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Abstract—In Infrastructure-as-a-Service clouds, users can
reduce costs by scale-in or -down when running applications
are under-utilized. Since these optimizations of instance de-
ployment require at least one minimum instance even for
running an under-utilized application, cost reduction is lim-
ited. For further optimization, multiple applications can be
consolidated into one instance. However, applications have to
be stopped temporarily at the consolidation time and isolation
between applications becomes weaker after the consolidation.
To solve these problems, this paper proposes FlexCapsule,
which enables seamless and secure application consolidation
in existing IaaS clouds. FlexCapsule runs each application
in a lightweight virtual machine (VM), called an app VM,
using a library operating system. An app VM runs inside
an instance using nested virtualization. Using VM migration,
FlexCapsule can optimize instance deployment with negligible
downtime. Thanks to strong isolation provided by app VMs,
it guarantees security between consolidated applications. In
addition, FlexCapsule provides multi-process support using
app VMs such as process fork and process pools. We have
implemented FlexCapsule using Xen and OSv and confirmed
its effectiveness.

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds provide users
with instances, which are usually virtual machines (VMs),
and users run their applications in instances. Since users
can change instance deployment flexibly in IaaS clouds,
they can respond to load changes rapidly. For example,
users can use minimum instance deployment at start up and
increase the number or the resource amount of instances
when their applications become over-utilized. In contrast,
they can decrease the number or the resource amount to
reduce costs when their applications become under-utilized.
Thus it is necessary to optimize instance deployment so that
used instances are always sufficient but minimum.

However, it is not easy to perform such optimization in
current IaaS clouds. If users adjust the number of instances
by scale-out and -in, they need at least one instance even for
an under-utilized application and cannot further reduce costs.
As an optimization for one instance, users can adjust the
amount of resources assigned to an instance by scale-up and
-down. Unfortunately, most of the existing clouds achieve

this optimization by switching instance types offline because
they do often not provide the function for dynamically
changing resource allocation to an instance. Therefore, users
need at least one minimum instance even for a mostly idle
application. Although the cost of each instance may be low,
the total cost could become high if users run many under-
utilized applications.

For further optimization, users can consolidate applica-
tions running in multiple instances into one instance. When
there are several under-utilized applications, the user can
run them in one instance and reduce costs. Later, when
some of the applications become over-utilized, the user
can de-consolidate them to other instances. However, this
application consolidation and de-consolidation cause service
downtime when users move applications between instances.
This problem can be solved by using process migration [15],
but a security issue arises due to consolidating applications.
Since multiple applications run in the same instance, isola-
tion among them becomes weaker than traditional instance-
level isolation.

In this paper, we propose FlexCapsule, which achieves
seamless and secure application consolidation for optimizing
instance deployment. FlexCapsule runs each application in
a lightweight virtual machine (VM), called an app VM,
using a library operating system (OS). To enable an app
VM to flexibly run with appropriate resources in existing
IaaS clouds, FlexCapsule runs an app VM inside an instance
using nested virtualization [4]. Since it constructs a virtual
private network (VPN) for all app VMs across multiple
instances, app VMs can be migrated between instances.
Thus FlexCapsule can optimize instance deployment without
stopping applications enclosed in app VMs. In addition, it
guarantees security between applications consolidated into
one instance using strong isolation provided by app VMs.

We have implemented FlexCapsule in Xen 4.2.4 [3]. The
library OS used in an app VM is based on OSv 0.21 [10].
We have added migration support to the library OS because
the library OS itself has to suspend and resume para-virtual
device drivers. As a helper of the library OS, FlexCapsule
provides an OS server running inside each instance. For
example, when the fork function in the library OS is invoked,
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the OS server clones the entire app VM. When the listen
function is invoked, the OS server registers a rule for port
forwarding to the app VM. Combining these mechanisms,
the OS server enables app VMs to create a process pool. Ac-
cording to our experiments, it was shown that FlexCapsule
could optimize instance deployment according to perfor-
mance requirements of applications. Migration performance
of app VMs was better than the Linux VM, thanks to smaller
memory footprints.

This paper is organized as follows. Section II describes
issues in optimizing instance deployment in existing IaaS
clouds. Section III proposes FlexCapsule for enabling seam-
less and secure application consolidation using app VMs.
Section IV describes its implementation and Section V
shows experimental results. Section VI describes related
work and Section VII concludes this paper.

