
UVBond: Strong User Binding to VMs for Secure Remote Management in
Semi-Trusted Clouds

Keisuke Inokuchi
Kyushu Institute of Technology
inokuchi@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ksl.ci.kyutech.ac.jp

Abstract—In Infrastructure-as-a-Service (IaaS) clouds, remote
users access provided virtual machines (VMs) via the manage-
ment server. The management server is managed by cloud
operators, but not all the cloud operators are trusted in
semi-trusted clouds. They can execute arbitrary management
commands to users’ VMs and redirect users’ commands to
malicious VMs, which is called the VM redirection attack. The
root cause is that the binding of users to VMs is weak. In
other words, it is difficult to enforce the execution of only
users’ management commands to their VMs. In this paper, we
propose UVBond for strongly binding users to their VMs to
solve this problem. UVBond boots user’s VM by decrypting
its encrypted disk inside the trusted hypervisor. Then it issues
a VM descriptor to securely identify that VM. To bridge the
semantic gap between high-level management commands and
low-level hypercalls, UVBond uses hypercall automata, which
accept the sequences of hypercalls issued by commands. We
have implemented UVBond in Xen and confirmed that a VM
descriptor and hypercall automata prevented attacks and that
the overhead was not large.

Index Terms—virtual machines, clouds, remote management,
hypercall automata, disk encryption

1. Introduction

Infrastructure-as-a-Service (IaaS) clouds provide users
with virtual machines (VMs). Users can install their own
operating system and applications as they like. They manage
provided VMs from remote hosts via the web interface
or API. When they perform remote management of their
VMs, they first connect to the management server provided
in a cloud and then access their VMs via the server. For
example, the management server has the ability for booting
new VMs, shutting down running VMs, and migrating VMs
to other hosts. In addition, users can log in VMs using
a feature called out-of-band remote management, which
allows users to access virtual serial and graphical consoles
without servers running in the VMs.

Although the management server is managed by cloud
operators, not all the operators are trusted in semi-trusted
clouds [1]–[6]. By semi-trusted clouds, we mean that their
providers are trusted but some of the cloud operators may be

untrusted. Untrusted cloud operators can abuse the privileges
of the management server and mount attacks against users’
VMs. They can execute arbitrary management commands
to VMs and eavesdrop on and tamper with their sensitive
information. In addition, they can redirect users’ commands
to malicious VMs. Using this VM redirection attack, they
can steal users’ console input inside the malicious VMs.
The root cause of these attacks is that the binding of users
to their VMs is weak. It is difficult to enforce the execution
of only users’ management commands to their VMs.

In this paper, we propose UVBond, which strongly binds
users to their VMs via encrypted disks of VMs. In UVBond,
the trusted computing base (TCB) includes only the hypervi-
sor and hardware. UVBond boots user’s VM by decrypting
its encrypted disk inside the trusted hypervisor and issues
a VM descriptor to securely identify that VM. Using this
descriptor, UVBond guarantees that management commands
specified by the user are executed only to the user’s VM. Un-
trusted cloud operators cannot execute commands to users’
VMs. They cannot redirect users’ access to their malicious
VMs. To control the execution of management commands
only in the hypervisor, UVBond uses hypercall automata,
which accept the sequences of hypercalls issued to the
hypervisor by users’ commands. As long as a hypercall
sequence is not rejected, UVBond permits user’s access to
the VM corresponding to a VM descriptor.

We have implemented UVBond in Xen 4.4.0 [7].
UVBond encrypts and decrypts virtual disks of VMs only
in the hypervisor. It supports paravirtual disk drivers, which
are mandatory for efficient disk access but difficult to handle
only in the hypervisor. To distinguish multiple manage-
ment commands executed simultaneously, UVBond identi-
fies each process in the hypervisor and applies one hypercall
automaton to one process. It also supports secure VM
resumption and migration. According to our experiments,
it was confirmed that cloud operators could not execute
management commands to user’s VM or redirect user’s
commands to a malicious VM. In addition, it was shown
that the overhead of using hypercall automata was negligible
and the degradation of disk performance was up to 9.5%.

The organization of this paper is as follows. Section 2
describes the VM management in semi-trusted clouds. Sec-
tion 3 proposes UVBond for strongly binding users to their
VMs and Section 4 explains the implementation details.

Section 5 shows our experimental results with UVBond.
Section 6 describes related work and Section 7 concludes
this paper.

2. VM Management in Semi-trusted Clouds

In IaaS clouds, users manage their VMs via the manage-
ment server, which is part of the cloud management system.
A user first sends a management command with a VM name
and other parameters to the management server. Then the
server communicates with the agent running in one of the
compute nodes and the agent executes privileged operations
to the virtualized system, especially the hypervisor. Here-
after, we regard the agents in compute nodes as part of the
management server. For example, the management server
can boot new VMs, shut down running VMs, and migrate
VMs to other hosts. Through the management server, users
can log in VMs using out-of-band remote management,
which enables indirectly managing VMs via their virtual
serial and graphical consoles.

The management server is managed by cloud opera-
tors, but not all the operators are trusted in semi-trusted
clouds. Semi-trusted clouds are provided by reputable cloud
providers and are basically trusted. However, since they
hire many operators for daily management, it is difficult
to guarantee that all of them are trusted. In fact, it is
reported that 28% of cybercrimes are caused by insiders
[8]. Malicious system administrators attack systems actively.
For example, a site reliability engineer in Google violated
user’s privacy [9]. In addition, curious but honest system
administrators may eavesdrop on attractive information that
they can easily obtain from VMs. It is revealed that 35% of
system administrators have accessed sensitive information
without authorization [10].

