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Abstract—In Infrastructure-as-a-Service (IaaS) clouds, in-
trusion detection systems (IDSes) increase their importance.
To securely detect attacks against virtual machines (VMs), IDS
offloading with VM introspection (VMI) has been proposed. In
semi-trusted clouds, however, it is difficult to securely offload
IDSes because there may exist insiders such as malicious system
administrators. First, secure VM execution cannot coexist
with IDS offloading although it has to be enabled to prevent
information leakage to insiders. Second, offloaded IDSes can be
easily disabled by insiders. To solve these problems, this paper
proposes IDS remote offloading with remote VMI. Since IDSes
can run at trusted remote hosts outside semi-trusted clouds,
they cannot be disabled by insiders in clouds. Remote VMI
enables IDSes at remote hosts to introspect VMs via the trusted
hypervisor inside semi-trusted clouds. Secure VM execution can
be bypassed by performing VMI in the hypervisor. Remote
VMI preserves the integrity and confidentiality of introspected
data between the hypervisor and remote hosts. The integrity
of the hypervisor can be guaranteed by various existing tech-
niques. We have developed RemoteTrans for remotely offloading
legacy IDSes and confirmed that RemoteTrans could achieve
surprisingly efficient execution of legacy IDSes at remote hosts.
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I. INTRODUCTION

In Infrastructure-as-a-Service (IaaS) clouds, users run
their services in virtual machines (VMs). They can set up
the systems in provided VMs and use them as necessary.
As in traditional systems, it is necessary to protect the
systems inside VMs from external attackers. For example,
intrusion detection systems (IDSes) are useful to monitor
the system states, filesystems, and network packets. To
prevent IDSes from being compromised by intruders into
VMs, IDS offloading with VM introspection (VMI) has been
proposed [1]–[4]. This technique runs IDSes outside VMs
and introspects the internals of VMs, e.g., the memory,
storage, and network. It is difficult that intruders attack
IDSes outside VMs.

On the other hand, VMs in semi-trusted clouds can suffer
from insider attacks. In this paper, semi-trusted clouds mean
that cloud providers are trusted but some of the system
administrators may be untrusted. To reduce the risk of

insider attacks, various mechanisms for secure VM execution
in semi-trusted clouds have been proposed [5]–[8]. These
mechanisms prevent information leakage to insiders, e.g., by
encrypting the memory and storage of VMs or restricting
access to VMs in the trusted hypervisor. However, it is
difficult to securely offload IDSes inside such semi-trusted
clouds. First, secure VM execution cannot coexist with IDS
offloading because offloaded IDSes need to analyze the
internals of VMs. Second, IDSes offloaded inside clouds
can be easily disabled by insiders.

In this paper, we propose IDS remote offloading using
remote VMI. This technique enables IDSes to run at trusted
remote hosts outside semi-trusted clouds. Therefore IDSes
are prevented from being disabled by insiders in clouds.
Remote VMI is an enabling technology for IDS remote
offloading. It is initiated by remote hosts and introspects
VMs using a minimal VMI engine in the trusted hypervisor
inside semi-trusted clouds. The VMI engine can bypass se-
cure VM execution provided by the hypervisor. Remote VMI
preserves the integrity and confidentiality of introspected
data between the hypervisor and remote hosts. The integrity
of the hypervisor can be guaranteed by various existing
techniques [9]–[12].

We have developed a system for achieving remote of-
floading of legacy IDSes, called RemoteTrans. For remote
memory introspection, the VMI engine introspects the mem-
ory of target VMs on demand. For remote network intro-
spection, it analyzes the communication between network
drivers and devices and captures the packets to/from target
VMs. For remote storage introspection, remote hosts share
protected storage with target VMs. Using remote VMI,
legacy IDSes can be run at remote hosts in cooperation
with Transcall [13]. According to our experiments, remotely
offloaded legacy IDSes were surprisingly efficient when
network delay was small.