II. OPTIMIZING INSTANCE DEPLOYMENT

In IaaS clouds, the optimization of instance deployment
is performed according to resource utilizations of instances.
The most popular optimization is scale-out and -in, which
adjust the number of instances. When an application be-
comes over-utilized, the user can increase the number of
instances by scale-out and distribute the load to more
instances. In contrast, when an application becomes under-
utilized, the user can decrease the number of instances by
scale-in to reduce costs. However, if only one instance is
deployed for an under-utilized application, the user cannot
further reduce the number of instances. For example, con-
sider intra servers that are rarely accessed during weekends
or vacations and personal servers and archive servers that
are sometimes accessed. When there is almost no request
to such a server, the system load becomes almost zero, but
one instance is required if the server cannot be stopped.
Thus the effectiveness of this optimization is limited when
applications are almost not running.

The optimization for one instance is scale-up and -down,
which adjust the amount of resources assigned to each
instance. When an application becomes over-utilized, the
user can increase the number of virtual CPUs (vCPUs), the
performance of vCPUs, and/or the amount of memory of
the instance by scale-up. In contrast, when an application
becomes under-utilized, the user can decrease the amount
of such resources by scale-down to reduce costs. However,
most of the existing clouds like Amazon EC2 achieve scale-
up and -down by switching instance types offline. Since the
user has to choose one from several instance types, cost
reduction is limited by the cost of the minimum instance
type. In addition, when the user switches his current instance
to a new one, he has to stop applications, move their data
to the new instance, and restart these applications in the
new instance. This duration becomes downtime, for which
applications cannot provide services.

For further optimization, users can consolidate multiple
applications running in multiple instances into one instance.
This is called application consolidation. For example, con-
sider a multi-tier application that consists of multiple ap-
plications such as a Web server, an application server, and
a database. When these applications are running across
multiple instances and all of them are under-utilized, the user
can run these applications in one instance to reduce costs.
Later, when the instance becomes over-utilized, the user
can de-consolidate these applications to multiple instances
again to perform load balancing. For further cost reduction,
even different users could consolidate their applications
into one instance. Like scale-up and -down, however, this
also causes downtime when the user moves applications
between instances. In addition, a security issue arises due
to application consolidation. Since multiple applications run
in the same instance, isolation among them becomes weaker
than when using one instance per application.

To reduce downtime during application consolidation and
de-consolidation and scale-up and -down, process migration
can be used. For example, Zap [15] provides a thin virtual-
ization layer between processes and the OS and runs a group
of processes in a container called a pod. Using pods, Zap
enables most of the process state to be maintained on process
migration. However, isolation between pods is not strong
because a pod is protected only by namespaces provided by
the OS. For stronger isolation, DrawBridge [16] executes
each application in a picoprocess, which is a process that
runs a library OS. A picoprocess can restrict the interface
between an application and the host OS more strictly. In
its variant, Graphene [18], it is reported that most of the
attacks against vulnerabilities of the system call interface
can be prevented. However, isolation between picoprocesses
is not sufficient because the host OS has a large number of
other kinds of vulnerabilities.

III. FLEXCAPSULE

This paper proposes FlexCapsule, which enables seamless
and secure application consolidation for optimizing instance
deployment in IaaS clouds. FlexCapsule runs each appli-
cation in a lightweight VM, called an app VM, inside an
existing instance. Using the technology of VM migration,
FlexCapsule can move applications between instances with
negligible downtime at the optimization time of instance
deployment. Thanks to strong isolation between app VMs,
FlexCapsule guarantees security between applications con-
solidated into one instance.

A. System Architecture

Fig. 1 illustrates the system architecture of FlexCapsule.
Using nested virtualization [4], FlexCapsule runs the hyper-
visor inside each instance, which is usually a VM. It runs app
VMs on top of the hypervisor, which is less vulnerable than
the OS. Each app VM runs only one application process and
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Figure 1. The system architecture of FlexCapsule.

a library OS, which is linked to the application to provide
functions of the OS without any overhead of protection
mechanisms. FlexCapsule also runs an OS server in each
instance and provides functions that cannot be achieved only
by the library OS inside app VMs. Our approach of using
nested virtualization is feasible in terms of performance
because it is reported that the overhead is 6-8% [4] for
common workloads.

