
Split Migration of Large Memory Virtual Machines

Masato Suetake
Kyushu Institute of Technology
masato@ksl.ci.kyutech.ac.jp

Hazuki Kizu
Kyushu Institute of Technology
hazuki@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ci.kyutech.ac.jp

Abstract
Recently, Infrastructure-as-a-Service clouds provide VMs
with a large amount of memory, e.g., X1 instances with 2
TB in Amazon EC2. Such large memory VMs make VM mi-
gration difficult because VM migration needs sufficient free
memory at the destination host. Even in clouds, it is costly
to always reserve hosts with a large amount of free memory.
This paper proposes S-memV, which enables split migra-
tion of large memory VMs. Split migration migrates a large
memory VM to multiple hosts by dividing its memory. It
transfers core information and frequently accessed memory
of a VM to the main host, whereas it transfers infrequently
accessed memory to the sub-hosts. When the VM requires
the memory stored in the sub-hosts, S-memV performs re-
mote paging between the main host and the sub-hosts. Since
split migration is aware of remote paging, S-memV can keep
the performance of migrated VMs. In addition to such one-
to-N migration, split migration supports N-to-one and par-
tial migration. We have implemented S-memV in KVM and
showed that migration time was much shorter than that of
the traditional migration with virtual memory.

1. Introduction
Infrastructure-as-a-Service (IaaS) clouds provide virtual ma-
chines (VMs) to users. Many VMs are consolidated into a
small number of hosts to reduce costs. Recently, as the needs
to IaaS clouds are diversified, IaaS clouds also provide VMs
with a large amount of memory. In Amazon EC2, for ex-
ample, each 8xlarge instance has 244 GiB and new X1 in-
stances have 2 TB. Such large memory VMs are required
for big data analysis, e.g., using Apache Spark [2] and Face-
book Presto [7], because big data can be analyzed faster by
maintaining data in memory as much as possible. Fast in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
APSys 2016, August 4–5, 2016, Hong Kong, China..
Copyright c⃝ 2016 ACM 978-1-4503-4265-0/16/08. . . $15.00.
http://dx.doi.org/10.1145/2967360.2967368

memory databases such as SAP HANA [15] and Microsoft
SQL Server [14] are another application of a large amount
of memory.

There are two issues to migrate such large memory VMs.
One is the migration time because that time is basically
proportional to the memory size of a migrated VM. This
issue has been resolved by parallelizing VM migration [16]
and using fast interconnects such as 40 Gigabit Ethernet
(GbE) [13]. The other unresolved issue is the availability
of the destination host. VM migration needs sufficient free
memory at the destination host. However, it is costly to
always reserve hosts with a large amount of free memory,
even if possible in clouds. If large memory VMs cannot be
migrated, they have to be stopped during host maintenance
and big data analysis is disrupted for a long time. In addition,
the whole data in memory is lost and it takes much time to
restore the lost data in memory by reading disks or redoing
computation. This largely degrades performance for a long
time after VMs are restarted.

On the other hand, there are many hosts with a small
amount of free memory in clouds. The total amount is often
sufficient for accommodating a migrated large memory VM.
To integrate such fragments of free memory into one, vir-
tual memory with remote paging [4, 5, 8, 12] has been pro-
posed. Traditional virtual memory enables the system to use
a larger amount of memory than physical memory by pag-
ing out part of the memory to disks. Instead of local disks,
remote paging can use free memory in other hosts to store
paged-out memory. However, using virtual memory largely
degrades the migration and execution performance of large
memory VMs because virtual memory is incompatible with
VM migration and excessive paging is caused during and af-
ter VM migration. At worst, VM migration is not completed
endlessly due to thrashing.

To solve this problem, this paper proposes S-memV for
split migration of large memory VMs. Split migration en-
ables a large memory VM to be migrated to multiple hosts
by dividing its memory. In split migration, the destination
of VM migration is not always one host as traditional mi-
gration and consists of one main host and zero or more sub-
hosts. Split migration transfers core information of a VM
such as CPU and device states to the main host at the desti-
nation. It also transfers memory that is likely to be accessed

frequently after VM migration to the main host as much as
possible. It transfers memory that cannot be stored in the
main host to the sub-hosts. After split migration, the VM
runs at the main host and S-memV performs remote pag-
ing between the main host and the sub-hosts when the VM
needs memory in the sub-hosts. Since remote paging does
not occur at all during split migration, S-memV can achieve
fast VM migration. Thanks to the awareness of memory ac-
cess patterns, S-memV can keep the performance of VMs
after split migration. Split migration supports not only such
one-to-N migration but also N-to-one migration and partial
migration, which migrates part of a VM running across mul-
tiple hosts.

