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Abstract—Since Infrastructure-as-a-Service (IaaS) clouds con-
tain many vulnerable virtual machines (VMs), intrusion de-
tection systems (IDSes) should be run for all the VMs. IDS
offloading is promising for this purpose in that it allows IaaS
providers to run IDSes outside VMs without any cooperation
of users. However, IDS offloading makes performance isolation
between VMs difficult because IDSes offloaded from a VM
consume resources outside the VM. As a result, the total
resource usage of the VM and the offloaded IDSes exceeds the
limits configured to the VM. In this paper, we propose a new
abstraction of the hypervisor, called a resource cage. A resource
cage can manage a VM and offloaded IDSes as a group and
achieves performance isolation between resource cages, e.g.,
CPU limits, CPU shares, and memory limits. In addition to
performance isolation, it keeps high resource utilization for a
VM and offloaded IDSes as much as possible. We have im-
plemented resource cages in Xen and KVM. Our experiments
showed that resource cages could control the resource usage
of a VM and offloaded IDSes effectively.

1. Introduction

Infrastructure as a Service (IaaS) such as Amazon EC2
provides virtual machines (VMs) for users. Users set up
their own operating systems and applications in the VMs.
Unfortunately, the systems inside VMs are not always well
maintained and can be penetrated by attackers. To protect
such systems, intrusion detection systems (IDSes) are use-
ful. They can monitor the operating systems, storage, and
networks of VMs and alert administrators to attacks if they
detect symptoms of intrusion. However, it is difficult for
IaaS providers to enforce users to install IDSes in their
VMs. Even if users install IDSes, intruders can easily disable
such IDSes running in the VMs before attacking against the
systems in them.

To solve these problems, IaaS providers can use IDS
offloading with VM introspection [1]. This technique enables
IDSes to run outside their target VMs and monitor the
VMs securely. IDS offloading allows IaaS providers to run
IDSes for VMs without any cooperation of users. However,
it makes performance isolation [2] between VMs difficult.
In a virtualized system, the hypervisor can guarantee that
each VM does not use more than a certain amount of

resources such as CPUs and memory. In IDS offloading,
IDSes offloaded from a VM consume resources outside the
VM. As a result, the total resource usage can exceed the
limits configured to the VM.

For resource management considering IDS offloading,
this paper proposes a resource cage, which is a new abstrac-
tion of the hypervisor. A resource cage manages a VM and
IDSes offloaded from it as a group. The hypervisor assigns
CPUs and memory to resource cages, not VMs. As such,
a resource cage achieves performance isolation for a group
of a VM and offloaded IDSes. For example, the total CPU
utilization of a VM and offloaded IDSes can be kept up to
50% even if the IDSes consume much CPU time. Similarly,
a VM and IDSes can use only 1 GB of memory in total even
if the IDSes consume large amount of memory. In addition
to such performance isolation, a resource cage keeps high
resource utilization for a VM and offloaded IDSes as much
as possible. When either a VM or an IDS in a resource
cage is busy, the resource cage can fully use the CPU time
assigned to it.

We have implemented resource cages in Xen 4.1 [3].
The system consists of a VM scheduler, an IDS scheduler,
and a memory scheduler. The VM scheduler is based on the
credit scheduler in Xen and calculates credits considering
resource cages. The IDS scheduler monitors the execution
time of IDS processes in the hypervisor and controls the
execution of them using the mechanism of the operating
system. The memory scheduler monitors the memory usage
of IDSes including the page cache and adjusts the memory
sizes of VMs. Also, we have implemented resource cages in
KVM 1.1.2 [4], which has an architecture largely different
from Xen. From our experimental results, it was shown that
resource cages could achieve both performance isolation and
high resource utilization in IDS offloading.

The rest of this paper is organized as follows. Section 2
describes the issues of performance isolation in IDS offload-
ing. Section 3 proposes a resource cage for managing a VM
and offloaded IDSes as a group. Section 4 describes the
implementation details in Xen and KVM. Section 5 reports
the results of performance isolation using resource cages.
Section 6 discusses related work and Section 7 concludes
the paper.
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Figure 1: An example of IDS offloading.