Since FlexCapsule assumes that public IP addresses are
assigned only to instances, it assigns private IP addresses
to app VMs. This reduces the cost for using public IP
addresses in clouds. To provide services of app VMs to the
outside, FlexCapsule uses network address port translation
(NAPT). Thanks to NAPT, different app VMs can use the
same public IP address. The public IP address that each app
VM uses is determined at creation time and does not change.
Also, it constructs a network with the same segment across
multiple instances using a site-to-site virtual private network
(VPN). This VPN enables app VMs to continue to use the
same public and private IP addresses even after they are
migrated to other instances. Each packet is first delivered to
the instance with the specified public IP address. Then it is
automatically forwarded to an appropriate instance running
the target app VM by the VPN.

B. Optimization Using App VMs

When performing application consolidation, FlexCapsule
migrates under-utilized app VMs to one instance, as illus-
trated in Fig. 2(a). As a result, if the source instances have no
app VM, FlexCapsule stops them and re-assigns their public
IP addresses to the destination instance, e.g., using Elastic
IP addresses in Amazon EC2. Thus migrated app VMs can
be reached using the same IP addresses before application
consolidation. In contrast, when performing application de-
consolidation, FlexCapsule deploys new instances and mi-
grates over-utilized app VMs to those instances. Before
the migration, FlexCapsule re-assigns one of the public IP
addresses assigned to the source instance to the destination
ones.

To scale an application up and down, FlexCapsule deploys
a new instance of appropriate type and migrates app VMs
in the original instance to the new one (Fig. 2(b)). Then
it stops the original instance and re-assigns that public IP
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Figure 2. The optimization of instance deployment using the migration
of app VMs.

address to the new one. For scaling an application out, on
the other hand, FlexCapsule deploys new instances, clones
app VMs inside the original instances, and migrates them to
the new ones (Fig. 2(c)). At this time, FlexCapsule assigns
new private IP addresses to the cloned app VMs but allows
them to continue to use the original public IP addresses using
NAPT. When scaling an application in, FlexCapsule simply
stops several instances.

C. FlexCapsule OS

The FlexCapsule OS is a library OS running in an
app VM. A library OS provides functions of the OS to
applications as a library. Since only necessary functions
are linked to an application at compile time, a library OS
can reduce the memory footprint of an app VM. Therefore
running an app VM per application does not require extra
memory so much, compared with using a general-purpose
OS. The small memory footprint of an app VM enables
faster VM migration by transferring only a smaller amount
of memory.

The FlexCapsule OS reduces the overhead of extra vir-
tualization due to app VMs by using para-virtualization.
Full virtualization in nested virtualization poses relatively
large overhead because completely double virtualization is
necessary. Since a para-virtualized OS simplifies virtualiza-
tion by cooperating with the hypervisor, the performance
of app VMs can be improved. In compensation for this
performance gain, a para-virtualized OS needs to support
VM migration by itself to disconnect from and reconnect to
the tightly coupled hypervisor. Specifically, the FlexCapsule
OS enables itself to be suspended and resumed.



D. FlexCapsule Server

The FlexCapsule server is an OS server running in each
instance. It provides functions related to multi-process,
which cannot be supported only by the FlexCapsule OS.
Since FlexCapsule runs only one application process in an
app VM, each app VM cannot achieve functions across mul-
tiple processes. The FlexCapsule server is used for coopera-
tion between app VMs. For example, when an application in
an app VM invokes the fork function, the FlexCapsule server
clones the entire app VM. At this time, the FlexCapsule
OS communicates with the FlexCapsule server and then the
FlexCapsule server creates a child app VM from the parent
app VM. The public IP address that the child app VM uses
is the same as that used by the parent app VM. It returns
an identifier of the child VM to the parent VM and zero
to the child VM, as in the original fork. For inter-process
communication, the FlexCapsule server mediates messages
from one app VM to another one.