We have implemented S-memV in KVM and developed a
memory server that manages part of the memory of a VM at
a sub-host. We have developed a remote paging system us-
ing the userfaultfd mechanism in Linux 4.3. In addition, we
have developed a mechanism for collecting memory access
data of VMs using the extended page tables (EPT). Accord-
ing to our experiments, split migration could achieve less
migration time and downtime than the traditional VM migra-
tion with virtual memory. In particular, it could suppress the
increase in migration time under a memory-intensive work-
load.

This paper is organized as follows. Section 2 describes an
issue in migrating VMs with a large amount of memory. Sec-
tion 3 proposes S-memV for split migration and Section 4
describes its implementation. Section 5 shows experimen-
tal results of one-to-N migration in S-memV. Section 6 de-
scribes related work and Section 7 concludes this paper.

2. Migration of Large Memory VMs
VM migration enables a running VM to be moved to another
host without stopping it. Using VM migration, administra-
tors can maintain a host without service disruption after they
migrate all the VMs running at that host. Basic VM migra-
tion first creates a new VM at the destination host and copies
the memory contents of a VM running at the source host to
the memory of the newly created VM via the network. Then
it re-transfers updated memory contents because the mem-
ory of the VM at the source host continues to be modified
during the memory transfer. VM migration repeats this re-
transfer and stops a VM at the source host when the amount
of memory to be transferred is small enough. Finally, it trans-
fers CPU and device states and memory contents that are not
synchronized yet.

Recently, large memory VMs are being widely used.
For example, Amazon EC2 provides several 8xlarge in-
stance types with 244 GiB of memory. Recently, it added
the x1.32xlarge instance type with 1,952 GiB of memory.
Such VMs are used to process a large amount of data, e.g.,
big data analysis [2, 7] and in-memory database [14, 15].
However, large memory VMs make VM migration difficult
because it is not cost-efficient to always reserve hosts with

a large amount of free memory as the destination of VM
migration. If there is such a host but the host is used for run-
ning many small VMs, administrators have to first migrate
these VMs to obtain necessary free memory. This is a time-
consuming task and increases the time until the migration of
a large memory VM is completed.

2.1 VM Migration with Virtual Memory
When there is not sufficient free memory at the destination
host for VM migration, the virtual memory technology is
traditionally used. Virtual memory enables the system to use
a larger amount of memory than physical memory by pag-
ing out the memory pages that cannot be stored in physi-
cal memory to disks. However, virtual memory is incompat-
ible with VM migration of a large memory VM. Since all
the memory pages of a VM are transferred in order in the
first iteration of VM migration, memory pages with lower
addresses are unconditionally paged out using the least re-
cently used (LRU) algorithm, regardless of memory access
patterns inside the VM. This can result in degrading the per-
formance of virtual memory after VM migration.

In the following iterations of VM migration, paging also
occurs frequently. When memory pages are re-transferred
due to memory updates, those that are not resident in physi-
cal memory are first paged in from disks and then overwrit-
ten. The number of such updated pages can be large for a
large memory VM because it takes a long time to transfer all
the memory pages in the first iteration. When VM migration
is completed, frequently updated pages are likely to reside in
physical memory. However, frequently accessed read-only
pages are likely to be paged out because VM migration does
not re-transfer memory pages that are not updated. There-
fore, page-ins/-outs frequently occur between physical mem-
ory and slow disks after VM migration, leading to perfor-
mance degradation. Using SSDs instead of HDDs remedies
this problem, but even SSDs are still two orders of magni-
tude slower than memory.

Such excessive paging could be alleviated if the source
host first transfers infrequently accessed pages and then fre-
quently accessed ones to the destination host. Since fre-
quently modified pages reside in the physical memory at the
destination host at the end of the first iteration, they can be
updated without paging in the following iterations. However,
many page-outs still occur for infrequently accessed pages,
which are transferred earlier. In addition, page-ins also occur
if the memory access pattern changes while a large memory
VM is being migrated.