2. Motivation

2.1. Performance Isolation in IDS Offloading

Although IDSes play an important role in IaaS clouds,
it is difficult that IaaS providers enforce users to install
IDSes in their VMs. In IaaS clouds, providers just provide
VMs, while users decide installed software. IDS offloading
is attractive to IaaS providers in that they can deploy IDSes
without any cooperation of users. It runs IDSes outside
their target VMs and prevents interferences from intruders
in the VMs. Using a technique called VM introspection [1],
offloaded IDSes can monitor the internals of the operating
system, file systems, and network packets of the target VMs
with no agent software installed.

However, IDS offloading makes performance isolation
between VMs difficult. In a virtualized system, each VM is
strongly isolated by the hypervisor, which runs underneath
all the VMs. For performance, the hypervisor can guarantee
that each VM does not use more than a certain amount
of resources such as CPUs and memory. For example, the
hypervisor can set the upper limit of CPU utilization to each
VM. It can also set the maximum memory size to each
VM. In addition, the hypervisor can set CPU shares between
VMs. According to the shares, it relatively allocates the CPU
time to VMs.

In IDS offloading, on the other hand, offloaded IDSes are
executed in a different execution environment, which is, e.g.,
the management VM in Xen. In other words, offloaded IDSes
consume resources in the management VM. This violates
performance isolation between VMs. For example, assume
that the hypervisor limits the CPU utilization of VM1 to
50%, as shown in Fig. 1. If an IDS offloaded from the VM
consumes 10% of the CPU time in the management VM
(VM0), VM1 and the IDS can use 60% of the CPU time in
total. Since the offloaded IDS is part of VM1 originally, the
total CPU utilization of VM1 and the IDS should be 50%
for fairness. For memory limits, similar problems arise by
IDS offloading.

2.2. Existing Resource Controls

The violation of performance isolation due to IDS of-
floading cannot be resolved by simply combining the ex-
isting resource control mechanisms of the hypervisor and
the operating system in the management VM. For CPUs,
the hypervisor can configure VMs by limits and shares,
as described above. Similarly, the operating system can

TABLE 1: Possible configurations of CPU limits (%) and
shares (no unit).

config VM1 VM2 VM0 IDS1 IDS2

A 40% 40% 20% 10% 10%
B 40% 40% 20% 1 1
C 2 2 1 10% 10%
D 2 2 1 1 1
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Figure 2: The CPU utilization when IDS1 is idle.

configure IDS processes by CPU limits and shares. Although
several resource controls can accomplish performance isola-
tion, they result in low resource utilization. Let us consider
two VMs and two offloaded IDSes as in Fig. 1. IDS1 and
IDS2 are offloaded from VM1 and VM2, respectively, and
are executed in VM0, which is the management VM.

One of our goals is to limit the total CPU utilization of
VM1 and IDS1 and that of VM2 and IDS2, e.g., to 50%,
respectively. Table 1 shows possible configurations of CPU
limits and shares to the VMs and IDSes. When all the VMs
and IDSes are busy, all the configurations can accomplish
the goal. Each IDS receives 10% of the CPU time, while
each VM receives 40%. However, when IDS1 is idle, for
example, config A can achieve only low CPU utilization, as
shown in Fig. 2. This is because the total CPU utilization
of VM1 and IDS1 becomes 40% at maximum. When VM1

is busy, it should be able to receive 50% of the CPU time
for higher CPU utilization.

In contrast, the other configurations violate performance
isolation when IDS1 is idle. In config B, IDS2 can receive
20% of the CPU time. Therefore, the total CPU utilization
of VM2 and IDS2 becomes 60%. In config C, each VM
can use 45% of the CPU time because IDS2 can use only
10% of the CPU time and the remaining is shared by the
two VMs. As a result, the total CPU utilization of VM2

and IDS2 exceeds 50%. In config D, IDS2 can use 20%
of the CPU time as in config B. This results in violating
performance isolation for VM2 and IDS2.

The other goal is to allocate the CPU time between a pair
of VM1 and IDS1 and that of VM2 and IDS2 proportionally.
Let us consider assigning CPU shares to the two pairs in a
1:1 ratio. When all the VMs and IDSes are busy, all the
configurations can accomplish this goal because both pairs
can use 50% of the total CPU time. However, when IDS1 is
idle, for example, performance isolation is violated. From
Fig. 2, the ratios of the allocated CPU time become 4:5,
2:3, 9:11, and 2:3 in config A, B, C, and D, respectively.