Such untrusted cloud operators can abuse the manage-
ment server or its privileges and attack users’ VMs. This is
because the binding of users to their VMs is weak. First,
cloud operators can execute arbitrary management com-
mands to VMs. For example, they can send magic system
requests to VMs, which emulates pressing magic SysRq
keys. Then they can show all the register values, which
may contain sensitive information, to their serial consoles.
Using a technique called VM introspection (VMI) [11],
cloud operators can eavesdrop on sensitive information in
the memory and disks of VMs. Similarly, they can tamper
with the memory and disks. In addition, they can eavesdrop
on and tamper with console input and output of out-of-band
remote management.

Second, cloud operators can redirect users’ management
commands to their malicious VMs. We call this attack the
VM redirection attack. As illustrated in Fig. 1, the VM
redirection attack changes a VM accessed by a user in the
management server. To eavesdrop on sensitive information,
cloud operators create a malicious VM in which malware
is installed and execute user’s command to the VM. For
example, they can steal login passwords in out-of-band
remote management by using a malicious login program or
a key logger. Since these malicious activities are done inside

user
management

server

user’s

VM

malicious

VM

cloud redirect

command

Figure 1: The VM redirection attack.

VMs, they are difficult to prevent even if console input and
output are encrypted between users and the hypervisor [12],
[13]. In addition, the VM redirection attack can be used
for preventing users from detecting malicious activities in
VMs using VMI. If cloud operators prepare a VM with a
legitimate memory image, users are fooled as normal even
when their VMs are compromised.

3. UVBond

3.1. Threat Model

We assume that only the hypervisor and hardware are
the trusted computing base (TCB). To trust hardware, we
assume that cloud providers themselves are trusted. This
assumption is widely accepted [1]–[6] because bad rep-
utations are critical for them. The trustworthiness of the
hypervisor can be confirmed by various techniques. For
example, remote attestation with TPM guarantees that the
hypervisor is booted correctly. Security checks with the
system management mode (SMM) [14]–[16] or AMD SVM
and Intel TXT [17] can detect attacks against the hypervisor
at runtime.

We do not trust cloud operators or privileged compo-
nents managed by them. Such privileged components in-
clude the management server. Since the management server
is often run in a privileged VM, which is called Dom0 in
Xen, we do not trust the entire privileged VM running on
top of the hypervisor. We assume that the privileged VM can
be abused by untrusted cloud operators. For example, cloud
operators can compromise not only the management server
but also the operating system and device emulators running
for user’s VMs in the privileged VM. However, they cannot
attack the hypervisor and hardware. In this paper, we focus
on information leakage and tampering, but DoS attacks are
out of the scope of this paper.

3.2. Strong Binding of Users to VMs

UVBond strongly binds users to their VMs via encrypted
disks of the VMs. It uses disk encryption performed in
the trusted hypervisor, instead of traditional disk encryption
inside each VM. First, a user securely shares his disk
encryption key with the hypervisor at the boot time of his
VM. Then the hypervisor associates the key with the VM.
Using the registered disk encryption key, UVBond boots the
VM by decrypting its encrypted disk inside the hypervisor,
as illustrated in Fig. 2. Since the VM cannot be correctly

user

VM

management

server

encrypted

disk

VM boot

decrypt

hypervisor

key

key

user

register

Figure 2: Booting a VM using an encrypted disk.

malicious

VM

hypervisor

command user’s

VM

VM

descriptor

user

VM

descriptor

management

server

cloud

Figure 3: Command execution with a VM descriptor.

booted using the other virtual disks that do not correspond
to the key, it is guaranteed that user’s own VM is certainly
booted. Note that cloud operators can still boot their VM
with a malicious disk and its encryption key as user’s VM.
To prevent this attack, UVBond enables the user to confirm
that his disk encryption key is correctly registered.

After the boot of user’s VM, UVBond issues a VM
descriptor to the user. The descriptor is associated with the
VM inside the hypervisor. It is encrypted by the hypervisor
and is sent to the user. The user specifies the descriptor when
he executes management commands to his VM. On the basis
of the descriptor, the hypervisor determines whether privi-
leged operations can be executed to the VM corresponding
to the descriptor. In particular, a privileged operation via
the hypervisor is called a hypercall. Using the descriptor,
UVBond can prevent cloud operators from accessing users’
VMs. Only the user that has the descriptor is permitted to
access his VM. As illustrated in Fig. 3, UVBond can also
prevent the VM redirection attack, which forces a user to
access a malicious VM. A user can always access the VM
that matches the descriptor.

To prevent information leakage and tampering, it is
required to combine UVBond with other techniques. Al-
though only the trusted hypervisor can control access to
VMs in UVBond, the access control of hypercalls is not
sufficient. For VMI, only a user can map the memory of
his VM onto a process using hypercalls, but cloud oper-
ators can access the process memory illegally. Therefore
it is necessary to obtain encrypted memory data of a VM
from the trusted hypervisor and send it to trusted remote
hosts using RemoteTrans [5]. Note that the disk of a VM
is always encrypted in UVBond. For out-of-band remote
management, cloud operators can eavesdrop on and tamper
with console input and output via virtual devices of VMs

1 8

memory_opmemory_op

9 10 11 12

13 14 15

sysctl
[getdomaininfolist]

sysctl
[physinfo]

sysctl
[getdomaininfolist]

memory_op

xen_version

domctl
[max_mem]

domctl
[max_mem]

x8

Figure 4: The hypercall automaton for the memory config-
uration command.

without issuing hypercalls. FBCrypt [12] and SCCrypt [13]
should be used to encrypt the data between the remote user
and the hypervisor. As a result, cloud operators can obtain
only encrypted data from virtual devices. Since UVBond
prevents the registration of that encryption key from being
redirected to a malicious VM, cloud operators cannot obtain
decrypted data inside that VM.