To reduce the overhead of paging with disks, remote pag-
ing [4, 5, 8, 12] has been proposed. It pages in/out memory
pages from/to the memory at other hosts via the network,
instead of local disks. If the network is fast enough, remote
paging is faster than paging with slow disks. However, re-
mote paging is also incompatible with VM migration. While
VM migration transfers all the memory pages of a VM to the
destination host, the destination host has to transfer paged-

memory

VM core

memory

VM core

memory

migration

destination host swap host
source host

paging

Figure 1. VM migration using remote paging.

out pages to swap hosts, as illustrated in Fig. 1. Therefore,
the network bandwidth between the destination and swap
hosts is consumed. In addition, the system load at the des-
tination host increases due to remote paging and also affects
the migration performance.

2.2 Post-copy Migration with Virtual Memory
Unlike the above pre-copy migration, post-copy VM migra-
tion [10] can reduce the frequency of paging. Post-copy mi-
gration first transfers only core information that is necessary
for VM execution and immediately switches the execution
to a VM newly created at the destination host. To transfer
the memory of the VM, the on-demand transfer is basically
used. When the VM running at the destination host requires
memory pages, the source host transfers them. Since the des-
tination host can selectively page out infrequently accessed
pages at this time, compulsory paging as in pre-copy migra-
tion can be avoided. However, the on-demand transfer in-
creases the delay of memory access by a VM.

Therefore, the background transfer is usually used in
combination with the on-demand transfer. It transfers mem-
ory pages in background when no memory access is done
by a VM. Like pre-copy migration, memory pages are trans-
ferred regardless of memory access patterns inside the VM.
As a result, even frequently accessed memory pages can be
paged out at the destination host if those pages are selected
using the LRU algorithm.

3. Split Migration
This paper proposes S-memV for enabling split migration of
large memory VMs. Split migration divides a large amount
of memory of a VM into smaller pieces and directly migrates
them to multiple hosts. Unlike traditional VM migration,
split migration is aware of remote paging performed after
VM migration.

3.1 One-to-N Migration
Split migration enables a large memory VM to be migrated
from one host to multiple hosts. Multiple hosts at the desti-
nation consist of one main host and zero or more sub-hosts,
as illustrated in Fig. 2. Split migration transfers core infor-
mation such as CPU and device states to the main host. It
also transfers memory pages that the VM is likely to access
frequently to the main host as much as possible so that the
VM can access them without remote paging after VM mi-
gration. On the other hand, split migration transfers mem-

memory

VM core

memory

VM core

memory

migration

main host

sub-host

host

paging

source destination

Figure 2. One-to-N migration in S-memV.

ory pages that cannot be accommodated in the main host to
the sub-hosts. To divide the memory of the VM appropri-
ately, S-memV monitors the memory access pattern inside
the VM and predicts future access. When migrating the VM,
S-memV chooses appropriate destination hosts in a cloud,
considering free memory of each host. To migrate a large
memory VM faster, split migration transfers memory pages
to multiple hosts in parallel.

After split migration, the VM runs at the main host.
When a memory page accessed by the VM does not exist
in the main host, S-memV performs remote paging. It swaps
the requested memory page at one of the sub-hosts with a
page infrequently used at the main host. On the other hand,
S-memV does not cause remote paging at all during split mi-
gration. While a VM is being migrated, memory pages that
cannot be accommodated in the main host are not paged out
to the sub-hosts via the main host. Instead, they are directly
transferred to the sub-hosts. Therefore, there is no wasteful
network transfer between the main host and the sub-hosts at
both the first memory transfer and the memory re-transfers
of VM migration. This enables fast migration of large mem-
ory VMs. In addition, since memory pages that are likely to
be frequently accessed are stored in the memory of the main
host, it is expected that the frequency of remote paging is
too low just after split migration.

Split migration can be applied to not only pre-copy mi-
gration but also post-copy migration. At the on-demand
transfer, it transfers requested memory pages from the
source host to the destination main host. If there is no free
memory at the main host, S-memV pages out infrequently
accessed pages to the sub-hosts. At the background transfer,
like pre-copy migration, split migration transfers frequently
accessed memory pages from the source host to the desti-
nation main host, whereas it transfers the other pages to the
destination sub-hosts. In either case, once split migration has
transferred memory pages to the destination, S-memV swaps
them between the destination main host and sub-hosts.

3.2 N-to-One Migration
Split migration can migrate a large memory VM whose
memory is divided into multiple hosts to one host again.

memory

VM core

memory

VM core

memory

migration

main host

sub-host

host

paging

source destination

Figure 3. N-to-one migration in S-memV.