For memory, our goal is to limit the total memory size
of VM1 and IDS1, e.g., to 1 GB. As described above, the
hypervisor can allocate the specified sizes of memory to
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Figure 3: Performance isolation using resource cages.

VMs. The operating system in the management VM can
limit the size of memory used by each process. Therefore,
the goal can be accomplished if we allocate 768 MB of
memory to VM1 and limit the memory size of IDS1 to 256
MB. However, memory utilization can become lower. For
example, when IDS1 uses a small amount of memory, the
total memory size of VM1 and IDS1 is less than 1 GB. At
this time, VM1 should be able to use the remaining memory
of IDS1, if necessary. In contrast, when IDS1 needs more
memory, it cannot use more than 256 MB of memory even
if VM1 does not need 768 MB of memory. This can cause
performance degradation of IDS1.

3. Resource Cage

In this paper, we propose a new abstraction of the hyper-
visor, called a resource cage, for resource management con-
sidering IDS offloading. Traditionally, the hypervisor man-
ages only VMs but no processes in them because processes
are managed by the operating systems in them. A resource
cage manages a VM and IDS processes offloaded from it
as a group. The hypervisor assigns CPUs and memory to
resource cages, not VMs. Note that the hypervisor does not
fully manage IDS processes included in resource cages. It
leverages the existing mechanisms for resource management
of the operating system as much as possible. The hypervisor
just monitors the processes, while the operating system
controls them.

A resource cage achieves both performance isolation and
high resource utilization for a group of a VM and offloaded
IDSes. Let us consider two resource cages for the example in
Section 2.2: RC1 for IDS1 and VM1 and RC2 for IDS2 and
VM2, as shown in Fig. 3. For example, we can limit the CPU
utilization of RC1 and that of RC2 to 50%, respectively.
When IDS1 is idle, VM1 in the same resource cage can
receive up to 50% of the CPU time. In contrast, when VM1

is idle, IDS1 in RC1 can receive up to 50% of the CPU
time. Even when both IDS1 and VM1 are idle, however,
RC2 cannot receive more than 50% of the CPU time.

As another example, we can assign CPU shares to RC1

and RC2 in a 1:1 ratio. When either IDS1 or VM1 is idle,
the other can receive all the CPU time allocated to RC1 and
the CPU allocation to RC1 and RC2 is kept to 1:1. Unlike
the above example, when both IDS1 and VM1 are idle, the
surplus CPU time is allocated to RC2 because of the work-
conserving nature of proportional share scheduling.

Also, we can limit the memory of RC1, e.g., to 1 GB.
When IDS1 uses only a small amount of memory, VM1 can
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memory scheduler

IDS scheduler
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Figure 4: The system architecture in Xen.

use the rest of the memory assigned to RC1. When IDS1

needs a large amount of memory, the memory allocation to
VM1 is decreased and the decrement can be used by IDS1.
Even when both IDS1 and VM1 do not use a small amount
of memory, RC2 cannot use memory that exceeds its upper
limit.

Resource cages are created hierarchically. The hypervi-
sor automatically assigns a VM to a resource cage RCvm

when the VM is created. In contrast, system administrators
manually assign an IDS process to a resource cage RCids

because the hypervisor does not know which process in
the management VM is an IDS. When multiple IDSes
are offloaded from one VM, they can be assigned to the
same resource cage. Then, administrators create a collective
resource cage RC by specifying RCvm and RCids. If any
IDSes are not offloaded from a VM, RC consists of only
RCvm. For RCvm, RCids, and RC, administrators can set
CPU limits, CPU shares, and memory limits.

4. Implementation

We have implemented resource cages in Xen 4.1 [3]. The
resource management using resource cages is achieved by a
VM scheduler, an IDS scheduler, and a memory scheduler.
In Xen, the management VM is called Dom0 and a regular
VM is called DomU. The system architecture is shown in
Fig. 4. Also, we explain the implementation of resource
cages in KVM 1.1.2 [4].