3.3. Hypercall Automaton

A VM descriptor should be able to control the execution
of each management command separately, but this is not
easy. UVBond assumes that only one management server
is shared among all the users and cloud operators, as a
traditional system architecture. If each command is exactly
equivalent to one hypercall, a user can pass a pair of a
command and a VM descriptor to the hypervisor. Then the
hypervisor can securely execute the hypercall to the VM
corresponding to the descriptor. However, each command
usually consists of a set of hypercalls and the other tasks
that cannot be executed inside the hypervisor. Since the
hypervisor can recognize only hypercalls, it is difficult to
securely associate a VM descriptor with the execution of
each command.

To bridge this semantic gap, UVBond identifies each
management command by a sequence of hypercalls. For
each command, it creates a finite state automaton to accept
all the sequences of hypercalls issued by the command in
advance. This is called a hypercall automaton. In general,
states in a hypercall automaton have multiple transitions.
For example, the command for configuring the memory
size of a VM has different hypercall sequences between the
first and the following invocations. Therefore its hypercall
automaton is created as illustrated in Fig. 4. Note that the
input is a hypercall and, if any, its sub-command. When a
user accesses his VM, he sends a hypercall automaton as
well as the corresponding command and a VM descriptor.
The hypervisor permits access to the VM corresponding to
the descriptor as long as a hypercall sequence issued by the
command is not rejected by the hypercall automaton.

Even if a hypercall sequence is accepted by the specified
hypercall automaton, the management command intended by
a user is not always executed. Cloud operators might be able
to execute another command whose hypercall sequence is
accepted by the hypercall automaton but whose behavior

is different. However, commands that generate the same
hypercall sequence essentially access a VM in the same
manner because a VM can be managed only via hypercalls.
Even if an executed command is different from one specified
by the user, those commands can be considered as the same
in terms of VM management. It may be still possible for
attackers to specially craft malicious commands with legit-
imate hypercall sequences, but hypercall automata at least
can make it more difficult to execute malicious commands
and raise the bar for attacks.

Using hypercall automata, UVBond can permit some of
the management commands even to cloud operators. If only
a user has to manage his VMs completely, his burden would
become too large. For example, it would be desirable that
cloud operators can migrate VMs when the host running
the VMs is maintained. To allow cloud operators to exe-
cute management commands without a VM descriptor, a
user registers the corresponding hypercall automata to his
VMs in advance. While the commands corresponding to
the registered hypercall automata are executed, even cloud
operators can access the specified VMs. Users can determine
permitted commands at their discretion and take a trade-off
between ease of management and security. Note that secure
VM migration requires the memory encryption of VMs us-
ing Secure Runtime Environment [2], [18] or VMCrypt [19].

4. Implementation

We have implemented UVBond in Xen 4.4.0 [7]. In Xen,
the management server runs in a privileged VM called Dom0
and cloud operators manage users’ VMs in Dom0. We have
ported AES and RSA in wolfSSL [20] to use them in the
hypervisor. We have also developed a management client
for UVBond using OpenSSL.

4.1. Secure VM Management

When a new VM is created, an AES key for disk encryp-
tion is created and the disk image of the VM is encrypted
using the key in the management client. The encrypted disk
image is uploaded to a cloud and is stored in Dom0 as usual.

Whenever the VM is booted, the management client
generates an AES session key and encrypts it and the disk
encryption key using the RSA public key of the hypervisor.
The public key is obtained from a trusted key server or
in the form of a digital certificate from the management
server. Then the management client sends the boot command
with the encrypted keys to Dom0. The management server
in Dom0 issues a new hypercall for key registration and
passes the encrypted keys to the hypervisor. The hypervisor
decrypts the passed keys using its own RSA private key and
registers the decrypted keys to a being booted VM. Cloud
operators cannot decrypt the keys.

According to the boot command, the management server
boots a VM with the encrypted disk specified by the user.
When the VM accesses its virtual disk, the hypervisor
intercepts that access and then decrypts data to be read
or encrypts data to be written using the registered disk

blkback

driver
blkfront

driver

grant

page

I/O ring

Dom0 VM

event

hypervisor

grant

table

Xen

store

share

Figure 5: Xen’s split device model.

encryption key. We describe this implementation details in
Section 4.2 and Section 4.3. At the same time, the manage-
ment client checks the correctness of the keys registered to
the hypervisor. The details are described in Section 4.4.

After the boot of the VM, the management server issues
a new hypercall and obtains a VM descriptor for the VM
from the hypervisor. This descriptor is encrypted with the
registered session key. The management server sends the
encrypted descriptor back to the client and then the client
decrypts it using the session key. To execute a management
command, the client encrypts a pair of this descriptor and
the hypercall automaton corresponding to the command
using the session key and sends the encrypted pair to the
server. After the management server completes executing
the command, it obtains the result of transitions encrypted
by the session key and returns it to the client. We describe
the details in Section 4.5.

4.2. Encryption of Para-Virtualized Disk I/O

To access virtual disks of VMs, paravirtual disk drivers
are often used. This is because the disk performance is
largely improved, compared with using fully virtualized
disk drivers. Although Xen supports both para-virtualized
and fully virtualized operating systems, Linux uses the
paravirtual disk driver by default even in full virtualization.
Therefore, the hypervisor has to support disk encryption in
para-virtualization. However, this is not easy because the
hypervisor cannot trap all accesses to virtual disks.

