the standard input of
xenconsole. Then xenconsole sends it to the backend driver via
a pseudo-terminal. The backend driver writes the input to a con-
sole ring for inputs and sends an event to the frontend driver. On
the other hand, the frontend driver writes a console output to a
console ring for outputs and sends an event to the backend driver.
The output is sent to the pseudo-terminal of xenconsole, an SSH
server, and then an SSH client.
4.2.2 Support for Other RMSes

Using the above SSH support, D-MORE can support any types
of the RMS servers for CUI such as telnet and rsh servers al-
though most of them are not recommended for security reasons.
Since such RMS servers and a virtual serial console are separated
completely, D-MORE can run arbitrary RMS servers for CUI in
DomR easily. For GUI remote management, D-MORE can also
support arbitrary RMS servers, but it currently supports only a

VNC server. This is because RMS servers for GUI are not well
separated from virtual devices such as a virtual keyboard/mouse
and a virtual framebuffer in Xen. Therefore, RMS servers have to
be embedded into QEMU. We believe that D-MORE can easily
support SPICE, which is already embedded into QEMU. How-
ever, D-MORE needs additional support for virtual devices be-
cause SPICE supports the redirection of USB devices. We think
that D-MORE can support other RMS servers for GUI by embed-
ding them into QEMU or exporting virtual devices to the outside
of QEMU.

4.3 Reconnection between DomR and DomU
To maintain the connections between DomR and DomU after

co-migration, D-MORE restores the mapping state of DomU’s
memory for DomR at the destination host. D-MORE also re-
stores the state of event channels. To reuse re-established event
channels in the operating system kernels of DomR and DomU,
we have modified the resume operation for virtual interrupts.
For further details on the implementation, refer to our previous
work [1], [7], [8].

Also, we have disabled the resume operations of frontend
drivers in DomU. This is necessary for preventing re-initialization
of I/O and console rings, re-allocation of unbound event channels,
and reconnection to their backend drivers by themselves. For the
console frontend driver, the resume handler almost does noth-
ing. Instead, the migration manager for DomU re-allocates an
unbound event channel for it during migration. Therefore, our mi-
gration manager does not re-allocate an event channel for the vir-
tual serial console at resume time and, instead, enables D-MORE
to re-establish the event channel for it. For the keyboard/mouse
and framebuffer frontend drivers, see our previous paper [1].

In addition, we have modified the xenconsole command so that
it can continue to connect to the virtual serial console for migrated
DomU. Since xenconsole is connected to DomU by specifying
its identifier, it is disconnected when the identifier of DomU is
changed by migration. We disabled the mechanism for detecting
the change of DomU’s identifier in xenconsole.

Another possible approach is to reconnect frontend drivers in
DomU and backend drivers in DomR but re-initialize no I/O (or
console) rings after co-migration. This driver-level reconnection
seems to be done more easily because it is not necessary to re-
store the states of memory mapping and event channels at the
VMM level. However, it is not the case. If backend drivers access
I/O rings or event channels before the driver-level reconnection,
they would fail such operations. Since backend drivers run as
user-level drivers in the QEMU process, such failures can occur.
Unlike kernel-level drivers in DomU, it is difficult to guarantee
that user-level drivers execute resume operations just after DomR
restarts. If DomU is migrated while user-level drivers are access-
ing I/O rings or event channels, these drivers continue that access
after the migration. To prevent such a situation, QEMU in DomR
needs a mechanism for suspending and resuming user-level back-
end drivers.

4.4 Live Migration with Writable Shared Memory
In live migration, a migration manager in Dom0 first transfers
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the memory of a VM to the destination host with the VM run-
ning. Then it repeats to transfer only dirty pages that are modified
during the previous iteration. When the number of dirty pages
to be transferred becomes small enough, the migration manager
stops the VM and transfers the remaining dirty pages. Finally,
it restarts a migrated VM at the destination host. To detect dirty
pages during live migration, Xen provides the log dirty mode. In
this mode, the VMM detects writes to memory pages and records
dirty pages in a log dirty bitmap. According to the bitmap, the
migration manager transfers only dirty pages at the next iteration.

However, the log dirty mode cannot be used to detect writes to
the shared memory between VMs. For DomU with the log dirty
mode enabled, the VMM can detect writes only to the memory
pages belonging to that DomU. In other words, even if DomR
modifies memory pages shared with DomU, the VMM cannot
recognize those pages as dirty. Therefore the migration manager
for DomU cannot transfer the latest contents of memory pages
shared with DomR when they are modified only by DomR. This
results in the data loss of inputs for remote management after co-
migration.