The organization of this paper is as follows. Section II
describes issues of IDS offloading in semi-trusted clouds.
Section III proposes IDS remote offloading with remote
VMI. Section IV explains the implementation details of
RemoteTrans. Section V reports experiments for examining



the effectiveness of IDS remote offloading. Section VI
describes related work and Section VII concludes this paper.

II. IDS OFFLOADING IN SEMI-TRUSTED CLOUDS

To execute IDSes securely, IDS offloading with VMI
has been proposed [1]–[4]. This technique enables IDSes
to run outside their target VM and monitor the system
inside the VM from the outside. Even if attackers intrude
into a VM, they cannot disable offloaded IDSes. IDSes
are often offloaded to a privileged VM, which is called
the management VM. Offloaded IDSes can directly obtain
detailed information inside VMs, e.g., the memory, storage,
and networks, using VMI. IDSes in the management VM can
map memory pages of target VMs and read the contents.
They can access disk images of VMs, which are located
in the management VM. Also, they can capture packets
from virtual network devices created in the management VM
because all the packets are sent via the devices. Using such
information, even legacy IDSes can be offloaded [4], [13].

However, VMI can be abused by insiders in semi-trusted
clouds. This results in leaking sensitive information inside
VMs. It is reported that 28% of cyber crimes is caused by
insiders [14]. One example of insiders is malicious system
administrators, who attack systems actively. For example,
a site reliability engineer in Google violated user’s privacy
in 2010 [15]. Another example is curious but honest system
administrators, who may eavesdrop on attractive information
that they can easily obtain from VMs. It is revealed that
35% of system administrators access sensitive information
without authorization [16].

To reduce the risk of insider attacks, many researchers
have proposed mechanisms for secure VM execution. The
secure runtime environment [5] and VMCrypt [7] prevent in-
formation leakage from the memory of VMs. These systems
encrypt the memory of VMs only when cloud administrators
access it from the management VM, while they do not when
the VMs access it. This encryption is done in the trusted hy-
pervisor underlying all the VMs including the management
VM. SSC [8] prevents the management VM from accessing
users’ VMs and allows only users’ administrative VMs to
access them using the trusted hypervisor.

In semi-trusted clouds, it is difficult to securely offload
IDSes. First, secure VM execution cannot coexist with IDS
offloading. Offloaded IDSes need to access the memory of
VMs from the outside to introspect VMs. If the memory
of VMs is encrypted or its access is restricted, offloaded
IDSes cannot run. If secure VM execution is not enabled,
insiders can access the internals of VMs as well as offloaded
IDSes and information leakage cannot be prevented. Second,
insiders can easily disable offloaded IDSes. They can stop
IDSes offloaded to the management VM and tamper with
their configurations. If they intrude into target VMs after
that, IDSes could not detect it. Even if IDSes run in VMs
protected by secure VM execution, insiders can attack such

VMs in various ways. For example, it is possible to mount
attacks exploiting vulnerabilities of the systems inside the
VMs.

To avoid these problems, IDSes can be offloaded to
more secure execution environments, not the management
VM abused by insiders. BVMD [17] executes a malware
detector in the hypervisor and compares the contents of
data I/O with malware signatures. HyperGuard [11] runs
an integrity checker in BIOS to check the integrity of the
hypervisor in System Management Mode (SMM) of x86
processors. Flicker [10] runs a rootkit detector in an isolated
environment using Intel TXT and AMD SVM. However, it
is difficult to run legacy IDSes such as chkrootkit, Tripwire,
and Snort in these systems because the capabilities of used
execution environments are limited. Even if legacy IDSes
can be run, they make the trusted computing base (TCB)
inside clouds much larger and this results in increasing the
attack surface. Also, it is problematic to securely update
policy files such as signature files of Snort inside clouds.

III. IDS REMOTE OFFLOADING

In this paper, we propose IDS remote offloading, which
enables running legacy IDSes at remote hosts outside semi-
trusted clouds.