4.2.1. Traditional Disk I/O. Xen uses the split device
model, as illustrated in Fig 5. The paravirtual disk driver
consists of the front-end driver called blkfront running in
a VM and the back-end driver called blkback running in
Dom0. These drivers share the memory region used for a
ring buffer called an I/O ring. They communicate with each
other using the I/O ring and a signaling mechanism called an
event channel. When a VM performs disk I/O, the blkfront
driver writes a request to the I/O ring and sends an event to
the blkback driver via the event channel. When the blkback
driver receives that event, it obtains the request from the
I/O ring and accesses the disk image of the VM. Upon disk
read, it reads data from the disk image and writes the data

hypervisor

blkback

driver

blkfront

driver

shadow

grant

page

guest

grant

page

shadow

I/O ring

guest

I/O ring

encrypt

synchronize

decrypt

Dom0 VM

Figure 6: The duplication of grant pages.

to the specified memory page in the VM. Upon disk write,
it reads data from the specified memory page in the VM and
writes the data to the disk image. Then the blkback driver
writes a response to the I/O ring and sends an event to the
blkfront driver in the VM.

To share memory pages between Dom0 and a VM, a
mechanism called a grant table is used in Xen. A VM first
registers pages that it intends to share to its grant table.
These pages are called grant pages. A grant reference is
assigned to each grant page and Dom0 can map and access
a grant page by specifying that grant reference. The grant
reference of the page used for the I/O ring is passed from
the blkfront driver to the blkback driver via the database
called XenStore in Dom0. For grant pages used for the buffer
of disk I/O, their grant references are passed via requests
written to the I/O ring.

4.2.2. Duplication of Grant Pages. To prevent untrusted
cloud operators in Dom0 from eavesdropping on data in
grant pages after decryption and before encryption by the
hypervisor, UVBond duplicates grant pages used for the I/O
buffer, as depicted in Fig. 6. For each grant page, it provides
an unencrypted page to a VM and an encrypted page to
Dom0. A page provided to a VM is called a guest grant page
and one provided to Dom0 is called a shadow grant page.
Data in a guest grant page is encrypted and written to the
corresponding shadow grant page, while that in a shadow
grant page is decrypted and written to the corresponding
guest grant page.

UVBond also duplicates the grant page used for the
I/O ring but does not encrypt its shadow one. The I/O
ring provided to a VM is called a guest I/O ring, whereas
that provided to Dom0 is called a shadow I/O ring. This
duplication is used only for synchronization between the
guest and shadow I/O rings. The hypervisor copies a re-
quest from the guest I/O ring to the shadow one after it
completes encrypting data in guest grant pages. Conversely,
the hypervisor copies a response from the shadow I/O ring
to the guest one after it completes decrypting data in shadow
grant pages.

For compatibility with the original Xen, UVBond en-
ables Dom0 to access a shadow grant page using the grant
reference of the corresponding guest grant page. For a VM,
it associates a grant reference with a guest grant page as

usual. For Dom0, in contrast, it associates the same grant
reference with the shadow grant page. Therefore, when
Dom0 attempts to map a guest grant page passed from a
VM, its shadow grant page is mapped instead. Similarly,
when Dom0 attempts to unmap the guest grant page, its
shadow grant page is unmapped. This gives an illusion to
Dom0 as if Dom0 can access a guest grant page.

4.2.3. Disk I/O in UVBond. To perform encryption and
decryption of disk I/O, the hypervisor identifies the page
used for the I/O ring and creates a shadow I/O ring at
the boot time of a VM. For this purpose, it analyzes the
communication between a VM and Dom0. The blkfront
driver in a VM registers the grant reference of the page
used for the I/O ring to XenStore on initialization. For this
registration, it writes a request to a ring buffer called the
XenStore ring and sends an event to XenStore. UVBond
intercepts that event in the hypervisor and obtains the grant
reference for the I/O ring. The information on the page used
for the XenStore ring is passed to the hypervisor at the boot
time of a VM. After the hypervisor creates a shadow I/O
ring, it copies the guest I/O ring to the shadow one. In
addition, it obtains information on the event channel used
by the blkfront driver from the request to XenStore.

When the blkfront driver sends a request to the blkback
driver, the hypervisor encrypts the requested data using the
disk encryption key if the request is for disk write. Since
the hypercall for sending an event is called at that time, the
hypercall analyzes the request written to the guest I/O ring.
It creates a shadow grant page if there is no such a page
corresponding to the grant reference included in the request.
Then the hypervisor encrypts data stored in the guest grant
page and writes it to the shadow grant page. Finally, it copies
the request to the shadow I/O ring.

On the other hand, when the blkback driver sends a
response to the blkfront driver, the hypervisor decrypts the
returned data if the response is for disk read. Since the
response includes no grant reference, the hypervisor saves
the corresponding request in advance and obtains a grant
reference from it. Then the hypervisor decrypts data in the
shadow grant page that corresponds to the grant reference
and writes it to the guest grant page. Finally, it copies the
response to the guest I/O ring. When the guest grant page
is released in a VM, the hypervisor releases the shadow one
as well.

4.2.4. Using AES-NI in the Hypervisor. We have ported
the AES functions with AES-NI from wolfSSL, but special
treatment was required to use AES-NI in the hypervisor.
AES-NI is a CPU instruction set for AES to improve the
performance of encryption and decryption. It needs to use
XMM registers, which causes a hardware exception in the
hypervisor. This is because the hypervisor in Xen defers the
restoration of the XMM registers on CPU scheduling. When
the hypervisor accesses one of the XMM registers and an
exception occurs, it restores the XMM registers.