The FlexCapsule server also manages NAPT rules to
forward packets to app VMs. Since an app VM communi-
cates with the outside using NAPT, the FlexCapsule server
registers a NAPT rule when an application invokes the listen
function. For example, consider a Web server listening to
TCP port 80 in an app VM. The FlexCapsule server registers
a NAPT rule that translates a pair of the public IP address
used by the app VM and port 80 into a pair of the private
IP address of the app VM and port 80. For load balancing,
the FlexCapsule server supports process pooling, which is
a technique for preparing multiple processes that wait for
the same port using fork. The FlexCapsule server configures
NAPT rules so that packets are delivered to one of the app
VMs in a process pool.

IV. IMPLEMENTATION

We have implemented FlexCapsule in Xen 4.2.4 [3].
DomU is an instance provided by a cloud and runs user’s
virtualized system using nested virtualization. In the user’s
virtualized system, DomU is used as an app VM and the
FlexCapsule server runs in Dom0. We have implemented the
FlexCapsule OS based on OSv 0.21 [10], which is the OS
optimized for virtualized systems. OSv is fully virtualized
but uses para-virtual (PV) device drivers to reduce virtual-
ization overhead. OSv can run many existing applications
with no or slight modification. Since OSv can run the Java
VM, it also supports most of Java applications. In addition,
OSv can run custom applications more efficiently.

A. Migration of App VMs

Since the FlexCapsule OS uses the para-virtualization
technology, it needs migration support at the OS level to
migrate an app VM. When VM migration is performed, the
FlexCapsule server writes a request for power management
to the control/shutdown node in XenStore. XenStore is
storage for sharing information between VMs and Dom0.

To monitor the node, the FlexCapsule OS starts a dedicated
thread at boot time and registers the shutdown handler as
a callback function. When the node is changed, XenStore
sends an event to the corresponding app VM and the
FlexCapsule OS invokes the shutdown handler.

The shutdown handler first suspends PV devices. A PV
device consists of a front-end driver in an app VM and a
back-end driver in Dom0. A front-end driver communicates
with a back-end driver using event channels, which are
established at device initialization. Since it cannot use the
established event channels after VM migration, the shut-
down handler disconnects them. Next, the shutdown handler
invokes the suspend hypercall, which returns when the
app VM is resumed at the destination instance. Then the
shutdown handler resumes PV devices to re-establish new
event channels with a back-end driver in Dom0 at destination
instance.

In the current implementation, the state of the FlexCapsule
server does not need to be migrated together with an
app VM. For example, the NAPT rules for the app VM
continue to be applied at the source instance, as explained
in Section IV-C.

B. Fork of App VMs

When an application invokes the fork function, the Flex-
Capsule OS sends a fork request to the FlexCapsule server
via XenStore. The FlexCapsule server suspends a parent
app VM and creates a child app VM. It configures a newly
allocated IP address of the child app VM and registers new
NAPT rules based on those for the parent app VM. Then
it copies the states of the parent app VM to the child app
VM. In addition, the FlexCapsule server makes the parent
and child app VMs share the disk of the parent app VM in
a copy-on-write manner. Finally, it resumes the parent app
VM.

The implementation of VM fork is similar to
SnowFlock [11], but there are two differences. First,
FlexCapsule supports cloning of VMs for full virtualization.
VM states to be copied are much different from those in
para-virtualization. Second, FlexCapsule eagerly copies the
entire memory at fork time, whereas SnowFlock copies it
on demand. This is because the time needed for configuring
the extended page table (EPT) for copy-on-write was
similar to that for memory copies in our experiment.

1) Duplicating VM States: The FlexCapsule server issues
a newly created hypercall to duplicate VM states. First, the
hypercall copies the memory contents of the parent app VM
to the child app VM. For each page of the parent app VM,
it allocates a new page for the child app VM and registers
the mapping from its host-physical page frame number to
the guest-physical one. Next, the hypercall copies the CPU
states of the parent app VM to the child app VM. It copies
the time stamp counter, PAE, the TSS in the virtual 8086
mode, the identity-map page directory, and the location of



ACPI control blocks. Also, it copies the contents of the
I/O rings used for memory events and sets the page frame
numbers used for console, xenstore, ioreq, and bufioreq to
the child app VM. Then it saves the HVM context of the
parent app VM and loads it to the child app VM. Finally,
the FlexCapsule server saves the device states in qemu-dm
for the parent app VM and restores them to qemu-dm for
the child app VM.