A. Assumptions and Threat Model
We assume that cloud providers are trusted. This assump-

tion is widely accepted [5]–[7], [18] because a bad reputation
is critical for their business. Therefore we trust hardware
used in clouds. The integrity of the hypervisor on top of
trusted hardware is guaranteed by various techniques. At
boot time, remote attestation with TPM enables trusted cloud
providers, external trusted authorities, or users to check the
integrity. At runtime, integrity checking can be securely done
by using hardware such as PCI add-in cards [9], SMM
[11], [12], [19], or Intel TXT and AMD SVM [10]. We
assume that such infrastructure is securely maintained by
cloud providers.

On the other hand, we assume that some of the system
administrators may be untrusted. The management VM
can be abused by malicious or honest but curious system
administrators. Such insiders can take the root privilege
in the management VM and even modify its operating
system kernel. However, they have access rights only for
the management VM and cannot disable the protection
mechanisms of the hypervisor.

We assume that remote hosts are trusted because they are
owned by users. Used hosts can be physical hosts prepared
by users or VMs in private clouds of users’ organization. In
any case, they run in trusted execution environments outside
semi-trusted public clouds.

B. Secure IDS Offloading Using Remote VMI

Fig. 1 illustrates the system architecture for IDS remote
offloading. Since IDSes run at trusted remote hosts, they
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Figure 1. IDS remote offloading with remote VMI.

cannot be disabled by insiders in clouds. Even if such
insiders mount DoS attacks by preventing the transfers of
introspected data, remote hosts can notice that easily. In
addition, it is easy and secure to update policy files for
IDSes. An enabling technology for IDS remote offloading is
remote VMI. Remote VMI is initiated by remote hosts and
introspects VMs using a minimal VMI engine inside clouds.
The VMI engine securely runs in the trusted hypervisor.
Since it provides only basic mechanisms, it does not need
to update policy files. Using the VMI engine, secure VM
execution is bypassed because it is usually provided by the
hypervisor [5], [7], [8]. As a result, IDS remote offloading
can coexist with secure VM execution. Remote VMI also
preserves the integrity and confidentiality of introspected
data between the VMI engine and remote hosts.

For remote memory introspection, the VMI engine in-
trospects the memory of target VMs and sends memory
contents to remote hosts on demand. Although the memory
of VMs can be encrypted or isolated by secure VM execu-
tion, the VMI engine inside the hypervisor can access the
unencrypted memory. To access the memory of VMs from
the hypervisor, the VMI engine translates virtual addresses
used by VMs into physical addresses used by the hypervisor.
It introspects the page tables inside VMs and looks up the
nested page tables in the hypervisor. To preserve the integrity
and confidentiality of requests and responses from/to remote
hosts, the VMI engine encrypts introspected data and calcu-
lates its message authentication code (MAC). Remote hosts
verify the MAC and decrypt received data. This mechanism
can also prevent the VMI engine from being abused by users
who do not have the encryption key.

For remote network introspection, the VMI engine cap-
tures packets to/from target VMs and sends them to remote
hosts. It captures packets between target VMs and the virtual
network devices created in the management VM. This is
not so easy because the communication between target VMs
and virtual devices is done directly. To capture packets, the
VMI engine intercepts and analyzes the communication. It
can capture packets sent from target VMs before the packets
may be tampered with in the management VM. In contrast, it
can capture packets received by target VMs after the packets
may be tampered with. Thanks to the introspection in the

hypervisor, the packets between VMs in the same host can
be also captured. To preserve the integrity of transferred
packets, the VMI engine calculates a MAC for them and
remote hosts verify the MAC.