4.1. Attributes of Resource Cages

Resource cages have attributes as shown in Table 2. Cap,
shares, and mcap are for resource controls. Cap is used for
setting a CPU limit to a resource cage. The default value is
zero, which means no CPU limit. Shares is used for setting
CPU shares between resource cages. The default value is
256. RCvm.shares and RCids.shares in the same RC can
set CPU shares between a VM and a group of IDS processes,
but they are not implemented currently. Mcap is used for
setting a memory limit. The default value of RC.mcap is the
same as that of RCvm.mcap, which is automatically set to
the maximum memory size configured for a VM. However,
the default value of RCids.mcap is the half of it because
the operating system in a VM can crash if only a too small
amount of memory is available.

In contrast, cpu, cpuav, and mem are for resource mon-
itoring and specific to RCids. Cpu maintains instantaneous



TABLE 2: The attributes of resource cages.

type attribute purpose
common cap CPU limit (%)

shares CPU shares
mcap memory limit (MB)

RCids specific cpu instantaneous CPU utilization (%)
cpuav average CPU utilization (%)
mem consumed memory size (MB)

CPU utilization used by offloaded IDSes and cpuav main-
tains the average CPU utilization using the modified moving
average. Mem maintains the size of memory consumed by
offloaded IDSes.

4.2. VM Scheduler

By default, Xen uses the credit scheduler, which is a
proportional share CPU scheduler. In the credit scheduler,
each VM is assigned a weight and a cap. A weight is used
for CPU shares, while a cap is for a CPU limit. According
to a weight, the scheduler calculates credits every 30 ms and
distributes them to active virtual CPUs (vCPUs) assigned to
a VM. At that time, the distributed credits are restricted by a
cap. On the basis of credits, the scheduler schedules vCPUs
for physical CPUs (pCPUs) using run queues. It first picks
a vCPU with a high priority from a run queue. If there are
no such vCPUs, it picks one with a low priority. Once a
vCPU is scheduled, it receives the time slice of 30 ms and
consumes its credits every 10 ms.

Our VM scheduler is based on the credit scheduler, but
it calculates credits Ccap from RC.cap and RCids.cpu as
follows:

Ccap = Cts ×
(
RC.cap

100
− RCids.cpu

100

)
where Cts is the credits distributed per time slice. This
means that the CPU limit of the resource cage is decreased
temporarily by the CPU time consumed by offloaded IDSes.
In addition, the VM scheduler calculates credits C ′

cap from
RCvm.cap as follows:

C ′
cap = Cts ×

RCvm.cap

100

C ′
cap is the credits that the VM can receive at maximum. If

RC.cap or RCvm.cap is zero, the maximum CPU allocation
to the VM, e.g., 200% for two active vCPUs, is used instead.

Similarly, the VM scheduler calculates credits Cw from
RC.shares and RCids.cpu as follows:

Cw = Ctot ×
RC.shares

Stot
× VMcpu − Cts ×

RCids.cpu

100

where Ctot is the product of Cts and the total number of
vCPUs in the system, Stot is the sum of the CPU shares
assigned to all the VMs, and VMcpu is the number of
vCPUs assigned to a target VM. This means that the CPU
shares of the resource cage are also decreased temporarily
by the CPU time consumed by offloaded IDSes.

Finally, the VM scheduler distributes credits of the min-
imum value among Ccap, C ′

cap, and Cw to the vCPUs of a
target VM. The credits decreased by the value of RCids.cpu
are distributed to Dom0.

4.3. IDS Scheduler

Our IDS scheduler monitors the CPU utilization of
IDS processes running in Dom0 from the hypervisor. To
record the CPU time consumed by each IDS process, the
IDS scheduler measures the execution time of a process
by monitoring the switches between virtual address spaces.
Since a process has one virtual address space, the hypervisor
can identify a process by a virtual address space, as proposed
in [5]. A virtual address space is uniquely identified by
the address of the page directory used by a process. When
the operating system in Dom0 sets the address to the CR3
register in a vCPU, the hypervisor is invoked because the
instruction for changing CR3 is privileged. At that time,
the IDS scheduler accumulates the CPU time from when
the target address is set to CR3 until the value of CR3 is
changed as the execution time of the corresponding process.

In the current implementation, Dom0 notifies the hyper-
visor of the address of the page directory of an IDS process
by using a hypercall. In the Linux kernel, the address is
stored in the mm struct structure, which is followed from
task struct. This requires modifying the operating system
in Dom0, but it is acceptable because Dom0 is managed by
IaaS providers.