2) Sharing a Disk: To share the disk of the parent app
VM with the child app VM in a copy-on-write manner, the
FlexCapsule server creates two copy-on-write disks for these
app VMs, respectively. A copy-on-write disk is a disk that
stores only updates to the base disk, which is a disk used
by the parent app VM before fork. In qcow2 used by qemu-
dm, file writes to a copy-on-write disk are performed to
the disk, whereas file reads are performed from the disk if
files exist; otherwise, they are done from the base disk. To
enable dynamically changing a disk of a running app VM,
the FlexCapsule server indirectly attaches a disk to an app
VM via a network block device (NBD) [19].

For the child app VM, the FlexCapsule server connects
one copy-on-write disk to an unused NBD device and then
attaches the device to the child app VM. For the parent
app VM, the FlexCapsule server first disconnects the base
disk from the NBD device already attached. Then it re-
connects the other copy-on-write disk to the original NBD
device. As such, the parent app VM can use copy-on-write
disks seamlessly. If the NBD is not used for indirect disk
attachment, this is difficult to achieve because a local disk
directly attached to a VM cannot be detached as long as the
VM is not stopped.

C. Networking

Fig. 3 illustrates networking in FlexCapsule. When an
application invokes the listen function to wait for new
network connections, the FlexCapsule OS obtains a listening
port number from the specified socket and sends it to the
FlexCapsule server via XenStore. Then the FlexCapsule
server adds a new NAPT rule to iptables. The added rule
forwards packets sent to the public IP address and port
number used by the app VM to the app VM. We used
the libiptc [2] library for manipulating netfilter. When an
application invokes the close function for a socket, the
FlexCapsule OS sends a listening port obtained from the
socket to the FlexCapsule server via XenStore. Then the
FlexCapsule server deletes the NAPT rule corresponding to
the port.

To achieve load balancing with a process pool for app
VMs, the FlexCapsule server uses the nth mode of the
statistic module for iptables. The nth mode is used for simple
stateful load balancing in a round-robin fashion. When an
application invokes the fork function or the FlexCapsule
server clones an app VM for scale-out, the FlexCapsule
server examines whether the app VM is listening to net-
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Figure 3. Networking in FlexCapsule.

work ports. If there are such ports, the FlexCapsule server
translates the corresponding NAPT rules into rules for the
nth mode and adds new rules for a child app VM. Using
the nth mode, packets are delivered to one of the app VMs
included in the same process pool. Note that all the packets
in one connection are delivered to the same app VM.

The FlexCapsule server constructs one VPN that connects
all app VMs inside user’s instances using Ethernet bridging
of OpenVPN 2.3.2 [14]. One instance runs the OpenVPN
server, whereas the others run the OpenVPN clients. Thanks
to the VPN, even after app VMs are migrated to other
instances, the NAPT rules in the source instance are still ap-
plied. If the source instance has no app VM and is therefore
stopped, the FlexCapsule server transfers the NAPT rules to
the destination instance.

V. EXPERIMENTS

We conducted experiments to confirm the effectiveness
of FlexCapsule. We used two PCs with an Intel Xeon E3-
1290v2 processor and 8 GB of memory. We ran Xen 4.2.4
for the hypervisor and Linux 3.13.0 in Dom0. We created
several DomUs as instances in a cloud and assigned one to
four vCPUs and 2 GB of memory. Inside these instances,
we ran several app VMs, each of which was assigned one
vCPU and 4 to 256 MB of memory.

A. Application Consolidation

To show the effectiveness of application consolidation
using app VMs, we measured changes in application perfor-
mance before and after de-consolidation. We used three app
VMs, which ran lighttpd 1.4.35 [12], memcached 1.4.21 [7],
and Redis 3.0.1 [17], respectively. For each server, we
measured the throughput using httperf 0.9.0, memaslap, and
redis-benchmark. When consolidating these three app VMs,
we ran them inside one instance with one vCPU. When de-
consolidating them, we used three instances, each of which
has one vCPU.

Fig. 4 shows relative performance based on the throughput
of each server when we consolidated the three app VMs. Af-
ter de-consolidation, the application performance improved
by a factor of 1.9 to 2.7. This means that application de-
consolidation can improve the performance of app VMs. In
other words, application consolidation is useful if each app
VM is not used so much.
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Figure 5. The performance improvement by scale-out and scale-up.