This N-to-one migration is used after the maintenance of the
originally used host is completed or when another host with
sufficient free memory is prepared. Split migration transfers
memory pages at both the source main host and sub-hosts
to the destination host in parallel, as illustrated in Fig. 3.
At the main host, it migrates a VM normally except that
it does not transfer non-existent memory at that host. At
the sub-hosts, it simply transfers the memory of the VM.
For memory pages paged in/out during VM migration, split
migration transfers them without redundancy or omission.
If a memory page is paged in from a sub-host to the main
host during VM migration, split migration transfers it to
the destination host only when it has not been transferred
yet or when it is modified. It does similarly for a memory
page paged out from the main host to a sub-host during split
migration. In post-copy migration, split migration requests
memory pages of either the source main host or sub-hosts at
the on-demand transfer.

3.3 Partial Migration
Split migration can migrate part of a large memory VM or
the entire VM running across multiple hosts to a different
host group. This partial migration is used when some or all
of the hosts running the VM need to be maintained. Fig. 4
shows an example of split migration of only the source main
host to the destination main host and sub-host. After this
migration, the VM is across the destination main host and
sub-host and the source sub-host. When migrating part of
a VM running at the main host, split migration migrates
the VM to the destination main host in a manner similar
to one-to-N migration. If some of memory pages cannot be
accommodated at the destination main host, split migration
transfers them to existing sub-hosts or newly allocated sub-
hosts. When migrating part of a VM at sub-hosts, it transfers
memory pages of the VM between sub-hosts.

4. Implementation
We have implemented S-memV in QEMU-KVM 2.4.1 and
Linux 4.3. In the current implementation, S-memV supports
one-to-N pre-copy VM migration. As illustrated in Fig. 2,
the system consists of one source host, one destination main

memory

VM core

memory
migration

main host

sub-host 2

memory

VM core

memory

main host

sub-host 1

source destination

paging

paging

Figure 4. Partial migration in S-memV.

host, and one or more destination sub-hosts. The source host
and the destination main host run QEMU-KVM in which
S-memV is implemented and run VMs on top of it. Each
destination sub-host runs a memory server, which manages
part of the memory of VMs.

4.1 Extension to QEMU-KVM
To migrate a VM to multiple hosts, QEMU-KVM at the
source host connects to not only QEMU-KVM at the des-
tination main host but also the memory servers at the des-
tination sub-hosts. The sub-hosts are chosen appropriately
by a server that manages free memory of all the hosts in a
cloud. Existing cloud management systems such as Open-
Stack already provide such servers for VM placement. In
addition, S-memV needs information on network latency be-
tween hosts. If it is estimated that network traffic increases
due to remote paging, network latency is more critical. Us-
ing such information, the source QEMU-KVM divides the
memory of a VM for the main host and selected sub-hosts.
Once it determines a destination host for each memory page,
it always transfers the data of the page to the same host at the
re-transfer of modified pages. In the current implementation,
the sub-hosts are pre-determined and the memory of a VM
is divided by a fixed size.

For a memory page accommodated in the main host, the
source QEMU-KVM transfers a pair of the offset to a mem-
ory block and the data of the page to the destination QEMU-
KVM. The destination QEMU-KVM writes the data to the
memory of a newly created VM. For a page accommodated
in a sub-host, in contrast, the source QEMU-KVM transfers
only the physical memory address, instead of the offset, to
the sub-host. This is because sub-hosts do not have infor-
mation on the memory blocks used by QEMU-KVM. In ad-
dition, the source QEMU-KVM also transfers the following
information to the main host: the IP address of the destina-
tion sub-host and the offset to a memory block. The desti-
nation QEMU-KVM maintains received information using
a radix tree for managing the memory resident in the sub-
hosts. A radix tree is a data structure whose memory uti-
lization is good and is used for the management of the page
cache in the Linux kernel.

4.2 Memory Server
A memory server runs at a sub-host and manages part of
the memory of VMs in a 4-KB page granularity. For the
memory management, it uses a radix tree whose key is a
physical memory address in a VM and whose value is the
pointer to the data of the corresponding memory page. A
memory server handles page-out and -in requests. A page-
out request consists of a physical memory address and the
data of the corresponding memory page. When a memory
server receives a page-out request, it allocates 4-KB mem-
ory, copies the received data to it, and registers it to the radix
tree. In contrast, a page-in request consists of only a physical
memory address. When a memory server receives a page-in
request, it searches the radix tree and returns the data of the
corresponding memory page. At the same time, it removes
the data from the radix tree and releases it.