To prevent this exception, UVBond clears the TS bit in
the CR0 register just before using AES-NI. This bit is set

to cause an exception when XMM registers are accessed.
At the same time, UVBond saves the XMM registers. After
the use of AES-NI, it restores the XMM registers.

4.3. Encryption of Fully Virtualized Disk I/O

UVBond supports not only para-virtualized but also fully
virtualized disk I/O. Even for the operating systems using
paravirtual disk drivers, fully virtualized disk I/O is used
during the execution of BIOS, which is used before boot-
ing the operating system. When BIOS performs disk read
by 512-byte data using the IN instruction, the hypervisor
emulates that instruction. The read of 512-byte data causes
two traps to the hypervisor when BIOS executes the IN
instruction for the first 4-byte data and the repeat of the
instruction for the remaining 508-byte data. Since the block
length of AES is 16 bytes, UVBond decrypts 512-byte data
as a whole on the latter trap. Currently, UVBond supports
only programmable I/O (PIO).

4.4. Confirming Registered Keys

UVBond confirms that the disk encryption key and the
session key registered to the hypervisor are user’s when it
returns a VM descriptor to the user. When the management
server issues the hypercall for obtaining the VM descriptor
for a starting VM, the hypervisor appends the disk encryp-
tion key to the VM descriptor and encrypts them using
the session key. While the management client receives the
encrypted data, it decrypts the data using its own session key.
If the disk encryption key is extracted correctly, the user can
confirm that both the keys registered to the hypervisor are
the same as user’s.

4.5. Secure Execution of Management Commands

When a user executes a management command to his
VM, the management client sends an encrypted pair of
a VM descriptor and a hypercall automaton as well as a
command and a target VM name to the server. Since a
hypercall automaton is a directed graph, UVBond represents
it as one-dimensional array to make encryption and network
transfers easy, as illustrated in Fig. 7. This array consists of
a set of state information, each of which is a pair of an
input for transiting to that state and the states to which the
automaton can transit from that state. A state is represented
as an array index and each input is a hypercall number and,
if necessary, the number of its sub-command. For example,
the domctl and sysctl hypercalls need to specify a sub-
command because they are collective hypercalls and provide
various functions.

The management server translates the received VM
name into the ID of a running VM and passes it and
the received pair to the hypervisor before the execution of
the specified management command. First, the hypervisor
decrypts the pair using the session key registered to the spec-
ified VM. Then, it compares the decrypted VM descriptor

memory_op (12)

1 2

3 4

sysctl (35)
[getdomaininfolist (6)]

domctl (36)
[max_mem (11)]

domctl (36)
[max_mem (11)]

3 6 -1 12 6 -1 36 11 10 -1 35 6 -1

0 1 2 3 4 5 6 7 8 9 10 11 12

hypercall

sub-command

transition index

delimiter

Figure 7: The serialization of a hypercall automaton.

with that registered to the VM. If these are the same, the
hypervisor registers the decrypted hypercall automaton to
the VM. Otherwise, it considers that as illegal access and
returns an error encrypted by the session key. To prevent
replay attacks, a monotonic counter can be used between
the management client and the hypervisor.

Using the registered hypercall automaton, UVBond
checks the validity of issued hypercalls while the command
is executed. When a hypercall is issued, the hypervisor ex-
amines the states to which the automaton can transit from the
current state. The current state is pointed by the index of the
array for the hypercall automaton. If the issued hypercall is a
possible input, the hypervisor updates the current index and
transits to the next state. Then it permits the execution of the
hypercall. If the hypercall is not permitted in the hypercall
automaton, UVBond considers the issue of that hypercall
as illegal and denies the execution. When the execution of
the management command is completed, the management
server obtains the status of the hypercall automaton from
the hypervisor and returns it to the management client. The
status is whether the hypercall sequence is accepted or not
and is encrypted by the hypervisor. The management client
can know whether the command is completed or not.

To distinguish hypercalls issued simultaneously by vari-
ous management commands, UVBond applies the hypercall
automaton only to the process that registers it. Since the hy-
pervisor cannot identify processes of the operating system,
UVBond uses the value of the CR3 register, as proposed
in [21]. In this register, the physical address of the page
directory of a process is stored and is unique to each process.
When the hypervisor registers a hypercall automaton to a
VM, it associates the current value of this register with
the hypercall automaton. When a hypercall is issued, the
hypervisor searches for the hypercall automaton on the basis
of the value of the CR3 register and uses it, as illustrated
in Fig. 8.

4.6. Secure VM Resumption and Migration

UVBond enables users to continue to securely manage
their VMs after suspended VMs are resumed. VM sus-
pension saves the states of a VM to a disk, while VM

OS

hypercall
automaton 1

hypercall
automaton 2

management
command 1

management
command 2

CR3

Dom0

VM

hypervisor

set

Figure 8: Binding hypercall automatons to management
commands.

hypervisor

VM

key

cpu cpu

encrypt

save

(a) Suspension

key

cpu cpu

decrypt

VM

hypervisor

restore

re-regist

(b) Resumption

Figure 9: Secure VM resumption using encrypted CPU state.

resumption restores them. Upon VM resumption, the user
registers the disk encryption key of the target VM to the
hypervisor again. At this time, cloud operators could register
their key and resume the VM with their malicious disk. To
prevent this attack, the hypervisor encrypts the CPU state of
the VM using the disk encryption key on VM suspension,
as illustrated in Fig. 9. Then, it decrypts the state using a
newly registered key on VM resumption. If a malicious key
is registered, the CPU state cannot be restored correctly and
the VM cannot be restarted. Note that the user registers a
new session key and receives a new VM descriptor.