According to the monitored CPU utilization of IDS
processes, the IDS scheduler schedules the processes so that
they do not consume more CPU time than configured. Every
100 ms, it re-calculates RCids.cpuav and then calculates the
runnable time Trun of an IDS process from RCids.cap and
RCids.cpuav as follows:

Trun = min

(
100× RCids.cap

RCids.cpuav
, 100

)
If the average CPU utilization of an IDS process exceeds
the limit, the runnable time is decreased from 100 ms.
Otherwise, it is increased. If RCids.cap is zero, Trun is
always 100 ms. The remaining time is the waiting time.
The IDS scheduler runs an IDS process during the runnable
time, while it stops the process during the waiting time. It
repeats this for each IDS process included in RCids in turn.

Currently, this scheduling part of the IDS scheduler
is based on cpulimit [6] and runs in Dom0. It stops a
process using the SIGSTOP signal and restarts it using
the SIGCONT signal. This could be also implemented
using the CPU bandwidth controller in Linux control groups
(cgroups), which was introduced in Linux 3.2. To imple-
ment this part in the hypervisor, we can use the Monarch
scheduler [7]. The Monarch scheduler can indirectly suspend
and resume processes by manipulating run queues in the
operating systems from the hypervisor.
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Figure 5: The assignment of multiple pCPUs.

4.4. Consideration in Multicore Support

For performance isolation, resource cages work well for
not only single core but also multicore. However, for high
resource utilization, we need care about the assignment of
pCPUs to VMs. Let us consider the example of Fig. 5(a).
In this example, pCPU1 is assigned to Dom0 and pCPU2

is assigned to both VM1 and VM2. Resource cage RC1

consists of VM1 and IDS1, whereas RC2 consists of VM2

and IDS2. Assume that the CPU limits of RC1 and RC2 are
100% and those of IDS1 and IDS2 are 50%, respectively.
If IDS1 becomes idle, VM1 should receive the CPU time
for it. However, the surplus CPU time of pCPU1 cannot be
used by VM1 because the pCPU is not shared with that VM.
Therefore, RC1 for IDS1 and VM1 can receive only 50%
from pCPU2.

To improve resource utilization, pCPUs assigned to a
VM have to be shared with Dom0. In Fig. 5(b), pCPU1 is
shared between VM1 and Dom0, while pCPU2 is shared
between VM2 and Dom0. Even if IDS1 becomes idle,
VM1 can receive the CPU time for it. In addition, the
IDS scheduler needs to assign pCPU2 to IDS2 by setting
CPU affinity. This is because the CPU utilization of RC1

decreases to 50% if IDS2 receives 50% of the CPU time
from pCPU1, not pCPU2, and VM1 receives only 50% of
the CPU time from pCPU1.

4.5. Memory Scheduler

An IDS mainly uses two types of memory: process
memory and the page cache. Process memory is the physical
memory consumed by a process and the size is called the
resident set size (RSS). The page cache is the cache created
in the kernel when a process reads a file from a disk or
writes data to a file. Although the page cache is not the
memory belonging to a process but that of the kernel, it
should be considered as the memory consumed by an IDS.
For example, an IDS examining disks reads many files and
creates a large amount of page cache in the kernel.

Our memory scheduler monitors the memory usage us-
ing memory cgroups introduced in Linux 2.6.25. A memory
cgroup consists of offloaded IDS processes and the mem-
ory usage is accounted for in the cgroup. The memory
scheduler can obtain the total of the RSS of IDS processes
and the size of the page cache created by them from
memory.usage_in_bytes in a cgroup. The memory

size consumed by IDSes is recorded in RCids.mem. The
memory scheduler periodically calculates a new memory
size Mnew of a VM from RCids.mem and RCvm.mcap as
follows:

Mnew = min(RC.mcap−RCids.mem, RCvm.mcap)

According to the calculated size, the memory scheduler
changes the memory allocation to the VM using libvirt [8].
Libvirt is a library for managing VMs without depending
virtualization software. When it issues a hypercall for chang-
ing the memory size of a VM, the hypervisor sends a request
to the memory balloon driver [9], which is a device driver
running in the VM. When the driver receives a request
for decreasing the memory size, it allocates a necessary
amount of memory using the memory allocation mechanism
in the operating system and turns the state of the memory
unavailable. Then, it returns the allocated memory to the
hypervisor, so that physical memory available in the VM
decreases. In contrast, when the driver receives a request for
increasing the memory size, it turns the state of a requested
amount of memory available again.