To prevent such data loss, D-MORE always considers DomU’s
memory pages shared with DomR in a writable manner as dirty.
Thereby it is guaranteed that a migration manager transfers
shared memory pages modified by DomR. Although such pages
are always dirty, they are not transferred multiple times because
a migration manager has a mechanism for transferring frequently
modified pages only at the final stage of live migration. For this
purpose, we have extended the log dirty mode so that a bit is set
in a log dirty bitmap when the corresponding memory page is
mapped by DomR. For the implementation details, refer to our
previous paper [1].

4.5 Synchronization in Co-migration
For the continuity of out-of-band remote management, there

are seven synchronization points in the co-migration of DomR
and DomU, as illustrated in Fig. 7. After the migration managers
for DomR and DomU start VM migration, they create new empty
VMs at the destination host to store the transferred states. At syn-
chronization point S 1, after DomR is created, the migration man-
ager for DomR waits for DomU to be created. Then it registers
the created DomU as a target of DomR.

Next, both migration managers at the source host transfer the
VM’s memory and synchronize the entrances to the final stage
of live migration at synchronization point S 2. This is two-way
synchronization, which means that each migration manager waits
until the other can enter the final stage. To reduce downtime,
the migration managers perform extra iterations, while each ex-
amines the state of the other. The next synchronization point S 3

is at the beginning of the final stage. Before DomU is stopped,
the migration manager for DomU waits for DomR to be stopped.
This guarantees that DomR does not modify the shared memory
of DomU after DomU stops and the data in the shared memory
has been transferred.

After the migration manager for DomR has transferred the re-
maining memory and the CPU state, it waits for DomU to be
stopped at synchronization point S 4. Then it saves the event
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DomR

DomU

DomR

DomU

save
event

channels
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stop
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create
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restore
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Fig. 7 The synchronization in the co-migration of DomR and DomU.

channels. On the other hand, at synchronization point S 5, be-
fore DomU is terminated, the migration manager for DomU waits
until event channels are saved. At the destination host, before
restarting DomU, the migration manager for DomU waits at syn-
chronization point S 6 until event channels are restored. These
three synchronization points guarantee that the state of event
channels is consistently saved and restored for VMs with the
stopped state.

Finally, at synchronization point S 7, the migration manager for
DomR waits until the whole memory of DomU is restored. After
that, it can obtain a list of memory pages allocated to DomU. This
list is needed for remapping DomU’s memory to DomR. Note that
it is guaranteed that saving the memory-mapping state completes
before DomU is terminated because it is done before saving event
channels.

5. Experiments
We conducted experiments to examine the continuity of out-of-

band remote management across VM migration and to measure
the performance of remote management and co-migration. For
server machines hosting VMs, we used two PCs with one Intel
Xeon E3-1270 3.40 GHz processor, 8 GB of memory, and giga-
bit Ethernet. We ran a modified version of Xen 4.3.2 and Linux
3.7.10 in Dom0, DomR, and DomU. By default, we allocated one
virtual CPU and 128 MB of memory to DomR, one virtual CPU
and 2 GB of memory to DomU, and eight virtual CPUs and the
rest of the memory to Dom0. For a client machine, we used a
PC with one Intel Xeon E5-1620 3.60 GHz processor, 8 GB of
memory, and gigabit Ethernet. We ran TightVNC Java Viewer
2.0.95 [20] on Windows 7 and an OpenSSH 6.0 client [21] on
Linux 3.16.0. These PCs were connected with a gigabit Ethernet
switch.

5.1 Data Loss on Co-migration
We investigated whether D-MORE could prevent data loss in

out-of-band remote management on VM migration. We sent a key
every 50 ms from a VNC client to a VNC server and monitored
the data received by the keyboard backend driver during VM mi-
gration. We repeated this experiment 10 times and counted the
number of lost keys. In the original Xen, the backend driver
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Fig. 8 The response time of remote management.

was removed by the migration of DomU. As a result, 1.4 keys
were lost by co-migration on average. In D-MORE, the backend
driver was migrated with DomR when DomR and DomU were
co-migrated. Across the co-migration, no keys were lost. During
the migration of DomR, the number of TCP retransmissions was
8.5 on average. These results showed that D-MORE prevented
data loss successfully.

Next, we examined whether D-MORE could prevent the loss
of data written in shared memory. When the keyboard backend
driver in DomR writes input data to the I/O ring in shared mem-
ory, the memory page may not be correctly transferred without
our extension to the log dirty mode. We performed co-migration
10 times, as in the above experiment, and examined whether data
was lost or not. By default, we could not observe any data loss.
However, when we added a delay of 200 ms to DomU’s read of
event channels, keys were lost only when we disabled our ex-
tension. This means that data in I/O rings can be lost during
co-migration due to VM scheduling in the VMM and process
scheduling in VMs.

