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Abstract. To securely execute intrusion detection systems (IDSes) for
virtual machines (VMs), IDS offloading with VM introspection (VMI) is
used. In semi-trusted clouds, however, IDS offloading inside an untrusted
virtualized system does not guarantee that offloaded IDSes run correctly.
Assuming a trusted hypervisor, secure IDS offloading has been proposed,
but there are several drawbacks because the hypervisor is tightly coupled
with untrusted management components. In this paper, we propose a
system called V-Met, which offloads IDSes outside the virtualized system
using nested virtualization. Since V-Met runs an untrusted virtualized
system in a VM, the trusted computing base (TCB) is separated more
clearly and strictly. V-Met can prevent IDSes from being compromised
by untrusted virtualized systems and allows untrusted administrators to
manage even the hypervisor. Furthermore, V-Met provides deep VMI for
offloaded IDSes to obtain the internal state of target VMs inside the
VM for running a virtualized system. We have implemented V-Met in
Xen and confirmed that the performance of offloaded legacy IDSes was
comparable to that in traditional IDS offloading.
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1 Introduction

In Infrastructure-as-a-Service (IaaS) clouds, users run their services in virtual
machines (VMs). They can set up their systems in provided VMs and use them as
necessary. As in traditional systems, it is necessary to protect the systems inside
VMs from external attackers. For example, intrusion detection systems (IDSes)
are useful to monitor the system states, filesystems, and network packets. To
prevent IDSes from being compromised by intruders into VMs, IDS offloading
with VM introspection (VMI) has been proposed [6–8, 12]. This technique runs
IDSes outside VMs and introspects the internal state of VMs, e.g., the memory,
storage, and network. It is difficult that intruders attack IDSes outside VMs.

In semi-trusted clouds, however, it is not guaranteed that offloaded IDSes run
correctly. By semi-trusted clouds, we mean that their providers are trusted but
some of the system administrators may be untrusted. If untrusted administra-
tors manage virtualized systems for running VMs and offloaded IDSes, offloaded



IDSes can suffer from insider attacks. Malicious administrators can easily dis-
able offloaded IDSes before attacking VMs. If they do not harden virtualized
systems sufficiently, even external attackers can interfere with offloaded IDSes
using various system vulnerabilities.

In such semi-trusted clouds, secure IDS offloading has been achieved by as-
suming a trusted hypervisor inside the virtualized system. Even if insiders on
the hypervisor attempt to disable offloaded IDSes, their access to the IDSes is
prohibited [3, 16]. One drawback of this approach is that the hypervisor can be
compromised relatively easily by untrusted administrators because it provides
rich interfaces to the other management components on top of the hypervisor.
Such interfaces become a broad attack surface. Another drawback is that un-
trusted administrators cannot manage the hypervisor because the integrity of
the hypervisor has to be maintained. Consequently, administrators who may be
untrusted cannot manage the entire virtualized system. These problems arise
from the fact that a trusted hypervisor and untrusted management components
are tightly coupled.

In this paper, we propose V-Met, which enables offloading IDSes outside
the entire virtualized system. V-Met uses nested virtualization [2] to run an un-
trusted virtualized system in a VM called the cloud VM. Since the interface
between the cloud VM and its hypervisor is more restricted, V-Met can sepa-
rate the trusted computing base (TCB) from untrusted parts more clearly and
strictly. Thus, V-Met can prevent offloaded IDSes from being compromised by
untrusted virtualized systems confined in the cloud VM. In addition, it allows
any administrators to completely manage the entire virtualized system including
the hypervisor because the hypervisor has to be no longer trusted.

Deep VMI is a key to offloaded IDSes to monitor the memory, storage, and
network of user VMs inside the cloud VM. For deep memory introspection, V-
Met first finds the memory of a user VM in that of the cloud VM and then
obtains data in the user VM. For deep network introspection, it captures packets
at both boundaries of a user VM and the virtualized system. For deep storage
introspection, it accesses a virtual disk of a user VM through the analysis of a
virtual disk of the cloud VM. Using Transcall [10] with deep VMI, V-Met can
offload even legacy IDSes. We have implemented V-Met in Xen and offloaded
several legacy IDSes. Then, we confirmed that the performance was comparable
to that of traditional IDS offloading.

The organization of this paper is as follows. Section 2 describes issues of IDS
offloading in semi-trusted clouds. Section 3 proposes IDS offloading using nested
virtualization and deep VMI. Section 4 describes the implementation details of
V-Met. Section 5 reports experimental results for examining the effectiveness of
V-Met. Section 6 describes related work and Sect. 7 concludes this paper.