B. Scale-out and Scale-up

First, we investigated whether app VM-level scale-out was
effective. We increased the number of app VMs running
inside one instance with four vCPUs and measured the
total performance of all the app VMs. We ran lighttpd and
measured the throughput using httperf when we sent requests
for 1 KB files. Fig. 5(a) shows the total throughput. When we
increased the number of app VMs, the total throughput was
increased until three app VMs. This is because these three
app VMs and one management VM inside the instance used
up four vCPUs.

Second, we examined the effectiveness of instance-level
scale-out with app VMs. We ran one app VM inside an
instance and increased the number of instances. We assigned
two vCPUs to each instance so that an instance could run
one app VM and one management VM with maximum
performance. Since the used PC had only four cores, we
could run up to two instances without CPU contention. We
measured the throughput of lighttpd when we sent requests
for 1 KB files. The total throughput in two instances became
twice of that in one instance.

Finally, we investigated instance-level scale-up when run-
ning lighttpd in one app VM. We changed the number of
vCPUs assigned to the instance. Fig. 5(b) shows the through-
put when we sent requests for 1 MB files using httperf. As
the number of vCPUs was increasing, the throughput was
improved.
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Figure 6. The downtime during VM migration between instances.

C. Performance of App VM Migration

First, we measured the downtime during the pre-copy live
migration of an app VM between instances. The downtime
is the time until an app VM is restarted in the destination
instance after it is stopped in the source instance. For
comparison, we migrated a regular VM that ran Linux. In
this experiment, we did not run any active applications.
Fig. 6 shows the downtime when we migrated VMs to
another instance at the same and remote hosts, respectively.
We measured the downtime for VMs of various memory
sizes, but the downtime was almost the same. Therefore we
show the average and the standard deviation. The downtime
of the app VMs was sufficiently short and shorter than that
of the Linux VM. This is partly because OSv supports only
the smaller number of virtual devices to be suspended. When
VMs were migrated to a remote host, the downtime became
approximately 0.1 seconds longer.

Second, we measured the migration time when we
changed the memory sizes of VMs. The migration time is
the time needed for the execution of the migration command.
Fig. 7(a) shows the results when we migrated an app VM and
a Linux VM to another instance at the same hosts. Since the
migration time is proportional to the memory size of VMs,
the app VM has an advantage over the Linux VM because
it can run with the smaller amount of memory. The app VM
can run in only 64 MB, whereas the Linux VM needs 128
MB at least. In the minimal memory size, VM migration
of the app VM was 1.5 times faster. Fig. 7(b) shows the
results of VM migration to the remote host. The migration
time became 10 seconds longer than VM migration to the
same host. In this case, the migration time of the app VM
was almost the same as that of the Linux VM.

D. Overhead of the VPN

To examine the overhead of the VPN across instances,
we migrated an app VM to another instance and measured
the throughput change of lighttpd. When we migrated the
app VM to the instance at the same host, the throughput
was degraded only by 1%. In contrast, the performance
degradation was 24% when we migrated the app VM to
a remote instance. This is because packets are forwarded to
the destination instance by the VPN server.
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Figure 7. The migration time between instances.

E. Fork Time

We measured the time needed for the execution of the
fork function in an app VM. From our experimental result, it
was shown that the fork time was slightly proportional to the
memory size of the app VM. For an app VM with 256 MB
of memory, it took 1.9 seconds. The time for restoring qemu-
dm occupies a large portion of the fork time. In addition,
the fork time includes the overhead of nested virtualization,
which increases the time by 0.8 seconds. In other words,
the fork time is shortened if the implementation of nested
virtualization is improved.

When we achieved VM fork using Xen’s standard save
and restore commands, the fork time increased significantly
as the memory size of the app VM was increasing. For an
app VM with 256 MB of memory, our VM fork was 36
times faster.

F. Application Performance

We ran various applications in an app VM and compared
its performance with that in the Linux VM. Fig. 8 shows
the relative performance based on the performance of the
Linux VM. For lighttpd, the throughput of the app VM was
almost the same as that of the Linux VM. The performance
degradation due to using NAPT was 3%. For memcached,
the performance of the app VM was 4.3 times higher
because OSv provides an optimized version of memcached,
which does not use the general-purpose socket API, for
example. For Redis, the performance of the app VM was
2.5 times higher when Redis used pipelining, which sends
new requests without waiting for responses.