The memory scheduler limits the memory usage of IDS
processes by memory.limit_in_bytes in a cgroup. A
memory cgroup can limit the maximum of the total size of
the process memory of IDSes and the page cache used by
them.

4.6. Resource Cages in KVM

We have also implemented resource cages in KVM,
which has an architecture different from Xen. Xen runs the
hypervisor directly on hardware and runs VMs on top of
the hypervisor. In contrast, KVM runs the hypervisor as a
Linux kernel module and QEMU-KVM processes on top
of the host operating system and runs a VM as part of
a QEMU-KVM process. Therefore, the implementation of
resource cages is straightforward in KVM because a VM in
KVM is managed as a process. We could easily implement
resource cages using cgroups in Linux. RCids, RCvm, and
RC are created by the cgroup of IDS processes, that of
a process for a VM, and that for grouping two cgroups,
respectively. Using cgroups, the host operating system can
naturally schedule a group of IDS processes and a VM with
CPU limits and shares. It can also limit the memory size of
the cgroups.

5. Experiments

We conducted experiments to confirm performance iso-
lation in IDS offloading. In the experiments, we created
three resource cages: RCids for an offloaded IDS, RCvm

for its target VM, and RC for grouping RCids and RCvm.

5.1. Limiting CPUs

In this experiment, we used a PC with one Intel Core i7
2.8 GHz processor, 8 GB of memory, 1 TB of SATA HDD,
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Figure 6: The CPU utilization in offloading ClamAV.

and gigabit Ethernet. We ran Xen 4.1.0 and Linux 2.6.32
in Dom0. We created a VM with one vCPU and ran Linux
2.6.16 in the VM. For a client, we used a PC with Intel
Core i7 2.67 GHz, 12 GB of memory, and gigabit Ethernet.

Offloading ClamAV. We offloaded ClamAV [10], which is
a host-based IDS for detecting viruses that infect files. We
achieved the offload of ClamAV by monitoring a virtual
disk of a target VM in Dom0. First, we measured the CPU
utilization of the offloaded ClamAV and its target VM when
we did not use the resource cages. We ran a CPU-intensive
task in the VM and limited the CPU utilization of the VM
to 60%. Our goal was to suppress the total CPU utilization
to 60%. Fig. 6(a) shows the changes of the CPU utilization
of ClamAV and the VM. While ClamAV was not running
during the first five seconds, the VM consumed 60% of the
CPU time, as we configured. When ClamAV started running,
however, it consumed 30% of the CPU time. As a result,
the total CPU utilization exceeded 60%.

Next, we used the resource cages and limited the CPU
utilization to 60% for RC. We did not configure the CPU
limit for RCvm or RCids. As shown in Fig. 6(b), the CPU
time assigned to RCvm was decreased when ClamAV started
running and the CPU utilization of RC was always kept to
60% successfully.

Offloading Snort. We offloaded Snort [11], which is
a network-based IDS for checking network packets. We
achieved the offload of Snort by monitoring a virtual net-
work interface of a target VM in Dom0. First, we measured
the CPU utilization of the offloaded Snort and its target VM
without the resource cages. We ran the Apache web server in
the VM and sent 4000 requests per second using httperf [12]
from the client. We limited the CPU utilization of the VM
to 50%. Our goal was to suppress the total CPU utilization
to 50%. As shown in Fig. 7(a), the VM and Snort consumed
approximately 30% of the CPU time, respectively, and then
the total CPU utilization exceeded 50%.

Next, we limited the CPU utilization to 50% for RC and
20% for RCids. We did not limit that for RCvm. Fig. 7(b)
shows that the CPU utilization of RC did not exceed its
CPU limit of 50%. It was 45% at first and 5% lower than the
upper limit, but it increased to 50% gradually. For offloaded
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Figure 7: The CPU utilization in offloading Snort.

IDSes, the CPU utilization of RCids was always suppressed
to 20% as configured.