2 IDS Offloading in Semi-trusted Clouds

To execute IDSes securely, IDS offloading with VMI has been proposed [6–8,12].
This technique enables IDSes to run outside their target VMs and monitor the



systems inside the VMs from the outside. Even if attackers intrude into a user
VM, they cannot disable offloaded IDSes. IDSes are often offloaded to a privi-
leged VM for managing user VMs, e.g., the management VM in Xen. Offloaded
IDSes can directly obtain detailed information such as the memory, storage, and
networks inside user VMs, using VMI. IDSes in the management VM can map
memory pages of target VMs and obtain the system state. They can access disk
images of user VMs, which are located in the management VM. Also, they can
capture packets from virtual network devices created in the management VM.

Although the management VM running offloaded IDSes is managed by sys-
tem administrators in clouds, not all system administrators are trusted even if
cloud providers are trusted. It is reported that 28% of cybercrimes are caused
by insiders [27]. One example of insiders is malicious system administrators,
who attack systems actively. For example, a site reliability engineer in Google
violated user’s privacy in 2010 [33]. Another example is curious but honest sys-
tem administrators, who may eavesdrop on attractive information that they can
easily obtain from user VMs. It is revealed that 35% of system administrators
access sensitive information without authorization [5].

In such semi-trusted clouds, secure IDS offloading using a trusted hypervi-
sor has been proposed. The hypervisor is a part of a virtualized system, which
is managed by administrators. For example, BVMD [25] directly runs IDSes
inside a trusted hypervisor and protects them from untrusted administrators.
SSC [3] enables offloaded IDSes to run only in user’s own administrative VMs
and prevents system administrators from interfering with those VMs. Remote-
Trans [16] offloads IDSes to trusted remote hosts and remotely performs VMI
via the trusted hypervisor.

Unfortunately, such a trusted hypervisor is tightly coupled with the untrusted
management VM running management components. Therefore, the approach of
using a trusted hypervisor has three drawbacks. First, untrusted administrators
in the management VM can compromise the hypervisor relatively easily. The
hypervisor provides rich interfaces to the management VM to delegate many
management tasks. Such interfaces can be abused using vulnerabilities in spec-
ification and implementation and become a broad attack surface. Once the hy-
pervisor is penetrated, attackers can disable or compromise IDSes.

Second, it is not allowed that untrusted administrators manage the trusted
hypervisor. If untrusted administrators are given such a privilege, they could
even replace the hypervisor with a malicious one. This means that adminis-
trators who may be untrusted cannot manage the entire virtualized system. In
general, the virtualized system is updated using packages like the other software.
Since packages have dependency, the entire virtualized system including the hy-
pervisor is usually updated at once. To enable only the hypervisor to be updated
separately, it is necessary to largely change the current management method.

Third, the approach of using a trusted hypervisor is only applicable to specific
virtualized systems. To trust only the hypervisor, it is necessary that the hyper-
visor and the other management components are clearly separated. Examples of
such virtualized systems are Xen and Hyper-V. In contrast, the hypervisor can-
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Fig. 1. The system architecture of V-Met.

not be separated in KVM because the hypervisor runs inside the host operating
system. Although it is possible to trust the entire host operating system, the
TCB becomes large because the operating system is much more complex than
the hypervisor.

3 V-Met

We propose a system called V-Met for enabling secure IDS offloading outside
the virtualized system. We assume that some of the system administrators who
manage virtualized systems may be untrusted. The hypervisor and the man-
agement VM can be abused by untrusted administrators. On the other hand,
we assume that cloud providers are trusted. This assumption is widely ac-
cepted [16, 17, 30, 31, 35] because a bad reputation is critical for their business.
We also assume that the components outside the virtualized system, i.e., V-Met,
offloaded IDSes, and hardware, are managed correctly by cloud providers. The
integrity of V-Met is guaranteed by remote attestation with TPM at boot time
and secure checking with the system management mode (SMM) [1, 29, 34] or
Intel TXT and AMD SVM [21] at runtime.