For remote storage introspection, unlike memory and
network introspection, remote hosts share storage with target
VMs directly, not via the hypervisor. This is because the hy-
pervisor cannot read the entire disk images easily. The disk
images of target VMs are located in the management VM
and the hypervisor can capture only data read and written by
target VMs. To protect storage from the management VM,
storage is encrypted and every block is hashed by secure
VM execution or the operating systems in target VMs. As
such, the management VM securely provides the protected
storage to remote hosts as network storage. Remote hosts
decrypt it and check its integrity.

Using remote VMI, legacy IDSes can be run at remote
hosts in cooperation with Transcall [13]. Transcall provides
an execution environment for legacy IDSes to introspect
a VM without any modifications. Transcall consists of
the system call emulator and the shadow filesystem. The
system call emulator traps the system calls issued by IDSes
and obtains necessary information on the kernel from the
memory of a VM. It also provides a network interface for
network introspection. The shadow filesystem provides the
same filesystem view as that in a VM. To achieve this, it
generates the proc filesystem, which provides information
on the processes and the networks in a VM. The shadow
proc filesystem analyzes the memory of a VM and provides
necessary information as pseudo files.

IV. IMPLEMENTATION

To achieve IDS remote offloading with remote VMI, we
have developed a system called RemoteTrans using Xen
4.1.3. RemoteTrans consists of a runtime at a remote host, a
server in the management VM, and a VMI engine in the hy-
pervisor. The RemoteTrans runtime includes Transcall [13]
for offloading legacy IDSes. The RemoteTrans server is used
for relaying the communication between the runtime and the
VMI engine because the Xen hypervisor does not have the
capability of network communication. Note that we do not
trust the RemoteTrans server.

A. Remote Memory Introspection

Whenever an IDS at a remote host attempts to read the
memory data in a target VM, it sends a request to the
RemoteTrans runtime, as illustrated in Fig. 2. The request
consists of the virtual address and size of the data. The
runtime forwards the request to the RemoteTrans server in
the management VM via a network. Next, the server invokes
the VMI engine in the hypervisor using a hypercall. The
VMI engine traverses the page tables inside a target VM and
translates the specified virtual address into a guest physical
address. Then it translates the guest physical address into a
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Figure 2. Memory introspection in RemoteTrans.

host physical address. After that, it reads data of the specified
size from the host physical address and returns it to the
RemoteTrans server. Finally, the data is transferred to the
RemoteTrans runtime as a response.

To prevent the requests and responses from being tam-
pered with, the RemoteTrans runtime checks the integrity.
First, the RemoteTrans runtime includes a random nonce
in each request to prevent replay attacks. Before the VMI
engine returns obtained data to the RemoteTrans server, it
encrypts the data with AES-CBC to preserve confidentiality.
Then it calculates a MAC from the virtual address, the size,
and the nonce in a request, the obtained data, and a secret
key in the VMI engine. When the RemoteTrans runtime
receives the response, it first decrypts the data. Then it
calculates a MAC from the saved virtual address, size, and
nonce, the decrypted data, and the same secret key as the
VMI engine. If the calculated MAC and the MAC included
in the response do not match, that means that the request
and/or response have been tampered with.

The RemoteTrans runtime locally caches obtained mem-
ory contents of a target VM. It does not send requests for
the data that has been obtained once and returns cached data
to an IDS. Although the size of data is often small, e.g.,
four bytes, the RemoteTrans runtime obtains memory pages
including the required data at once for efficiency. Since most
of IDSes run periodically, it is acceptable to monitor a little
bit old data in the cache. To keep fresh data in the cache
as much as possible, the RemoteTrans runtime flushes the
cache periodically, e.g., after an IDS completes to check the
system once. The freshness of the cache and the performance
of IDSes are tradeoff.

B. Remote Network Introspection

To securely capture all the packets from/to a target VM,
the VMI engine in the hypervisor monitors the communi-
cation between the management VM and a target VM, as
shown in Fig. 3. Packets from a target VM are transferred
to the management VM and are sent to the outside or
the other VMs in the same host via the network bridge.
In contrast, packets to a target VM are first received by
the management VM and are then transferred to a target
VM. The recent operating system often uses a paravirtual
network driver named netfront for efficiency even if a
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Figure 3. Network introspection in RemoteTrans.