In addition, we measured the throughput of the web
server in the VM (1) when we did not offload Snort, (2)
when we offloaded Snort but did not use the resource cages,
and (3) when we used the resource cages for the offloaded
Snort and the VM. When we simply offloaded Snort out of
the VM, the web server in the VM could use more CPU
time and therefore the throughput increased by 15%. With
the resource cages, the throughput was almost the same as
that before the offload because the web server could use
almost the same CPU time as when Snort ran in the VM.

5.2. Limiting Memory

In this experiment, we used a PC with one Intel Xeon
X5675 3.06 GHz processor, 16 GB of memory, and 146 GB
of SAS HDD. We ran Xen 4.1.3 and created a VM with one
vCPU and 512 MB of memory. We allocated the rest of the
memory to Dom0 and ran Linux 3.2.0 in Dom0 and the
VM.

Offloading MemBench. We offloaded MemBench, which
repeatedly allocated 100 MB of memory by malloc, wrote
data in it, and deallocated it at approximately 10 MB/s. Our
goal was to suppress the total memory size consumed by
the VM and the offloaded MemBench to 512 MB. Fig. 8(a)
shows the changes of the measured memory usage when
we did not use the resource cages. MemBench consumed
100 MB of process memory at maximum, but used little
page cache. Even when MemBench allocated memory, the
memory size of the VM was not reduced. Therefore, the
total memory size exceeded 512 MB.

Next, we used the resource cages and limited the mem-
ory size of RC to 512 MB. As shown in Fig. 8(b), the mem-
ory allocated to the VM was decreased as the MemBench
allocated more process memory. In contrast, as MemBench
deallocated the memory, the memory size of the VM was
increased. As a result, the total memory size consumed
by MemBench and the VM was kept to 512 MB. At the
65 second, the total size was smaller because it took time
to reallocate the memory to the VM due to the memory
ballooning mechanism.
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Figure 8: The memory usage in offloading MemBench.
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Figure 9: The memory usage in offloading Tripwire.

Offloading Tripwire. We offloaded Tripwire [13], which is
a host-based IDS for checking the integrity of disks. First,
we ran the offloaded Tripwire without the resource cages.
The result is shown in Fig. 9(a). The offloaded Tripwire used
only 130 KB of process memory at maximum, but it used
a large amount of page cache because it read many files
from the disk to check their contents. Without limitation,
the page cache consumed by Tripwire became more than
3.5 GB in 120 seconds. In total, the memory size of the
VM and Tripwire largely exceeded 512 MB.

Next, we used the resource cages and limited the mem-
ory size of RC to 512 MB. In addition, we limited the
memory size of RCids for Tripwire to 128 MB. As shown
in Fig. 9(b), The total memory size of Tripwire and the VM
was kept to 512 MB. As configured, Tripwire did not use
more than 128 MB.

5.3. Resource Control in KVM

To confirm that resource cages for KVM also work well,
we offloaded Tripwire onto the host operating system. In
this experiment, we used a PC with an Intel Xeon E5630
processor, 6 GB of memory, and 250 GB of SATA HDD. We
ran QEMU-KVM 1.1.2 and Linux 3.2.0 as the host operating
system. We created a VM with one vCPU and 512 MB of
memory and ran Linux 2.6.27 in the VM.

First, we examined that resource cages enable control-
ling CPU utilization. We ran a CPU-intensive task in the
VM and assigned CPU shares to RCvm and RCids in a 1:1
ratio. In addition, we ran a CPU-intensive task in another
VM and created a resource cage RC2 for it. We assigned
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Figure 10: Resource usage in KVM with resource cages.

CPU shares to RC and RC2 in a 3:2 ratio. We did not set
the CPU limits to any resource cages.

Fig. 10(a) shows the results. Since the offloaded Tripwire
in RCids or the CPU-intensive task in RC2 did not run
during the first five seconds, RCvm could receive the entire
CPU time. When the offloaded Tripwire started running,
RCids and RCvm received the CPU time in a 1:1 ratio.
After the CPU-intensive task in RC2 started running and the
offloaded Tripwire in RCids stopped at the 30 second, RC
and RC2 received the CPU time in a 3:2 ratio as configured.
Since all the VMs and the IDS were busy after the 40
second, RCids, RCvm, and RC2 received the CPU time
in a 3:3:4 ratio. The reason why the total CPU utilization
was 140% at the 40 second is the time lag in CPU statistics.