3.1 Secure IDS Offloading with Nested Virtualization

V-Met runs IDSes outside a virtualized system using a technique called nested
virtualization [2]. Traditional approaches rely on trusted hardware outside the
virtualized system. For example, Copilot [26] detects tampering with the kernel
memory on a PCI add-in card. HyperGuard [29] runs IDSes in the SMM of pro-
cessors. However, it is difficult to run feature-rich legacy IDSes, which monitor
high-level system state, filesystems, and network communication. Nested virtu-
alization enables a virtualized system to run in a VM, which is called the cloud
VM. Figure 1 illustrates the system architecture of V-Met. V-Met offloads IDSes
outside the cloud VM and runs them and the cloud VM on top of the cloud
hypervisor. The IDSes monitor user VMs inside the cloud VM using deep VMI,
whose details are described in Sect. 3.2.

V-Met can resolve several issues on IDS offloading in semi-trusted clouds.
First, V-Met makes insider attack against offloaded IDSes difficult by running
a virtualized system inside the cloud VM. This is because the interface be-
tween the cloud VM and the cloud hypervisor is narrower than that between



cloud hypervisor

cloud VM

IDS

hypervisor

packet

user

VM

packet

user
VM

virtual
disk

data

Fig. 2. Deep VMI.

the management VM and the hypervisor in the virtualized system. The former
hardware-level interface is less vulnerable than the latter rich interface. There-
fore, the cloud VM is isolated from the cloud hypervisor more strongly. Second,
V-Met allows untrusted administrators to manage the entire virtualized system
including the hypervisor. In other words, they can use the traditional manage-
ment method. This advantage comes from the fact that the responsibility of
administrators is more clearly separated at the boundary of virtualization, i.e.,
between the cloud VM and the cloud hypervisor. Third, V-Met enables clouds
to use arbitrary virtualized systems because it does not need to trust specific hy-
pervisors. To achieve this, V-Met provides deep VMI independent of virtualized
systems.

In terms of performance, our approach of using nested virtualization is fea-
sible because it is reported that the overhead is 6–8% [2] for common work-
loads. Special-purpose host hypervisors as used in CloudVisor [35] and Tiny-
Checker [32] can improve the performance of nested virtualization more. Re-
cently, hardware support for nested virtualization has been also added. For ex-
ample, Intel VMCS Shadowing [11] can eliminate VM exits due to VMREAD
and VMWRITE instructions for accessing VMCS. When it is not necessary to
run offloaded IDSes, devirtualization [4, 13, 15, 18, 24] could largely reduce the
overhead of nested virtualization. This is a technique for temporarily disabling
virtualization provided by the hypervisor.

3.2 Deep VMI

Deep VMI enables offloaded IDSes to monitor user VMs inside the cloud VM, as
depicted in Fig. 2. For deep memory introspection, V-Met finds data of a target
user VM from the memory of the cloud VM and provides it to offloaded IDSes.
Since the memory of the cloud VM contains the memory of multiple user VMs in
general, V-Met has to identify the memory of the target user VM and then the
target data inside it. To perform this, V-Met executes address translation three
times. First, it translates a virtual address of target data into a physical address
in a user VM using the page tables stored in the user VM. Second, it translates
the address into a physical address in the cloud VM using the extended page
tables (EPT) for the user VM, which are stored in the hypervisor inside the



cloud VM. Third, it translates the address into a physical address in the entire
system using EPT for the cloud VM. In traditional VMI, address translation is
only twice.

For deep network introspection, V-Met captures packets sent and received
by a target user VM at both boundaries of the user VM and the virtualized
system. These two methods are called VM-level and system-level packet capture,
respectively. Using VM-level packet capture at the boundary of a user VM, V-
Met can monitor sent packets that have not been processed yet by the virtualized
system and received ones that have been already processed by that. This means
that offloaded IDSes can introspect exact packets sent and received by a user VM.
Also, they can introspect packets between user VMs inside the same cloud VM.
Using system-level packet capture at the boundary of the virtualized system, on
the other hand, V-Met can monitor sent packets that have been already processed
by the virtualized system and received ones that have not been processed yet
by that. This means that offloaded IDSes can inspect exact communication of a
user VM with the outside. Comparing these communication logs of VM-level and
system-level packet capture, offloaded IDSes can also detect attacks by insiders
in the virtualized system.

For deep storage introspection, V-Met supports both local and remote virtual
disks. When a virtual disk of a user VM is located in the virtualized system,
V-Met first analyzes the virtual disk of the cloud VM and finds a virtual disk of
a user VM inside it. The virtual disk of a user VM is stored in the form of a disk
image file. Furthermore, V-Met analyzes the found virtual disk and finds data
and metadata in it. In contrast, when a virtual disk of a user VM is located in
network storage, e.g., for migration support, V-Met shares the virtual disk via
the network. Then, it analyzes the virtual disk and finds data and metadata in
it.