VM is fully virtualized. The netfront driver communicates
with the netback driver in the management VM using ring
buffers called I/O rings. After these drivers write requests
or responses to I/O rings, they send events to the other end
via the hypervisor using event channels.

The VMI engine monitors events sent between the net-
front and netback drivers and captures packets via I/O rings.
When a target VM sends a packet, the netfront driver writes a
request to the I/O ring for transmission and issues a hypercall
for sending an event to the netback. The VMI engine
analyzes the request in the I/O ring and extracts a grant
table reference, which is assigned to a memory page shared
between VMs. Then the VMI engine finds a page frame
number corresponding to the grant table reference. Finally,
it maps the corresponding page and saves an Ethernet frame
stored in it. At this time, it assigns a sequence number to
the frame to prevent replay attacks.

For packets that a target VM receives, the VMI engine
analyzes both requests and responses in the I/O ring for
reception. To receive a packet from the netback driver, the
netfront driver sends a request to the netback driver and
registers a grant table reference for storing responses. The
VMI engine analyzes the request and records the relationship
between the reference and a request identifier. When the
netback driver receives a packet, it writes a response with
the request identifier to the I/O ring. At that time, the
VMI engine finds a grant table reference from the identifier
and then saves an Ethernet frame in the memory page
corresponding to the reference.

For these purposes, the VMI engine securely identifies the
I/O rings and the event channel used between the network
drivers. When the netfront driver is initialized, it writes
the grant table references for the I/O rings and the port
number used for the event channel to the XenStore ring. The
XenStore ring is a ring buffer used between a target VM and
XenStore, which is a database for VM configuration in the
management VM. If the VMI engine detects events sent to
XenStore, it analyzes requests in the XenStore ring.

The RemoteTrans server periodically issues a hypercall
and obtains packets saved by the VMI engine in the hy-
pervisor. At this time, the VMI engine calculates a MAC
from a list of Ethernet frames, a list of these sizes, the last
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sequence number, and a secret key. Then the RemoteTrans
server sends the MAC with the packet data to the runtime.
The RemoteTrans runtime checks the MAC using received
data and the secret key to guarantee the integrity. To detect
replay attacks, it also checks if the last sequence number is
consistent. Finally, it writes the received Ethernet frames to
a created tap device.

C. Remote Storage Introspection

In RemoteTrans, the operating system in a target VM
encrypts its storage using dm-crypt although the hypervi-
sor can encrypt it [20]. This is natural as self-protection
in semi-trusted clouds. At boot time, Linux Unified Key
Setup (LUKS) requires a password for decrypting storage.
A key file can be used, but it has to be located in an
unencrypted partition of the storage. To prevent the key file
from being stolen, users can input the password interactively
using out-of-band remote management. This management
method allows users to access booting VMs via VNC and
SSH. However, since out-of-band remote management is
enabled by the management VM, password inputs can be
eavesdropped on by insiders in clouds [21].

To allow users to input passwords securely, RemoteTrans
uses FBCrypt [21] and SCCrypt [22]. These systems encrypt
all the inputs and outputs of out-of-band remote management
between a client at a remote host and the hypervisor in a
cloud, as shown in Fig. 4. Even if the management VM
eavesdrops on inputs, it cannot obtain passwords. As a result,
the management VM cannot illegally decrypt storage of
target VMs.

RemoteTrans provides such protected storage to remote
hosts using the network block device (NBD). NBD provides
remote storage as a virtual block device. The management
VM specifies the storage of a target VM and runs the NBD
server, while the RemoteTrans runtime at a remote host
mounts a created virtual block device. The runtime also
decrypts mounted storage using dm-crypt by specifying the
same password as in a target VM.