5.2 Performance in D-MORE
To examine the performance of out-of-band remote manage-

ment via DomR, we first measured the response time. In VNC,
the response time was the time from when a VNC client sent a
keyboard event until it received a screen update by displaying a
corresponding character. For comparison, we measured the re-
sponse time when a VNC server ran in Dom0. Figure 8(a) shows
the results in the original Xen and D-MORE for VNC. The in-
crease in response time was negligible. Similarly, we measured
the time from when an SSH client sent a console input until it
received a console output caused by its remote echo. Figure 8(b)
is the result for SSH. The standard deviation was larger than that
of VNC, but the response time was almost the same.

Next, we examined the throughput of remote management.
For VNC, we measured the frame rate of a full-screen update of
DomU at a VNC client. For a full-screen update, we ran a screen
saver that redrew the full screen (800×600) as fast as possible in
DomU. As shown in Fig. 9(a), the difference in throughput be-
tween the original Xen and D-MORE was negligible. For SSH,
we ran a benchmark that wrote characters to a serial console as
fast as possible in DomU. Then we measured the output rate of
characters at an SSH client. Figure 9(b) shows that D-MORE suf-

�

�

�

�

�

��

��

��

��	
���

��
�
�
�
�
�
�
�
�

�������

������

(a) VNC
���

���

���

���

���

���

���

�
��
��
�
�
��
�
	

�
�
�

�

�	
�
��

������

(b) SSH

Fig. 9 The throughput of remote management.

fered from slight overhead. One of the reasons for this overhead
is network virtualization in DomR because the network in Dom0
is not virtualized.

5.3 Co-migration Time
We measured the time needed for the co-migration of DomR

and DomU. We changed the memory size of DomU from 256
MB to 2 GB. To examine the impact of out-of-band remote man-
agement during co-migration, we measured the co-migration time
both when an RMS client did not connect to an RMS server and
when it sent an input every 50 ms to the server. This input rate
is too fast for humans, but it is possible when we copy and paste
text. For comparison, we migrated two independent DomUs in
parallel without synchronization, using the original Xen. We
fixed the memory size of one DomU to 128 MB and changed
that of the other DomU. The co-migration time we measured was
from when we started co-migration until the migration of both
VMs completed.

Figures 10 and 11 show the average co-migration time for
VNC and SSH, respectively, when we measured that 10 times
for each memory size. In both cases, the co-migration time was
proportional to the memory size of DomU. This is because the
total migration time of two VMs depends on the total size of the
memory to be transferred. Compared with independent migra-
tion of two DomUs, the co-migration time in D-MORE without
remote management increased by 1.6 seconds in VNC and 0.5
seconds in SSH at most. This is the overhead of the synchro-
nization in D-MORE. When we performed remote management
during co-migration, the co-migration time increased even more.
The reason is that a larger amount of memory became dirty in
DomR and DomU. Therefore it took time to enter the final stage
of VM migration.

5.4 Downtime
We measured the downtime of DomR and DomU during co-

migration. This experiment was conducted for VNC using the
same setup as the above. The downtime we measured was the
time in which a VM was not running at either the source or des-
tination host. The average downtime of 10 runs was shown in
Fig. 12. Since the standard deviations of all of these downtimes
were quite large (tens of milliseconds), we omitted error bars for
visibility. The downtime of DomR was higher than that of DomU
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Fig. 12 The downtime of DomR and DomU.

because DomR was stopped before DomU by the synchroniza-
tion in co-migration. In addition, DomR was usually restarted
after DomU due to restoring the memory-mapping state just be-
fore it was restarted. For DomU, in contrast, the downtime in
D-MORE was shorter than that of independent migration. The
reason is probably that DomU could execute its migration process
with less resource conflicts while the migration process of DomR
waited for synchronization. It should be noted that the downtime
did not become longer when we performed out-of-band remote
management during co-migration.

Next, we measured the user-perceived downtime at RMS
clients. We sent an input every 50 ms from an RMS client and
measured the response time. Then we considered the longest
response time at the final stage of co-migration as the user-
perceived downtime. This experiment was conducted for VNC
and SSH. Figure 13 shows the average downtime when we mea-
sured that 10 times. For VNC, the user-perceived downtime was

�

���

���

���

���

����

� ��� ���� ���� ����

�
�
�
�
��
�
�
	

�
��

�


	
	������
������	������

���

���

Fig. 13 The user-perceived downtime.
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Fig. 14 The changes in response time during co-migration for VNC.

827 ms at most. The standard deviation was quite large (more
than 100 ms) because the output processing in a VNC server was
very complicated. For SSH, on the other hand, the maximum of
the downtime was 667 ms and the standard deviation was small.
Although these downtimes are not small, they are much smaller
than the downtimes in traditional systems that need manual re-
connection. If a user reconnects to a new RMS server by himself
after VM migration, it would take several tens of seconds at least.
In addition, it may take a longer time to recover inputs lost during
VM migration.