V-Met identifies a target user VM using a VM tag registered by the user
VM itself. This is because V-Met cannot securely specify the ID of a user VM,
which is managed inside the virtualized system. In V-Met, a user VM registers
a unique VM tag to the cloud hypervisor using an ultracall. An ultracall is a
new mechanism for directly invoking the cloud hypervisor outside the virtualized
system. It enables a user VM to securely communicate with the cloud hypervisor
without being interfered by the virtualized system. Using the registered VM tag,
offloaded IDSes can monitor a target user VM inside the cloud VM uniquely.

3.3 Transcall with Deep VMI

Using deep VMI, legacy IDSes can be run outside the virtualized system in
cooperation with Transcall [10]. Transcall provides an execution environment
for legacy IDSes to introspect a user VM without any modifications. Transcall
consists of the system call emulator, the shadow filesystem, and shadow net-
work devices. The system call emulator traps the system calls issued by IDSes
and, if necessary, returns information on the kernel from the memory of a user
VM, using deep memory introspection. The shadow filesystem provides the same
filesystem view as that in a user VM, using deep storage introspection. To achieve
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this, it constructs the shadow proc filesystem, which is a counterpart of the proc
filesystem inside a user VM. The proc filesystem provides information on the
system such as processes and sockets. The shadow proc filesystem analyzes the
memory of a user VM using deep memory introspection and provides files and
directories containing system information. In addition, a shadow network device
provides a network interface for capturing packets of a user VM, using deep
network introspection.

4 Implementation

We have implemented V-Met in Xen 4.4.0. In V-Met, the cloud VM and the cloud
management VM run on top of the cloud hypervisor. The cloud management
VM is a VM that provides virtual devices to the cloud VM and has a privilege
for introspecting the cloud VM. The cloud VM runs an existing virtualized
system, which consists of the hypervisor, the management VM, and user VMs.
To distinguish these components from those of V-Met, we call them the guest
hypervisor and the guest management VM, respectively. V-Met assumes that
both the cloud VM and user VMs run in full virtualization using Intel VT-x.

4.1 Deep Memory Introspection

As described in Sect. 3.2, V-Met executes address translation three times to
access target data in a user VM inside the cloud VM from the cloud manage-
ment VM. Figure 3 shows the flow of deep memory introspection. First, V-Met
traverses the page tables inside a user VM to translate a virtual address into a
physical address in the user VM (guest physical address). It identifies the page
tables by the address of the page directory. This address is stored in the CR3
register of a virtual CPU for the user VM. Although that register is maintained
by the guest hypervisor, V-Met cannot trust the state of virtual CPUs stored in
the untrusted guest hypervisor.

Therefore, V-Met obtains the value of the CR3 register without relying on
the guest hypervisor. It configures the cloud hypervisor so that a VM exit occurs
when a user VM attempts to modify the CR3 register. Since a VM exit does not
occur by default at this time, we configured VM-execution control fields in the



VMCS of virtual CPUs for a user VM. The VMCS for a user VM is also managed
by the untrusted guest hypervisor, but the cloud hypervisor can securely manage
it after the VMCS is loaded to a virtual CPU for the cloud VM. When the cloud
hypervisor traps access to the control registers including CR3, it first checks
whether the access is a write to the CR3 register. If so, it obtains the value that
the user VM attempts to write to the register and saves it. Offloaded IDSes in
the cloud management VM can obtain the latest value of the CR3 register by
issuing a new hypercall to the cloud hypervisor, traverse the page tables, and
execute the first address translation.

Second, V-Met traverses EPT inside the guest hypervisor to translate the
guest physical address into a physical address in the cloud VM (host physical
address). The address of EPT is stored in the VMCS of virtual CPUs for the user
VM. When the cloud hypervisor traps access to the CR3 register, it also saves
the address of EPT in the VMCS loaded to the virtual CPU. When IDSes in
the cloud management VM issue a new hypercall, the cloud hypervisor executes
address translation using the saved EPT.

Finally, V-Met translates the host physical into a physical address in the
entire system (machine address) using EPT inside the cloud hypervisor. This
translation is automatically done by the cloud hypervisor when IDSes issue a
hypercall for mapping the memory of the cloud VM.