VI. RELATED WORK

Picocenter [22] runs applications in Linux containers
inside instances of existing IaaS clouds. To optimize instance
deployment, it swaps applications to and from cloud storage
by checkpointing and rapidly restoring containers. Since Pic-
ocenter is designed for long-lived, mostly idle applications,
it can cause too frequent swaps for periodically accessed
applications. In addition, the hub manages IP addresses and
ports and assigns available ones to swapped-in applications.
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Figure 8. Application performance.

Therefore, the IP address of an application may be changed
whenever the application is swapped in.

VMware vCloud Air Virtual Private Cloud OnDe-
mand [20] supports seamless and flexible scale-up and -
down of instances. Users can dynamically increase or de-
crease the amount of resources assigned to their instances,
according to application demands. Unlike most of exiting
IaaS clouds, they do not need to create a new instance of
appropriate type and move applications to it for scale-up
and -down. Since users can pay only for assigned resources,
not for instances, the cost can be reduced for under-utilized
applications. This is one implementation of the Resource-as-
a-Service cloud [5]. However, the number of vCPU cannot
be decreased less than one. FlexCapsule allows multiple
applications to share one vCPU by application consolidation.

There are several studies on multi-process support in
a library OS. Xok/ExOS [9] can run the existing Unix
applications without modifications using the nano kernel
called Exokernel [6] and the library OS. ExOS provides
mechanisms for multi-process such as process fork and
inter-process communication using shared memory. Since
Xok/ExOS does not consider the migration of applica-
tions, seamless application consolidation cannot be achieved.
Graphene [18] supports multi-process for applications with
the Linux-compatible library OS. Its applications can per-
form inter-process communication using RPC via the li-
brary OS. In addition, Graphene achieves process fork and
non-live application migration by application checkpointing.
However, isolation between applications is weaker than VM-
level isolation because applications run on top of the large
host OS.

Including OSv [10] that FlexCapsule uses, there are sev-
eral library OSes running on top of the hypervisor. Libra [1]
and GUK [8] run the Java VM with the library OS on the
hypervisor to optimize the execution of Java applications.
Libra provides the library OS with only functions that affect
the performance of the Java VM and uses file systems and
networks provided by Dom0 in Xen. GUK extends Mini-
OS in Xen to run the Java VM. It improves the memory
management of Mini-OS and adds support for SMP, memory
ballooning, and VM suspension and resumption. Mirage [13]
specializes the library OS to OCaml applications and gen-



erates a unikernel directly running on the hypervisor. Flex-
Capsule can use these library OSes for running app VMs.

Xen-Blanket [21] enables VMs to be run inside instances
using nested virtualization and to be migrated between
instances with different network segments. To construct a
VPN between two instances, it connects virtual switches
running in instances using a layer-2 tunnel. This approach
is similar to FlexCapsule. However, Xen-Blanket runs a
gateway server VM inside an instance to perform routing
between VMs and the outside. FlexCapsule does not run
such an extra VM but use NAPT. In addition, Xen-Blanket
assumes VM migration between different clouds, whereas
FlexCapsule assumes that inside a cloud. Therefore packet
forwarding between instances is realistic.

VII. CONCLUSION

This paper proposed FlexCapsule, which runs each ap-
plication in a lightweight VM, called an app VM, using a
library OS. FlexCapsule can optimize instance deployment
at application granularity. The migration of app VMs enables
seamless application consolidation and de-consolidation and
scale-up and -down. Strong isolation among app VMs
enables secure application consolidation. We have imple-
mented FlexCapsule in Xen and OSv. The FlexCapsule
OS cooperates with the FlexCapsule server to support VM
migration, networking, process fork, and process pools.
Experimental results show that FlexCapsule is effective for
the optimization of instance deployment.

One of our future work is to enable various applications
to run in app VMs. For example, we need to advance
multi-process support such as inter-process communication.
Another direction is to reduce the overhead of nested vir-
tualization. Since OSv is fully virtualized except for PV
drivers, we need to develop para-virtualized OSv or use
more lightweight virtualization such as containers. Also, the
network performance of app VMs should be improved using
network optimization in Xen-Blanket.
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