For the integrity of storage, the operating system in a
target VM can calculate a hash of every disk block using dm-
integrity. In the current implementation, RemoteTrans does
not use dm-integrity because it is not included in standard
Linux distributions usually used in target VMs.

V. EXPERIMENTS

We conducted experiments to examine the security and
performance of IDS remote offloading. For a target host,
we used a PC with one Intel Xeon E3-1290 processor,
16 GB of memory, an HDD of 500 GB, and a Gigabit
Ethernet NIC. We ran Xen 4.1.3 and assigned eight virtual
CPUs and 12 GB of memory to the management VM.
For a target VM, we assigned one virtual CPU, 4 GB of
memory, and a virtual disk of 20 GB. In the VM, we ran
Linux 2.6.27 in full virtualization. Only for experiments
on network introspection, we ran Linux 3.5.0 with the
paravirtual network driver. For a remote host, we used a
PC with the same hardware specification as the target host.
We ran various IDSes on Linux 3.2.0. In addition, we used
a faster PC with one Intel Xeon E3-1270v3 processor, 16
GB of memory, an HDD of 2 TB, and a Gigabit Ethernet
NIC. At this host, we used Linux 3.13.0.

We connected these hosts using a Gigabit Ethernet switch.
Also, we considered network delay between them. We
emulated a WAN by inserting network delay with the tc
command at a remote host. Since the network delay to
the nearest region of Amazon EC2 was reported as several
milliseconds, we added network delay between 1 and 10 ms.

A. Remote Offloading of Legacy IDSes

To confirm that IDS remote offloading was done correctly,
we ran several legacy IDSes in remote, local, and no
offloading. IDSes were offloaded to a remote host in remote
offloading, whereas they were offloaded to the management
VM at the same host where a target VM ran in local
offloading. In no offloading, IDSes ran inside a target
VM. First, we executed chkrootkit, which detected rootkits
installed in a target VM. In IDS offloading, chkrootkit used
memory and storage introspection. The result of chkrootkit
was exactly the same between remote and local offloading,
while it was slightly different from the result in no offloading
due to unsupported features. When we tampered with the ps
command in the target VM, the offloaded chkrootkit could
detect it correctly.

Next, we executed Tripwire, which checked the integrity
of the filesystems in a target VM. In IDS offloading,
Tripwire used storage introspection. When we used the
same policy file, the offloaded Tripwire could scan almost
the same number of files as in-VM Tripwire. The reason
of the difference was that the files related to ld.so were
specially handled in Transcall. Finally, we executed Snort,
which captured the network packets from/to a target VM.
In IDS offloading, Snort used network introspection. When
we mounted portscans to the target VM using nmap, the
offloaded Snort could detect the attack correctly.

B. Insider Attacks in the Management VM

We confirmed that RemoteTrans could detect insider
attacks in the management VM. For remote memory in-
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Figure 5. The throughput of memory introspection.

trospection, we tampered with either requests or responses
in a malicious RemoteTrans server. As a result, the Re-
moteTrans runtime could detect the modification of requests
and responses because the MACs did not match. Next, we
mounted replay attacks by returning a saved response for
successive requests. Thanks to random nonces included in
requests, the RemoteTrans runtime could detect the reuse of
the old response. Finally, we eavesdropped on the kernel
data included in responses, but we could not obtain any
meaningful strings.

For remote network introspection, we tampered with pack-
ets that were forwarded by a malicious RemoteTrans server.
Thanks to the MACs attached to the forwarded packets,
the RemoteTrans runtime could detect tampering with the
packets. Next, we mounted replay attacks by sending old
packet data. Since the sent data contained the same sequence
number as the last one, the RemoteTrans runtime could
detect such attacks. For remote storage introspection, we
eavesdropped on the disk image of a target VM in the
management VM. We searched the disk image for password
strings, but we could not find them because of full-disk
encryption.