V-Met assumes that the page tables inside a user VM are protected by the
memory isolation technique of CloudVisor [35]. Since CloudVisor restricts access
to the memory of a user VM from the virtualized system, insiders cannot tamper
with the page tables in the memory of a user VM. Similarly, V-Met protects
EPT inside the guest hypervisor by the memory owner tracking technique of
CloudVisor. CloudVisor allows only the memory of a user VM to be registered
to EPT. Therefore, it is difficult for insiders to modify EPT as they intended.

4.2 Deep Network Introspection

For VM-level packet capture, the network driver in a user VM directly passes
packets to the cloud hypervisor, as illustrated in Fig. 4(a). Another possible
location of this packet capture is a virtual NIC for a user VM. However, V-Met
may not be able to correctly capture packets because that virtual NIC runs in
the untrusted guest management VM. The other possible method is to trap all
the I/O access of a virtual NIC. This method is more secure, but it is more
heavyweight and much more difficult to implement. In addition, it is probably
impossible for para-virtualized network devices because such devices strongly
depend on mechanisms provided by the guest hypervisor.

The network driver in a user VM uses an ultracall to the cloud hypervisor
to prevent the virtualized system in the cloud VM from interfering with packet
capture. Since it passes the guest physical address of packet data using the
ultracall, the cloud hypervisor first translates that address into a host physical
address using EPT for the user VM. Then, it copies the packet data to the
memory of the cloud hypervisor. V-Met periodically issues a new hypercall for
obtaining the saved packets and writes them to a TAP device created for each
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user VM. Offloaded IDSes can capture packets of a user VM from the TAP
device.

For system-level packet capture, on the other hand, V-Met can obtain all the
packets from the virtual NIC (vif) for the cloud VM, as illustrated in Fig. 4(b).
From this virtual NIC, however, the packets sent and received by all the user
VMs in the cloud VM are captured. To enable obtaining packets for each user
VM separately, V-Met uses the ulog mechanism of ebtables in Linux. ulog is used
to pass packets received by the Ethernet bridge to a userland daemon using a
netlink socket. After V-Met obtains packets using ulog, it classifies and writes
them to a TAP device created for each virtual NIC of user VMs. Offloaded IDSes
can capture packets for a user VM from one or some of the TAP devices.

To classify packets without any knowledge of MAC addresses of user VMs,
V-Met uses information on sender and receiver devices obtained using ulog.
If the sender device of a packet is the virtual NIC of the cloud VM, V-Met
automatically creates a TAP device corresponding to the sender’s MAC address
and writes the packet to the device. In contrast, if the receiver device is the
virtual NIC, V-Met writes the packet to a TAP device for the receiver’s MAC
address. In addition, if such a MAC address is a broadcast address or multicast
addresses, V-Met writes a packet to all the TAP devices.

4.3 Deep Storage Introspection

When a virtual disk of a user VM is located in a virtual disk of the cloud VM,
as in Fig. 5(a), V-Met first mounts the disk image of the cloud VM in the
management VM. Then it mounts the disk image of the user VM in the virtual
disk of the cloud VM. This seems to be easy, but the reality is not so simple.
These mounts need to be done in a read-only manner because the filesystem in a
virtual disk is corrupted if its metadata is simultaneously modified by multiple
VMs. However, when the filesystem has to be recovered for various reasons, the
virtual disk is temporarily mounted in a writable manner to modify its metadata.
Since the virtual disk of the cloud VM is mounted in a read-only manner, the
disk image of a user VM inside it is not writable. Therefore, it is impossible to
modify the virtual disk of a user VM for recovery.
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To solve this dilemma, V-Met creates a snapshot of the disk image of the
cloud VM using dm-thin, which is a mechanism for thin provisioning using the
device mapper in Linux. When data is read from the snapshot, dm-thin directly
returns the corresponding blocks of the disk image. When data is written to
the snapshot, dm-thin allocates new blocks in another disk image and writes
the data to them. V-Met mounts the snapshot in a writable manner and then
mounts the virtual disk of the user VM inside it. Thus, the virtual disk of the
user VM can be recovered by temporarily mounting in a writable manner.

On the other hand, when a disk image of a user VM is located in network
storage, as in Fig. 5(b), V-Met first mounts a directory where the disk image
is stored in an NFS server and then mounts the disk image in it. The directory
is also mounted in the guest management VM to run a user VM. Since NFS is
designed for sharing files in mind, the directory in the NFS server can be mounted
in a writable manner. Therefore, the disk image can be mounted temporarily in
a writable manner if its filesystem has to be recovered.