4.3 Collecting Memory Access Data
To accommodate frequently accessed memory pages in the
main host as much as possible, S-memV keeps track of re-
cently used pages inside a VM as approximation. To obtain
information on memory access, QEMU-KVM issues the ex-
tended ioctl system call to KVM in the Linux kernel. At
that time, it allocates a bitmap whose bit corresponds to
each memory page and passes it to the system call. Next,
KVM traverses the extended page table (EPT) for all the
pages of the target VM and obtains page table entries. Since
their access bit is set when the corresponding page is ac-
cessed, KVM records the value of the access bit to the passed
bitmap. Finally, KVM resets the access bit so that CPUs can
record new memory access in EPT for the next period.

QEMU-KVM periodically obtains that bitmap and pre-
serves a sequence of such bitmaps for a certain period. It uses
the bitmaps to search for recently used pages when migrat-
ing the target VM. In contrast, it searches for least recently
used pages using the bitmaps when page-out is necessary.

4.4 Remote Paging
To achieve remote paging for a VM at the main host,
S-memV uses the userfaultfd system call, which was in-
troduced in Linux 4.3. The memory of a VM is allocated
by anonymous memory mapping using the mmap system
call. When QEMU-KVM receives data from the source host
and writes it to the corresponding memory page, a physi-
cal memory page is assigned. For the other pages, physical
memory is not assigned yet. To trap access to non-existent
memory pages, QEMU-KVM issues the userfaultfd system
call at the end of VM migration and obtains a file descriptor.
Then it issues the ioctl system call for userfaultfd and regis-
ters all the memory pages of the migrated VM to userfaultfd.

Fig. 5 shows how a memory page is paged in/out using
userfaultfd. When the VM accesses a non-existent page, a
page fault occurs and an event is notified to QEMU-KVM
through the file descriptor of userfaultfd. QEMU-KVM

QEMU-KVM

Linux kernel

memory

main host

sub-host

page in

VM

memory
server

fault

event

page out

paging
request

Figure 5. Remote paging using userfaultfd.

translates the notified host memory address into the physical
memory address used inside the VM and sends a page-in
request to the memory server at the sub-host that manages
the corresponding memory page. It finds that sub-host by
searching the radix tree for managing the memory resident
in the sub-hosts. When QEMU-KVM receives the data of
the corresponding page from the sub-host, it writes the data
to the faulting page via the ioctl system call for userfaultfd.
After that, the VM can access the faulting page. In addition,
QEMU-KVM modifies the radix tree so that the paged-in
page exists in the main host.

At the same time, QEMU-KVM at the main host pages
out one page to balance the amount of memory. First,
QEMU-KVM chooses most recently used memory page,
using information on the bitmaps obtained as in Section 4.3.
Then it sends a page-out request to the memory server at the
same sub-host and stores the data of the paged-out page in
the sub-host. In addition, QEMU-KVM modifies the radix
tree so as to reflect the paged-out page. To evict that page
from the VM, QEMU-KVM unmaps the page once and
re-allocates that page using anonymous memory mapping.
Thus, the physical memory assigned to the page is aban-
doned.

5. Experiments
To show the effectiveness of split migration, we measured
the migration performance in S-memV. For comparison, we
executed VM migration with and without virtual memory.
For the source host, we used a PC with an Intel Xeon E3-
1270v3 processor and 16 GB of memory. For the destination
hosts, we used a PC with an Intel Xeon E3-1270v2 proces-
sor, 2 GB of memory, and 600 GB of HDD as the main host
and one with an Intel Xeon E5640 processor and 2 GB of
memory as the sub-host. At the main host, the amount of
free memory was approximately 1 GB and we configured 16
GB of a swap space. Only when we executed VM migra-
tion without virtual memory, we increased the memory of
the main host to 4 GB, which was sufficient to accommo-
date the migrated VM. These PCs are connected with Giga-
bit Ethernet. For a VM, we assigned one virtual CPU and 2
GB of memory.

0

10

20

30

40

50

60

m
ig

ra
tio

n
tim

e
(s

ec
)

w/o virtual memory
split migration
w/ virtual memory

(a) Idle
0

50

100

150

200

250

m
ig

ra
tio

n
tim

e
(s

ec
)

(b) memcached

Figure 6. The time for VM migration.