5.5 Performance Degradation during Co-migration
Even except for the downtime, the co-migration of DomR and

DomU can affect the performance of out-of-band remote man-
agement. To examine the impact on the response time, we mea-
sured the changes in response time during co-migration. In this
experiment, an RMS client sent input every 50 ms to an RMS
server. Figures 14 and 15 show the results for VNC and SSH, re-
spectively. After we started co-migration at time 25 seconds, the
response time increased by 5.4 ms for VNC and 2.9 ms for SSH
on average. This performance degradation lasted for 28 seconds
for VNC and 25 seconds for SSH.

To examine the impact on the throughput, we measured the
changes of the frame rate of full-screen updates for VNC and
the rate of console outputs for SSH during co-migration. For a
full-screen update, we ran the screen saver in Section 5.2. Fig-
ure 16 shows the average frame rate every second. The frame
rate decreased by 0.4 frames per second (fps) on average after the
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Fig. 15 The changes in response time during co-migration for SSH.
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Fig. 16 The changes in frame rate in VNC during co-migration.
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Fig. 17 The changes in output rate in SSH during co-migration.

co-migration was started at time 25 seconds. The degradation of
the frame rate lasted for 33 seconds and the frame rate was 6.7 fps
at the final stage of co-migration. For SSH, we ran a benchmark
that wrote one character to a serial console every millisecond.
Figure 17 shows the average output rate every 0.5 seconds. The
output rate degraded by 17.6 characters per second on average for
40 seconds. It was nearly zero at the final stage of co-migration.

5.6 CPU Overhead
We examined the CPU utilization of Dom0, DomR, and DomU

in the original Xen and D-MORE. Figures 18 and 19 show the
average CPU utilization in out-of-band remote management with
VNC and SSH, respectively. When an RMS client just connected
to an RMS server, the total CPU utilization in D-MORE slightly
increased, as shown in the left two bars. However, DomR did not
use so much CPU time. When an RMS client sent an input every
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Fig. 18 CPU utilization in remote management with VNC.
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Fig. 19 CPU utilization in remote management with SSH.

50 ms, the total CPU utilization in D-MORE was almost the same
as that in the original Xen, as in the middle two bars. For VNC,
the CPU utilization of DomR became larger. When DomU exe-
cuted full-screen updates in VNC or console outputs in SSH, the
total CPU utilization was almost the same in the right two bars.
For SSH, the CPU utilization of DomR was the largest among all
workloads, but it was only 5% on average.

Next, we examined the changes of the CPU utilization during
the co-migration of DomR and DomU. We measured the CPU
utilization of Dom0s at the source and destination hosts, DomR,
and DomU. Figure 20 shows the result when a VNC client sent a
key stroke every 50 ms. After co-migration was started at time 25
seconds, the CPU utilization of both Dom0s increased because
migration managers ran. In addition, that of DomR slightly in-
creased due to the overhead of the log dirty mode. Figure 21
shows the CPU utilization when we used SSH and DomU wrote
output to the console every millisecond. In this case, the CPU
utilization of DomR increased to 19% on average due to co-
migration. Since not only DomU but also DomR used more CPU
time, the CPU utilization of Dom0 at the source host was much
less than that of Fig. 21.

6. Conclusion
In this paper, we proposed D-MORE for continuing out-of-

band remote management across VM migration. D-MORE pro-
vides a privileged and migratable VM called DomR to run an
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Fig. 20 The changes in CPU utilization during co-migration for VNC.
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Fig. 21 The changes in CPU utilization during co-migration for SSH.

RMS server and virtual devices, which are necessary for the re-
mote management of a target VM. D-MORE synchronously co-
migrates DomR with its target VM and transparently maintains
the connections between an RMS client, DomR, and its target
VM at the network and VMM levels. During VM migration, D-
MORE prevents the loss of inputs and outputs for remote man-
agement. We have implemented D-MORE in Xen and confirmed
that the remote management of a target VM via DomR was not
discontinued after the co-migration. Our experimental results
showed that all the pending data was not lost. The overhead of
D-MORE was small during a normal run although performance
degradation was caused during co-migration. The downtime dur-
ing co-migration was not small, but it was much less than that of
the traditional systems that need manual reconnection.

One of our future work is to support fully virtualized VMs in
D-MORE. DomR could easily run virtual devices for them like
stub domains [9], [10] in Xen, but we have to develop a mech-
anism for migrating them. Another future work is to reduce re-
source consumption by DomR. Running Xen’s Mini OS can de-
crease the memory footprint of DomR.
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