4.4 Ultracall

An ultracall directly invokes the cloud hypervisor by executing the vmcall in-
struction. This instruction is originally used for a hypercall to the hypervisor.
When a user VM executes the vmcall instruction in the nested virtualization, the
cloud hypervisor first traps the instruction and usually redirects it to the guest
hypervisor. Then, the guest hypervisor executes the corresponding hypercall for
the user VM. In contrast, the cloud hypervisor in V-Met does not redirect the
instruction if a user VM sets a special value to the EAX register. Instead, the
cloud hypervisor executes an ultracall for the user VM.

4.5 Management of User VMs

In V-Met, the cloud hypervisor manages user VMs inside the cloud VM using
VM tags registered by user VMs themselves, the addresses of EPT, and the
addresses of the page directories. It binds a VM tag to the address of EPT when
the tag is registered. EPT is created at the boot time of a user VM and its
address is usually not changed during the execution of the user VM. If EPT



is re-created, the cloud hypervisor detects that at a VM exit caused by CR3
access and changes the binding. Also, the cloud hypervisor binds the address
of the current page directory to the VM tag. This binding is changed whenever
context switches between processes occur in the user VM. These two bindings
have to be removed when the user VM is destroyed, but the detection of VM
destruction is our future work.

5 Experiments

We conducted experiments to examine the effectiveness of V-Met with deep
VMI. We used a PC with an Intel Xeon E3-1270v3 processor, 16 GB of DDR3
SDRAM, 2 TB of SATA III HDD, and Gigabit Ethernet. In this PC, we ran Xen
4.4.0 implemented V-Met. For the cloud VM, we assigned two virtual CPUs, 3
GB of memory, and a virtual disk of 40 GB. We ran vanilla Xen 4.4.0 in this
cloud VM. For a user VM inside the cloud VM, we assigned one virtual CPU, 1
GB of memory, and a virtual disk of 8 GB. We ran Linux 3.13 in the cloud and
guest management VMs and the user VM. For an NFS server, we used a PC
with an Intel Xeon X5675 processor, 32 GB of memory, a RAID 5 disk of 3.75
TB, and Gigabit Ethernet. These PCs were connected using a Gigabit Ethernet
switch.

For comparison, we used two systems: the traditional, single-level virtualized
system without nested virtualization (Xen-Single) and the virtualized system
with nested virtualization (Xen-Nest). For Xen-Single, we ran vanilla Xen with
the same resource assignment as that inside the cloud VM. Offloaded IDSes were
run in the management VM using traditional VMI. For Xen-Nest, we ran vanilla
Xen both on top of hardware and in the cloud VM. Offloaded IDSes were run
in the guest management VM inside the cloud VM using traditional VMI.

5.1 Performance of Deep VMI

We measured the performance of VMI in the three systems. First, we examined
the performance of memory introspection by reading data in the memory of the
user VM. The benchmark tool repeated translating virtual addresses of the user
VM, mapping its memory pages, and copying the page contents to measure the
throughput. Surprisingly, the throughput in V-Met was 41% higher than that in
Xen-Single, as shown in Fig. 6(a).

To clarify why the throughput in V-Met was the highest, we measured the
execution time of the hypercalls used for address translation. Figure 6(b) shows
the time needed for two new hypercalls. In V-Met, it took 0.64 µs to execute
the hypercall for obtaining the address of the page directory of the user VM. In
Xen-Single, it took 11 µs because a general-purpose hypercall for obtaining all
the state of a virtual CPU was used. The execution time in Xen-Nest was much
longer due to the overhead of nested virtualization. Although only V-Met needs
the other hypercall for address translation using EPT, which took 0.92 µs, the
hypercall for the page directory was a dominant factor.
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Next, we examined the performance of storage introspection using the IOzone
3.465 benchmark [23]. In this experiment, we created a file of 1 GB in the user
VM and measured the throughput of sequentially reading the file using VMI.
We flushed the page cache in the cloud management VM, the guest management
VM, and the NFS server every run. Figure 7(a) shows the results when we used
virtual disks located in the cloud VM and the NFS server. When using a local
virtual disk, the throughput in V-Met was 20% higher than that in Xen-Single
although V-Met has to access two virtual disks of the cloud VM and the user VM
in turn. According to our analysis, this is because read-ahead for the two virtual
disks was more effective than that for only one virtual disk used in Xen-Single.
The performance in Xen-Nest largely degraded due to increasing the overhead
of storage virtualization for the cloud VM. When using a remote virtual disk,
V-Met and Xen-Single accessed the virtual disk in exactly the same manner and
consequently the throughput was the same. However, the performance was much
lower than using a local virtual disk.