5.1 Migration Time
First, we migrated a VM without explicitly running appli-
cations inside it. We configured S-memV so as to trans-
fer 1 GB of memory to the main host and the rest to the
sub-host. Since QEMU-KVM optimizes the transfer of zero-
filled memory pages, we disabled this optimization because
S-memV does not support such optimization yet. The migra-
tion time is shown in Fig. 6a. Compared with when the main
host had sufficient free memory, VM migration with virtual
memory increased the migration time by 87%. For split mi-
gration, the increase in migration time was only 17%. This
means that split migration could suppress the performance
degradation more than VM migration with virtual memory
although S-memV does not support parallel transfers to the
two destination hosts yet.

Next, we ran in-memory database, memcached [9], in a
VM and modified its memory frequently using the memaslap
benchmark [1]. We configured the ratio of set and get in
memaslap to 0.6:0.4. The migration time is shown in Fig. 6b
when we migrated the VM under this workload. Even when
the main host had sufficient free memory, the migration
time increased by 29%. This is because a large amount
of memory was re-transferred due to memory modification
inside the VM. Compared with this, the migration time in
VM migration with virtual memory became 5.4 times longer
because frequent page-ins/-outs occurred due to memory re-
transfers. Note that the variance was very large due to the
complex behavior of paging. For split migration, in contrast,
the performance degradation was 17%. This result shows
that split migration could suppress the increase in migration
time even under a memory-intensive workload.

From the above result, when a VM has 256 GB of mem-
ory, the migration time in split migration is estimated to be
more than one hour. However, it can be reduced to 115 sec-
onds using 10 GbE and 21 seconds using 40 GbE [13].

5.2 Downtime
Fig. 7 shows the downtime of a migrated VM under the two
workloads in the previous section. When the VM was idle,
the downtime in split migration was only 0.1 seconds longer
than that in VM migration without virtual memory. When

0.0

0.5

1.0

1.5

2.0

2.5

3.0

do
w

nt
im

e
(s

ec
)

w/o virtual memory
split migration
w/ virtual memory

(a) Idle
0.0

0.5

1.0

1.5

2.0

2.5

3.0

do
w

nt
im

e
(s

ec
)

(b) memcached

Figure 7. The downtime of a migrated VM.

0

1

2

3

4

5

co
lle

ct
io

n
tim

e
(m

s)

idle
memcached

Figure 8. The time for collecting memory access data.

the VM ran memcached, in contrast, the downtime in split
migration was shorter. Although the reason is under inves-
tigation, it was shown that split migration does not increase
the downtime so much. In VM migration with virtual mem-
ory, on the other hand, the downtime increased significantly.

5.3 Collection Time of Memory Access Data
We measured the time needed for collecting access data on
the entire memory of a VM by traversing its EPT. As shown
in Fig. 8, the collection time was only 1 ms when the VM
was idle, while the time was 3 ms when memcached fre-
quently accessed the memory of the VM. This is because
EPT grew as more memory pages of the VM were accessed.
If S-memV collects such data, e.g., every second, the over-
head is 0.3%. However, when the memory size of a VM is 2
TB, we would need longer intervals if the collection time be-
came 3 seconds. Fortunately, since EPT shrinks when mem-
ory pages of the VM are not accessed, the collection time is
expected to be less than that worst estimation.

5.4 VM Performance after Split Migration
Since our implementation of remote paging is still incom-
plete, we discuss VM performance after one-to-N migra-
tion using the results of previous work [12]. Except when
VMs are migrated, the behavior of S-memV was almost the
same as that of existing remote paging systems. That pre-
vious work measured application performance using remote
paging over InfiniBand when the sizes of local and remote
memory were 512 MB and 1 GB, respectively. For quick
sort, the execution time was 1.45 times slower by using re-
mote paging because the working set size was 1 GB and

remote paging occurred frequently. Using Gigabit Ethernet
instead of InfiniBand, the execution time was twice slower.
For Barnes in the SPLASH-2 suite [17], on the other hand,
the performance was almost not degraded because the work-
ing set was only slightly larger than the size of local mem-
ory. From these previous results, it is expected that S-memV
would not largely degrade VM performance as far as the
working set is not much larger than the memory size of the
main host and does not change.