For VM migration, UVBond enables VMs to be mi-
grated without explicit key re-registration by users. Unlike
VM resumption, a user cannot manually register his disk
encryption key to the hypervisor at the destination host
because he can send the migration command only to the
source host. At the source host, UVBond obtains the disk
encryption key and the session key from the hypervisor
and transfers them to the destination host, as illustrated
in Fig. 10. These keys are encrypted by the public key
of the destination hypervisor. To use such a public key
by specifying an IP address, UVBond registers pairs of an
IP address and a public key to the hypervisor in advance.
At the destination host, UVBond automatically registers the
disk encryption key and the session key to the hypervisor
again. These keys are decrypted by the private key of that
hypervisor. Malicious replacement of the keys is prevented
by the same mechanism as VM resumption. Note that the

hypervisor

VM

keys

cpu

keys

private

key

public

key

keys keys

cpu cpucpu

encrypt decrypt

VM

hypervisor

source host destination host

transfer

migrate

Figure 10: Secure VM migration with keys.

user can use the same VM descriptor before VM migration.

5. Experiments

We conducted experiments to confirm the effectiveness
of UVBond. We used a PC with an Intel Xeon E3-1290 v2
processor, 8 GB of memory, and 1 TB of HDD. For a VM,
we assigned two virtual CPUs, 2 GB of memory, and 20 GB
of virtual disk. We used Xen 4.4.0 modified for UVBond
and ran Linux 3.16 in Dom0 and Linux 3.13 in a VM. For
comparison, we used vanilla Xen without modification. As
a client host or a destination host of VM migration, we used
a PC with the same spec and software as the above. These
two hosts were connected with Gigabit Ethernet.

5.1. VM Boot

First, we examined that a VM could be booted with a
correct disk encryption key. When we registered a correct
key to the hypervisor, the VM could boot normally. How-
ever, using an incorrect key, the VM could not read the boot
loader from its disk because disk data was not decrypted
correctly. This means that malicious cloud operators cannot
boot users’ VMs.

Next, we examined the boot time of a VM to confirm the
overhead of UVBond. For comparison, we used UVBond
with AES-NI disabled. We measured the time from when
we executed the create command for creating a VM until
the system was booted in the VM. Since the page cache in
Dom0 affected the disk performance of the VM largely, we
measured the time both when we cleared the page cache
before booting the VM and when we booted the VM again
with the page cache kept. As shown in Fig. 11, the boot time
in UVBond was 6 seconds longer than that in vanilla Xen
without depending on the page cache. This is due to the
overhead of additional operations performed by UVBond,
including disk encryption. Compared with when we disabled
AES-NI, it was shown that AES-NI made the boot only 1
second faster.

5.2. Execution of Management Commands

First, we examined that UVBond could detect illegal
commands when we used a VM descriptor and a hypercall

w/o page cache w/ page cache
0

5

10

15

20

25

30

b
o
o
t
ti
m

e
 (

s
e
c
)

vanilla
UVBond
UVBond
(no AES-NI)

Figure 11: The boot time of a VM.

TABLE 1: The size of hypercall automata used in the
experiments.

command state transition
pause 9 8
unpause 10 10
mem-set 15 15
shutdown 10 9
destroy 12 13
save 20 21

automaton. We executed management commands of Xen’s xl
tool for pausing a VM (pause) and resuming it (unpause).
As a result, we confirmed that management commands could
be normally executed only when both the VM descriptor
and the hypercall automaton match the target VM and the
management command, respectively. When we specified an
illegal descriptor that did not correspond to the specified VM
or executed an illegal command that did not correspond to
the specified hypercall automaton, we could detect that.

Next, we examined the execution time of manage-
ment commands. We executed six management commands:
pause, unpause, mem-set for changing the memory size
of a VM, shutdown for shutting it down, destroy for
destroying it, and save for suspending it. For the mem-
set command, we measured the time of the first and second
execution because the hypercall sequences for them were
different. The size of the hypercall automata used for these
commands is shown in Table 1. The save command had the
most complex hypercall automaton.

Fig. 12 shows the execution time. For short-time com-
mands, the overhead of UVBond was 4 ms, which included
the registration and runtime check of a hypercall automaton.
In addition to the execution time, it took 37 ms to send a VM
descriptor and a hypercall automaton to the management
server in UVBond. Although this is much longer than the
execution time itself, this overhead is almost negligible
because these commands are not executed frequently. For
long-time commands, the overhead of UVBond was negli-
gible because the number of issued hypercalls was relatively
small.

5.3. VM Migration

First, we examined that a VM could be migrated only
with a correct disk encryption key. When the source host
transferred a correct key to the destination, a migrated

pause unpause mem-set
 (1st)

mem-set
 (2nd)

shut
down

0

2

4

6

8

10

12

14

16

e
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

vanilla
UVBond

(a) Short-time

destroy save
0

2

4

6

8

10

12

14

16

e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

vanilla
UVBond

(b) Long-time

Figure 12: The execution time of management commands.

0

5

10

15

20

25

m
ig

ra
ti
o
n
 t
im

e
 (

s
e
c
)

vanilla
UVBond

(a) Migration time
0

0.2

0.4

0.6

0.8

d
o
w

n
ti
m

e
 (

s
e
c
)

vanilla
UVBond

(b) Downtime

Figure 13: Migration performance.

VM was restarted correctly. However, when we discarded
the transferred key and registered an incorrect key at the
destination host, we could not access a migrated VM. This is
because the CPU state of the VM was not restored correctly.