Finally, we examined the performance of network introspection. We trans-
ferred 1470-byte UDP datagrams in 500 Mbps to the user VM using iperf 2.0.5 [9]
and captured these packets with tcpdump. The maximum rate of packet capture
was shown in Fig. 7(b). The rate in Xen-Single was the highest, but the perfor-
mance degradation in V-Met was only 10% and 8% in VM-level and system-level
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Fig. 8. The initialization time of Transcall.

packet capture, respectively. The overhead of VM-level packet capture comes
from writing packets to a TAP device via the cloud hypervisor, while that of
system-level packet capture is caused by ebtables. The performance in Xen-Nest
was almost the same as that in V-Met.

5.2 Performance of Offloaded IDSes

We examined the performance of legacy IDSes offloaded with Transcall. Since we
need to run Transcall before executing IDSes, we first measured the initialization
time of Transcall. Transcall constructs the shadow proc filesystem for the user
VM and mounts its virtual disk. To construct the filesystem, Transcall gathers
information on the operating system using memory introspection. As shown
in Fig. 8(a), the construction time in V-Met was only 5 ms shorter than that
in Xen-Single although the performance of memory introspection was largely
different, as shown in Fig. 6(a). This is because Transcall caches the results
of address translation and the portion of memory introspection was relatively
small. Figure 8(b) shows the time needed for mounting the virtual disk of the
user VM. For a local virtual disk, V-Met took a long time because it had to
mount two virtual disks of the cloud VM and the user VM. For a remote virtual
disk, the mount time was much shorter.

After Transcall was initialized, we measured the execution time of chkrootkit
0.50 [22], which is an IDS for detecting installed rootkits by inspecting processes,
files, and sockets. Figure 9(a) shows the results for local and remote virtual disks.
In both storage configurations, the execution time in V-Met was almost the same
as that in Xen-Single.

Next, we measured the execution time of Tripwire 2.4 [14], which is an IDS
for checking the integrity of filesystems. Figure 9(b) shows the results. For a
local virtual disk, the execution time in V-Met was 6% shorter than that in
Xen-Single, which came from higher performance of storage introspection. For a
remote virtual disk, the execution time in three systems was almost the same.

Finally, we performed a TCP port scan against the user VM using nmap
6.40 [20] and measured the time for detecting this attack. The detection time is



local remote
0

10

20

30

40

50

60

70

80

ex
ec

ut
io

n 
tim

e 
(s

ec
)

V-Met
Xen-Single
Xen-Nest

(a) chkrootkit

local remote
0

10

20

30

40

50

60

70

80

ex
ec

ut
io

n 
tim

e 
(s

ec
)

V-Met
Xen-Single
Xen-Nest

(b) Tripwire

0

10

20

30

40

50

60

70

80

de
te

ct
io

n 
tim

e 
(m

s)

V-Met (VM-level)
V-Met (system-level)
Xen-Single
Xen-Nest

(c) Snort
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Fig. 10. The increases in CPU utilization during running offloaded IDSes.

from when we started a port scan until Snort 2.9.8.3 [28] detected it. Figure 9(c)
shows the results. In V-Met, the detection time increased only by 6 or 7 ms,
compared with Xen-Single. When using VM-level packet capture, this delay was
caused by passing packets from the user VM to the cloud management VM via
the cloud hypervisor. When using system-level packet capture, the overhead of
the packet classifier led to the detection delay.

5.3 Overhead

We measured the increase in CPU utilization of the entire system during the
execution of offloaded IDSes. While we ran chkrootkit and Tripwire, CPU uti-
lization increased only in the (cloud) management VM, where IDSes were of-
floaded, for V-Met and Xen-Single. The increase was almost the same, as shown
in Fig. 10(a) and Fig. 10(b). In Xen-Nest, CPU utilization increased in both the
cloud and guest management VMs. The reason why the increase was smaller is
that Xen-Nest could not utilize CPUs effectively due to nested virtualization.

For Snort, we compared CPU utilization when we transferred 1470-byte UDP
datagrams in 100 Mbps with and without Snort. For VM-level packet capture
in V-Met, the CPU utilization of the cloud management VM increased largely.
Although the user VM issued ultracalls many times, its CPU utilization did not
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increase. For system-level packet capture, in contrast, CPU utilization increased
only by 12% point, compared with Xen-Single.