6. Related Work
Post-copy VM migration [10] switches the execution of a
VM to the destination host immediately after it transfers
only the minimum states of the VM. While the migrated VM
is running at the destination host, the source host transfers
the memory of the VM on demand or in the background.
This means that post-copy migration can run a VM using
two hosts, which is a special case of one-to-N migration in
S-memV. However, since this situation is transient, the VM
finally runs at only one destination host after VM migration
is completed. Consequently, post-copy migration requires
two hosts with a large amount of memory unlike S-memV.

Scatter-Gather live migration [6] uses multiple interme-
diate hosts between the source and destination hosts in post-
copy migration. It transfers the memory of a VM to in-
termediate hosts as fast as possible and reduces the time
needed until stopping the source host. The destination host
obtains the memory from the intermediate hosts using the
on-demand and background transfers in post-copy migra-
tion. This is similar to one-to-N migration in S-memV in
that the source host transfers the memory of a VM to mul-
tiple hosts. However, Scatter-Gather live migration finally
transfers the whole memory of a VM to only one destination
host. S-memV considers that one destination host cannot ac-
commodate the whole memory of a VM.

Unlike S-memV, MemX [5] runs a VM using the mem-
ory of multiple hosts by default. In the MemX-VM mode,
the guest operating system in a VM provides a block de-
vice to access the memory at the other hosts. This mode al-
lows VM migration without transferring the memory resi-
dent in the other hosts, which is one case of partial migra-
tion in S-memV. In the MemX-DD mode, Dom0 in Xen
provides such a block device, but this mode does not sup-
port VM migration because the state of the block device is
not transferred at VM migration. In the MemX-VMM mode,
MemX provides a VM with the memory extension to access
the memory at the other hosts transparently. When a VM ac-
cesses a memory page that does not exist at the host, MemX
obtains the corresponding page at another host and allocates
it to the VM. This mode could support VM migration, but
the existing method allows only inefficient N-to-one migra-
tion. It has to gather all the memory pages of a VM at the
source host and transfer them to the destination host.

Virtual Multiprocessor [11] and vNUMA [3] enable run-
ning one large VM with not only the memory but also CPUs
of multiple hosts. The VM can transparently access the
memory of all the hosts using distributed shared memory.
While S-memV uses only one host for running a VM and
the other hosts for providing memory, these systems uses
all the hosts for running a VM. Therefore the overhead for
the cooperation between multiple hosts is much larger. In
addition, these systems do not support VM migration.

7. Conclusion
This paper proposed S-memV for split migration, which di-
vides the memory of a large memory VM into small pieces
and directly migrates them to multiple hosts. Split migration
transfers the memory that cannot be accommodated in the
destination main host to the destination sub-hosts. After split
migration, the VM runs at the main host and S-memV per-
forms remote paging between the main host and sub-hosts
when necessary. However, the frequency of paging is much
lower than traditional VM migration with virtual memory.
In addition to this one-to-N migration, split migration pro-
vides N-to-one and partial migration. We have implemented
S-memV in KVM and achieved one-to-N migration. From
our experimental results, split migration was promising es-
pecially when the memory of a VM was modified frequently
during VM migration.

Our future work is as follows. The first is to integrate
mechanisms for collecting memory access data of VMs and
remote paging into S-memV. Then we need to show that
S-memV can successfully reduce the number of memory
pages paged in/out after split migration. The second is to
evaluate split migration for a larger memory VM using real-
world workloads and compare it with previous methods. For
better performance of split migration, it is necessary to en-
able parallel memory transfers to multiple hosts. The third
is to support N-to-one and partial migration in S-memV.
Unlike one-to-N migration, a new mechanism is needed for
synchronizing multiple source hosts at VM migration. The
fourth is to investigate how the value of N affects the migra-
tion performance. Larger N will reduce the migration time
in terms of parallelism, while performance improvement is
limited by the number of CPU cores, memory bandwidth,
and NICs. The fifth is to recover from failures during split
migration. In traditional pre-copy VM migration, it is rea-
sonable to cancel VM migration when only one destination
host fails. In split migration, it may be preferred to switch
only failed destination hosts to other hosts.

Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd Mainak Chaudhuri for their valuable feedback. We
also gratefully appreciate Surote Wongpaiboon for helping
our implementation. This research was supported in part by
the Telecommunications Advancement Foundation.

References
[1] B. Aker. memaslap – Load Testing and Benchmark-

ing a Server. http://docs.libmemcached.org/bin/

memaslap.html.