Next, we examined the performance of migrating a VM
using UVBond. We measured the migration time, which was
the time from when we executed the migrate command until
it was completed. As shown in Fig. 13(a), the migration
time in UVBond was 1.4 seconds longer than vanilla Xen
because UVBond had to transfer the disk encryption key
and the session key and encrypt the CPU state. Also, we
measured the downtime, which was the time from when the
VM was paused at the source host until it was resumed at
the destination host. As shown in Fig. 13(b), the downtime
in UVBond became only 50 ms longer.

5.4. Disk I/O Performance

We examined the disk I/O performance using the fio
benchmark [22]. In addition to UVBond with or without
AES-NI and vanilla Xen, we used the system using Linux
dm-crypt [23] inside a VM. dm-crypt encrypts and decrypts
disks in the operating system of a VM. For dm-crypt, we
used AES-ECB as the encryption method, which was the
same as that of UVBond. We measured read and write
performance of sequential and random access.

Fig. 14 shows the throughput and the latency when a
VM used a virtual disk on a local disk. Compared with
vanilla Xen, the throughput in UVBond degraded only by 3-
10% and the latency increased only by 0.8-1.3 ms thanks to

sequential
 read

sequential
 write

random
 read

random
 write

0

50

100

150

200

250

th
ro

u
g

h
p

u
t

(M
B

/s
)

vanilla
dm-crypt

UVBond
UVBond (no AES-NI)

(a) Throughput

sequential
 read

sequential
 write

random
 read

random
 write

0

5

10

15

20

25

30

la
te

n
c
y
 (

m
s
)

vanilla
dm-crypt

UVBond
UVBond (no AES-NI)

(b) Latency

Figure 14: The performance of file access.

read write read write
0

20

40

60

80

100

120

140

th
ro

u
g

h
p

u
t

(M
B

/s
)

vanilla
UVBond

sequential random

(a) Throughput

read write read write
0

5

10

15

20

25

la
te

n
c
y
 (

m
s
)

vanilla
UVBond

sequential random

(b) Latency

Figure 15: The performance of file access on NFS.

AES-NI. Without AES-NI, the throughput degradation was
45% and the latency increase was 6.5 ms at maximum. The
throughput in UVBond was comparable to or even better
than that in dm-crypt, while the latency was slightly longer.

Fig. 15 shows the throughput and the latency when a
VM used a virtual disk on NFS. This configuration is often
used when a VM is migrated. The performance degradation
in UVBond was similar to that when using a local disk.
The throughput degraded by 1.6-6.6%, while the latency
increased by 0.0-0.7 ms.

6. Related Work

Self-Service Cloud (SSC) [4], [24] can prevent cloud op-
erators from illegally accessing users’ VMs. For each user,
it provides a dedicated management VM called Udom0,

which is not interfered by cloud operators. Since each user’s
VMs can be managed only via his Udom0, cloud operators
cannot eavesdrop on or tamper with the VMs. The disk
integrity of Udom0 is verified with vTPM, which runs in
a domain builder called domB. The user accesses Udom0
using a management server called a dashboard through an
SSL channel, which is securely established at the boot time
of Udom0. User’s VMs are securely created via domB.

However, the TCB of SSC is quite large because it in-
cludes not only the hypervisor and hardware but also several
privileged VMs such as Udom0, domB, and a dashboard
VM. Udom0 is not a system-level TCB but a client-level
TCB, whose compromise affects user’s VMs. Udom0 is
protected by the trusted hypervisor, but information leakage
and tampering can occur if the system inside Udom0 is
compromised by exploiting its vulnerabilities. Similarly, the
systems inside domB and a dashboard VM can be compro-
mised. The system including the operating system in such
privileged VMs has much larger attack surfaces than the
hypervisor. The TCB of UVBond is smaller because it does
not include any privileged VMs.

Several techniques for secure disk encryption have been
proposed. SSC enables users to encrypt the disks of VMs
using special VMs called service domains (SDs). Each user
can run his own SDs, while cloud operators cannot interfere
with user’s SDs. Like Udom0, SDs are also a client-level
TCB and are protected by the trusted hypervisor. However,
once the systems inside SDs are compromised, disk data is
leaked or tampered with.

BitVisor [25] can encrypt the disk of a VM using a
parapass-through driver in the trusted hypervisor. The hyper-
visor intercepts only minimum hardware access needed for
disk encryption, while the other access passes through the
hypervisor. The driver for the ATA host controller supports
not only PIO but also DMA transfers by using shadow DMA
descriptors and shadow buffers. UVBond can also support
DMA transfers using the same technique. Unlike UVBond,
BitVisor supports only fully virtualized operating systems
and cannot use para-virtual disk drivers in a VM.

CloudVisor [3] encrypts the disks of VMs in the se-
curity monitor running below the hypervisor, using nested
virtualization [26]. It intercepts I/O requests of VMs and
encrypts or decrypts data. In addition, CloudVisor checks
the integrity of the disks. It provides necessary hash data
to the security monitor via the management VM. Using the
hash data, it is guaranteed that VMs are booted properly
with the disk images specified by users. CloudVisor can
exclude even the hypervisor from the TCB, but the overhead
of nested virtualization is not small.

Console input and output in out-of-band remote man-
agement are encrypted in the hypervisor using FBCrypt [12]
and SCCrypt [13]. Like UVBond, FBCrypt also duplicates
VM’s framebuffer used for a para-virtualized graphical con-
sole and provides an encrypted one to Dom0. However, it
supports only memory sharing directly using page frame
numbers, not grant references. Since FBCrypt does not
duplicate I/O rings unlike UVBond, it has to write keyboard
input to an I/O ring using a new hypercall. It is necessary to

prevent the frontend driver in a VM from accessing data that
is not yet decrypted by the hypervisor. Therefore, FBCrypt
needs to modify the back-end driver in Dom0. UVBond
solves this synchronization problem without modifying disk
drivers by duplicating I/O rings.