C. Performance of Remote VMI

To examine the performance of memory introspection, we
have developed a benchmark suite for reading the memory
of a target VM. The benchmark for remote memory in-
trospection received memory contents via the RemoteTrans
server and runtime. The benchmark for local memory in-
trospection mapped memory pages and read the contents in
the management VM. The in-VM benchmark read memory
from /dev/mem in a target VM. As shown in Fig. 5a, the
throughput of remote memory introspection was only 8%,
compared with local one. This was due to the overhead of
communication, MAC verification, and encryption. The dif-
ference of a remote host did almost not affect the throughput.
When we added network delay, the throughput was inversely
proportional as in Fig. 5b.

Next, we measured the performance of storage introspec-
tion using IOzone 3.430. We created a file of 1 GB in a
target VM in advance and read it at a remote host, in the
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Figure 6. The throughput of storage introspection.

management VM, and in a target VM. Fig. 6a shows the
throughput of disk reads. When we used a slow remote host,
the performance of remote storage introspection was 64%
lower than that of local one. However, using a faster remote
host, the performance degradation was only 3.1%. This
means that storage decryption is dominant in the throughput.
When the delay was more than 5 ms, there was no difference
between two remote hosts, as shown in Fig. 6b, because
the network became a bottleneck. Surprisingly, the in-VM
performance was the lowest. The reason is the virtualization
overhead of storage.

Finally, we measured the packet loss rate under a heavy
workload using D-ITG 2.8.1. We sent 2,000 packets of 1
KB to a target VM and captured them at a remote host, in
the management VM, and in a target VM. No packets were
lost in any types of network introspection.

D. Performance of Legacy IDSes

First, we measured the execution time of chkrootkit and
Fig. 7a shows the results. Surprisingly, the execution time
in remote offloading was the shortest. Even when we used
a slow remote host, remote offloading was 60% and 87%
faster than local and no offloading, respectively. For a faster
remote host, remote offloading was 104% and 138% faster,
respectively. This is mainly because there is no virtualization
overhead at a remote host. It took more time to execute many
system calls issued by chkrootkit and Transcall. To verify
this, we ran Xen at a remote host and executed chkrootkit in
its management VM. The execution time became longer, but
remote offloading was still 13% faster than local offloading.
The reason is under investigation. When we added network
delay, the execution time increased as shown in Fig. 7b. Un-
der no delay, the execution time was only 8.7 seconds longer
at a slow remote host. Under 10 ms of delay, however, the
difference became 50 seconds. This is because chkrootkit is
CPU intensive. A fast remote host could execute chkrootkit
more efficiently.

Next, we measured the execution time of Tripwire. As
shown in Fig. 8a, the time in remote offloading was the
shortest. Even when we used a slow remote host, remote
offloading was 13% and 53% faster than local and no
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Figure 8. The execution time of offloaded Tripwire.

offloading, respectively. For a faster remote host, remote
offloading was 58% and 115% faster, respectively. Like
chkrootkit, the reason is the virtualization overhead in the
management VM and a target VM. In fact, when we ran
Xen at a remote host, remote offloading became 8.4% slower
than local offloading. Fig. 8b shows the execution time when
we added network delay. The time increased in proportion
to the delay, but the difference between two remote hosts
was constant. This means that remotely offloaded Tripwire is
network intensive and the network performance determines
the performance of Tripwire.

Finally, we measured the time in which Snort detected
a portscan after we started it. As shown in Fig. 9a, the
detection time in local and no offloading was almost the
same, while that in remote offloading was 5 ms longer. This
is because remote offloading has to forward packets captured
by the VMI engine to a remote host and write them to a
tap device. However, this delay increased the detection time
only by 1.8%. Fig. 9b shows the average detection time and
the standard deviation when we added network delay. The
reason why the average increased is that it sometimes took
a much long time to detect a portscan. For example, it took
2.4 seconds at worst when network delay was 10 ms. The
detection time for most of the portscans did not change.