[2] Apache Software Foundation. Apache Spark – Lightning-Fast
Cluster Computing. http://spark.apache.org/.

[3] M. Chapman and G. Heiser. vNUMA: A Virtual Shared-
Memory-Multi Processor. In Proceedings of the 2009
USENIX Annual Technical Conference, 2009.

[4] D. Comer and J. Griffioen. A New Design for Distributed
Systems: The Remote Memory Model. In Proceedings of the
Summer 1990 USENIX Conference, pages 127–135, 1990.

[5] U. Deshpande, B. Wang, S. Haque, M. Hines, and K. Gopalan.
MemX: Virtualization of Cluster-Wide Memory. In Proceed-
ings of the 39th International Conference on Parallel Process-
ing, pages 663–672, 2010.

[6] U. Deshpande, Y. You, D. Chan, N. Bila, and K. Gopalan.
Fast Server Deprovisioning through Scatter-Gather Live Mi-
gration of Virtual Machines. In Proceedings of the 7th IEEE
International Conference on Cloud Computing, pages 376–
383, 2014.

[7] Facebook, Inc. Presto: Distributed SQL Query Engine for Big
Data. https://prestodb.io/.

[8] M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Karlin, H. M.
Levy, and C. A. Thekkath. Implementing Global Memory
Management in a Workstation Cluster. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles,
pages 201–212, 1995.

[9] B. Fitzpatrick. memcached – A Distributed Memory Object
Caching System. http://memcached.org/.

[10] M. R. Hines and K. Gopalan. Post-Copy Based Live Vir-
tual Machine Migration Using Adaptive Pre-Paging and Dy-
namic Self-Ballooning. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, pages 51–60, 2009.

[11] K. Kaneda, Y. Oyama, and A. Yonezawa. A Virtual Machine
Monitor for Providing a Single System Image. http://web.
yl.is.s.u-tokyo.ac.jp/~kaneda/dvm/, 2004.

[12] S. Liang, R. Noronha, and D. K. Panda. Swapping to Remote
Memory over InfiniBand: An Approach Using a High Perfor-
mance Network Block Device. In 2005 IEEE International
Conference on Cluster Computing, 2005.

[13] Mellanox Technologies. Accelerating Virtual Ma-
chine Migration over vSphere vMotion and Mellanox
End-to-End 40GbE Interconnect Solutions. http:

//www.mellanox.com/related-docs/solutions/

SB_Accelerating_Virtual_Machine_Migration.pdf,
2016.

[14] Microsoft Corporation. SQL Server 2014. https:

//www.microsoft.com/en/server-cloud/products/

sql-server/.

[15] SAP SE. SAP HANA. https://hana.sap.com/.

[16] X. Song, J. Shi, R. Liu, J. Yang, and H. Chen. Parallelizing
Live Migration of Virtual Machines. In Proceedings of the 9th

ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 85–96, 2013.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Methodolog-
ical Considerations. In Proceedings of the 22th Annual Inter-
national Symposium on Computer Architecture, pages 24–36,
1995.

http://docs.libmemcached.org/bin/memaslap.html
http://docs.libmemcached.org/bin/memaslap.html
http://spark.apache.org/
https://prestodb.io/
http://memcached.org/
http://web.yl.is.s.u-tokyo.ac.jp/~kaneda/dvm/
http://web.yl.is.s.u-tokyo.ac.jp/~kaneda/dvm/
http://www.mellanox.com/related-docs/solutions/SB_Accelerating_Virtual_Machine_Migration.pdf
http://www.mellanox.com/related-docs/solutions/SB_Accelerating_Virtual_Machine_Migration.pdf
http://www.mellanox.com/related-docs/solutions/SB_Accelerating_Virtual_Machine_Migration.pdf
https://www.microsoft.com/en/server-cloud/products/sql-server/
https://www.microsoft.com/en/server-cloud/products/sql-server/
https://www.microsoft.com/en/server-cloud/products/sql-server/
https://hana.sap.com/

	Introduction
	Migration of Large Memory VMs
	VM Migration with Virtual Memory
	Post-copy Migration with Virtual Memory

	Split Migration
	One-to-N Migration
	N-to-One Migration
	Partial Migration

	Implementation
	Extension to QEMU-KVM
	Memory Server
	Collecting Memory Access Data
	Remote Paging

	Experiments
	Migration Time
	Downtime
	Collection Time of Memory Access Data
	VM Performance after Split Migration

	Related Work
	Conclusion