Next, we measured the memory usage of RCids and
RCvm when we ran MemBench inside the VM. We limited
the memory of RC to 256 MB and did not limit that of
the other resource cages. As shown in Fig. 10(b), the real
memory allocation to the VM was very small at first. Unlike
Xen, a VM consumes only a small amount of memory in
KVM if there are no active applications. After the offloaded
Tripwire started running, it created more page cache, but the
memory size of RC was less than 256 MB. After the total
memory size reached 256 MB, old page cache was replaced
with new one. The memory of RCvm was paged out due to
the memory pressure by Tripwire.

6. Related Work

SEDF-DC [14] is a VM scheduler for enforcing perfor-
mance isolation between VMs considering I/O processing.
In Xen, a device driver is split into a backend driver in Dom0
and a frontend driver in DomU. Therefore, the CPU time
consumed by a backend driver is not accounted for DomU.
SEDF-DC measures the CPU time consumed for DomU in
Dom0 and schedules DomU considering it. In addition, the
ShareGuard mechanism limits the CPU utilization of I/O
processing for DomU in Dom0. This is similar to resource
cages in that SEDF-DC creates a group of DomU and its
backend driver in Dom0. The differences are that SEDF-DC
provides no new abstraction like resource cages and that it
is specific to network I/O processing. It estimates the CPU
utilization from the number of packets and limits the CPU
utilization using a packet filter.



LRP [15] enables accounting the CPU time consumed
for network processing for the corresponding process. When
a process uses networks frequently, most of its CPU time
is consumed in the kernel, but that is not accounted for the
process appropriately. In LRP, network processing in the ker-
nel is performed in the context of the corresponding process
and its CPU time is accounted for each process. Resource
containers [16] extend LRP and introduce new resource
management into the kernel. They manage resources such as
CPUs and memory by a unit different from a process. The
process scheduler schedules each process using information
on the resource usage recorded in resource containers that
the process belongs to. Unlike LRP and resource containers,
resource cages are a new abstraction of the hypervisor.

Resource pools in VMware vSphere [17] enable re-
source management for a group of VMs. A resource pool
is assigned to multiple VMs and performance isolation is
achieved between resource pools. Resources such as CPUs
and memory are shared between VMs in a resource pool.
Group-based memory deduplication [18] has been proposed
to deduplicate the memory of VMs only in such a group.
Like resource cages, resource pools can be grouped into
hierarchies and a parent resource pool can contain child
resource pools. However, since a VM is a minimum unit
in a resource pool, a resource pool cannot group VMs and
processes.

In combination with a guard VM proposed in VMCou-
pler [19], resource pools would be useful for performance
isolation considering IDS offloading. VMCoupler is a sys-
tem enabling co-migration of offloaded IDSes and their
target VM. It runs offloaded IDSes in a special VM called a
guard VM, which can introspect the memory, storage, and
network in its target VM. A resource pool can group a guard
VM and its target VM and control their resource usage.
However, many guard VMs are necessary for monitoring
many target VMs because one guard VM can monitor only
one target VM. Compared with a simple IDS process, a
guard VM including the operating system increases resource
consumption.

7. Conclusion

In this paper, we proposed a resource cage, which is a
new abstraction of the hypervisor for resource management
considering IDS offloading. A resource cage manages a
VM and offloaded IDS processes as a group and achieves
performance isolation such as CPU limits, CPU shares, and
memory limits. Also, it can keep high resource utilization
for a VM and offloaded IDSes. We have implemented re-
source cages in Xen and KVM, which have largely different
architectures. We conducted experiments using offloaded
Snort, ClamAV, MemBench, and Tripwire. The experimental
results showed that resource cages could control resource
usages under IDS offloading effectively.

Our future work is to implement CPU shares between
a VM and IDS processes inside the same resource cage
in Xen. Since a VM and a process are managed by the
hypervisor and the operating system, respectively, in Xen,

it is difficult to relatively control their resource usages. In
addition, we are planning to control the usage of storage and
network in resource cages. Since Dom0 handles storage and
network accesses of VMs in Xen, the operating system in
Dom0 would be suitable for controlling the I/O of both VMs
and offloaded IDS processes. Another direction is to apply
resource cages to processes other than offloaded IDSes, e.g.,
device emulators for VMs.
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