Next, we examined the overhead of causing VM exits for enabling deep mem-
ory introspection. While these VM exits are not caused by default, V-Met needs
to trap access to the CR3 register. For V-Met and Xen-Nest, we ran UnixBench
5.1.3 [19] in the user VM. Figure 11(a) shows the UnixBench scores and the
performance degradation due to VM exits were only 2%.

Finally, we examined the impact of deep network introspection on network
performance of the user VM. We measured the TCP throughput of the user
VM using iperf. As shown in Fig. 11(b), VM-level packet capture degraded
the throughput by 16%. In contrast, there was no performance degradation in
system-level packet capture.

6 Related Work

Several systems enable secure IDS offloading by using trusted hypervisors. A
self-service cloud (SSC) computing platform [3] provides users with privileged
VMs called service domains (SDs) to monitor their own VMs. SDs can monitor
the memory of target VMs, disk blocks accessed by VMs, and system calls issued
by them. Even cloud administrators cannot disable IDSes in SDs. However, a
VM called DomB has to be trusted in addition to the hypervisor.

RemoteTrans [16] enables IDSes to be offloaded to trusted remote hosts out-
side a semi-trusted cloud and to securely monitor user VMs in the cloud via the
network. IDSes offloaded to remote hosts communicate with trusted hypervisors
using encryption to obtain memory contents, network packets, and disk blocks of
user VMs. However, instead of cloud providers, users themselves have to manage
offloaded IDSes and remote hosts running offloaded IDSes are part of the TCB.

Using hardware support has been proposed for secure IDS offloading. These
systems allow untrusted cloud administrators to manage the entire virtualized
system except for hardware. Copilot [26] can monitor the integrity of the kernel
memory by using a PCI add-in card inserted in a target host. The Copilot
monitor on the card obtains the kernel text and jump tables from memory by



DMA and calculates its hash. It sends the results of integrity checking to a
remote host via a dedicated network. Due to hardware limitation, it is difficult
to run legacy IDSes.

HyperGuard [29] and HyperCheck [34] enable IDSes to securely monitor the
integrity of the hypervisor using SMM. In SMM, the CPU can securely execute
code in System Management RAM (SMRAM), which cannot be accessed in
the normal mode. However, all the regular tasks are suspended while an IDS
is running in SMM. Another drawback is that SMM is much slower than the
normal mode. Running the whole IDS in SMM suffers from larger overhead. In
addition, it is not easy to execute various IDSes in SMM because developers
need to modify BIOS.

HyperSentry [1] allows a measurement agent inside the hypervisor to be se-
curely executed using SMM even if the hypervisor has been compromised. The
handler running in SMM is invoked via Intelligent Platform Management In-
terface (IPMI), which is an out-of-band communication channel with a remote
host. Then the handler verifies the agent, disables interrupts, and runs the agent
for collecting the detailed information on the hypervisor. The measurement out-
put is attested by the remote host. One drawback is that the agent cannot run
simultaneously with the other tasks.

Flicker [21] is an infrastructure for executing security-sensitive code using the
hardware support such as Intel TXT and AMD SVM. When such code needs to
be executed, Flicker suspends the current execution environment, securely exe-
cutes the code using late launch, and resumes the previous execution environ-
ment. Late launch enables code execution without interferences by the attackers.
However, it also stops all CPU cores other than the one used by the executed
code. While the security-sensitive code is running, the other applications cannot
be running.

7 Conclusion

In this paper, we proposed a system called V-Met, which enables IDS offload-
ing outside the virtualized system using nested virtualization. V-Met runs an
untrusted virtualized system in a VM and allows offloaded IDSes to securely
monitor user VMs inside it using deep VMI. Such clear separation of the TCB
can prevent IDSes from being attacked by untrusted virtualized systems. Also, it
allows untrusted administrators to manage the entire virtualized system includ-
ing the hypervisor as traditionally done. We have ported Transcall for offloading
the legacy IDSes to V-Met and confirmed that the overhead is comparable to
the traditional IDS offloading.

One of our future work is to automatically and securely identify the MAC
addresses and the virtual disk used by a user VM. In the current implementation,
we assume that these are known in advance. We are also planning to monitor
components other than user VMs, e.g., the hypervisor and the management VM
in the virtualized system. Another direction is to run other virtualized systems
such as KVM. We believe that this is not difficult thanks to the design of V-Met.
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