VI. RELATED WORK

The idea of using remote hosts with IDSes is not new.
Copilot [9] can remotely monitor the integrity of the kernel
memory by using a PCI add-in card inserted in a target host.
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Figure 9. The detection time of offloaded Snort.

The Copilot monitor on the card obtains the kernel text and
jump tables from memory by DMA and calculates its hash.
It sends the results of integrity checking to a remote host via
a dedicated network. The attackers at the target host cannot
compromise the Copilot monitor or the remote host. Unlike
IDS remote offloading, IDSes themselves do not run at a
remote host.

HyperCheck [12] uses System Management Mode (SMM)
to remotely monitor memory and CPU registers. In SMM,
the CPU can securely execute code in System Management
RAM (SMRAM), which cannot be accessed in the normal
mode. In HyperCheck, a network device driver running in
SMM makes a NIC read memory using DMA and send
memory contents to a remote host. The remote host checks
the integrity of the hypervisor and the operating system by
running IDSes. However, while a CPU runs in SMM, all the
regular tasks are suspended to maintain the integrity.

HyperSentry [19] allows a measurement agent inside the
hypervisor to be securely executed using SMM even if the
hypervisor have been compromised. The handler running
in SMM is invoked via Intelligent Platform Management
Interface (IPMI), which is an out-of-band communication
channel with a remote host. Then the handler verifies the
agent, disables interrupts, and runs the agent for collecting
the detailed information on the hypervisor. The measurement
output is attested by the remote host. One drawback is that
the agent cannot run simultaneously with the other tasks.

Also, secure execution of local IDSes has been proposed.
HyperGuard [11] enables local IDSes to securely monitor
the integrity of the hypervisor using SMM. It triggers an
IDS in SMM by timer interrupts and the IDS checks the
hypervisor memory. Like HyperCheck, all the regular tasks
are suspended while the IDS is running in SMM. Another
drawback is that SMM is much slower than the normal
mode. Running the whole IDS in SMM suffers from larger
overhead. In addition, it is not easy to execute various IDSes
in SMM because developers need to modify BIOS.

Flicker [10] is an infrastructure for executing security-
sensitive code using the hardware support such as Intel TXT
and AMD SVM. When such code needs to be executed,
Flicker suspends the current execution environment, se-



curely executes the code using late launch, and resumes the
previous execution environment. Late launch enables code
execution without interferences by the attackers. However,
it also stops all CPU cores other than the one used by the
executed code. While the security-sensitive code is running,
the other applications cannot be running.

A self-service cloud (SSC) computing platform [8] pro-
vides users with privileged VMs called service domains
(SDs) to monitor their own VMs. SDs can monitor the
memory of target VMs, disk blocks accessed by VMs, and
system calls issued by them. Even cloud administrators
cannot disable IDSes in SDs. However, the TCB is larger
than RemoteTrans because a VM called DomB has to be
also trusted.

VII. CONCLUSION

This paper proposed IDS remote offloading with remote
VMI. This technique enables legacy IDSes to securely run
at trusted remote hosts outside semi-trusted clouds. Remote
VMI is initiated by remote hosts and introspects VMs
using a minimal VMI engine in the trusted hypervisor
inside clouds. It preserves the integrity and confidentiality
of introspected data between the VMI engine and remote
hosts. Thanks to the VMI engine, secure VM execution
provided by the hypervisor can be securely bypassed. We
have developed RemoteTrans for achieving IDS remote
offloading in cooperation with Transcall. We confirmed that
RemoteTrans could achieve surprisingly efficient execution
of legacy IDSes in remote offloading.

One of our future work is to examine the performance
of remotely offloaded IDSes when we run many VMs on a
host. The VMI engine and the communication between the
RemoteTrans server and runtime can become performance
bottlenecks. Another direction is to enable offloaded IDSes
to introspect target VMs more efficiently even under large
network delay. For remote memory introspection, we could
offload the analysis of kernel data to the VMI engine.
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