System-call automata [27] are used for intrusion detec-
tion systems (IDSes). Such IDSes detect intrusion on the
basis of a sequence of system calls issued by a process.
They trace the program execution in advance and record
normal behavior as a system-call automaton. If a process
issues a system call that is not accepted by the automaton,
the IDSes detect abnormal behavior. A hypercall automaton
used in UVBond is an application to the hypervisor.

7. Conclusion

This paper proposed UVBond for providing strong user
binding to VMs. UVBond enables only a user to boot his
VM by decrypting its encrypted disk inside the trusted
hypervisor. Then it issues a VM descriptor for securely
identifying that VM. To bridge the semantic gap between
high-level management commands and low-level hypercalls,
UVBond uses hypercall automata and accepts only the
sequences of hypercalls issued by user’s commands. Using
UVBond, untrusted cloud operators cannot execute arbitrary
commands to user’s VMs or redirect user’s commands to
their malicious VMs. We have implemented UVBond in Xen
and confirmed that the overhead was not large.

Our future work was to apply UVBond to large cloud
management systems such as OpenStack [28]. To support
UVBond in such systems, we have to extract used manage-
ment commands and create their hypercall automata. Also,
we need to modify the Web interface and API so as to
send VM descriptors and hypercall automata as well as
commands.

Acknowledgment

This work was partially supported by JSPS KAKENHI
Grant Number JP16K00101.

References

[1] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards Trusted
Cloud Computing,” in Proc. Workshop on Hot Topics in Cloud
Computing, 2009.

[2] C. Li, A. Raghunathan, and N. K. Jha, “Secure Virtual Machine
Execution under an Untrusted Management OS,” in Proc. IEEE Int.
Conf. Cloud Computing, 2010, pp. 172–179.

[3] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: Retrofitting
Protection of Virtual Machines in Multi-tenant Cloud with Nested
Virtualization,” in Proc. ACM Symp. Operating Systems Principles,
2011, pp. 203–216.

[4] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy, “Self-
service Cloud Computing,” in Proc. ACM Conf. Computer and Com-
munications Security, 2012, pp. 253–264.

[5] K. Kourai and K. Juda, “Secure Offloading of Legacy IDSes Using
Remote VM Introspection in Semi-trusted Clouds,” in Proc. IEEE
Int. Conf. Cloud Computing, 2016, pp. 43–50.

[6] S. Miyama and K. Kourai, “Secure IDS Offloading with Nested
Virtualization and Deep VM Introspection,” in Proc. European Symp.
Research in Computer Security, 2017, pp. 305–323.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. Symp. Operating Systems Principles, 2003,
pp. 164–177.

[8] PwC, “US Cybercrime: Rising Risks, Reduced Readiness,” 2014.
[9] TechSpot News, “Google Fired Employees for Breach-

ing User Privacy,” http://www.techspot.com/news/
40280-google-fired-employees-for-breaching-user-privacy.html,
2010.

[10] CyberArk Software, “Global IT Security Service,” 2009.
[11] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection

Based Architecture for Intrusion Detection,” in Proc. Network and
Distributed Systems Security Symp., 2003, pp. 191–206.

[12] T. Egawa, N. Nishimura, and K. Kourai, “Dependable and Secure
Remote Management in IaaS Clouds,” in Proc. Intl. Conf. Cloud
Computing Technology and Science, 2012, pp. 411–418.

[13] K. Kourai and T. Kajiwara, “Secure Out-of-band Remote Manage-
ment Using Encrypted Virtual Serial Consoles in IaaS Clouds,”
in Proc. Int. Conf. Trust, Security and Privacy in Computing and
Communications, 2015, pp. 443–450.

[14] J. Rutkowska and R. Wojtczuk, “Preventing and Detecting Xen Hy-
pervisor Subversions,” Black Hat USA, 2008.

[15] J. Wang, A. Stavrou, and A. Ghosh, “HyperCheck: A Hardware-
assisted Integrity Monitor,” in Proc. Int. Symp. Recent Advances in
Intrusion Detection, 2010, pp. 158–177.

[16] A. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. Skalsky,
“HyperSentry: Enabling Stealthy In-context Measurement of Hyper-
visor Integrity,” in Proc. ACM Conf. Computer and Communications
Security, 2010, pp. 38–49.

[17] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki, “Flicker:
An Execution Infrastructure for TCB Minimization,” in Proc. Euro-
pean Conf. Computer Systems, 2008, pp. 315–328.

[18] C. Li, A. Raghunathan, and N. K. Jha, “A Trusted Virtual Machine
in an Untrusted Management Environment,” IEEE Trans. Services
Computing, vol. 5, no. 4, pp. 472–483, 2012.

[19] H. Tadokoro, K. Kourai, and S. Chiba, “Preventing Information
Leakage from Virtual Machines’ Memory in IaaS Clouds,” IPSJ
Online Trans., vol. 5, pp. 156–166, 2012.

[20] wolfSSL Inc., “wolfSSL Embedded SSL/TLS Library,” https://www.
wolfssl.com/.

[21] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Antfarm:
Tracking Processes in a Virtual Machine Environment,” in Proc.
USENIX Annual Technical Conf., 2006.

[22] J. Axboe, “fio: Flexible I/O Tester,” https://github.com/axboe/fio.
[23] M. Broz̆, “dm-crypt: Linux Kernel Device-mapper Crypto Target,”

https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt.
[24] S. Butt, V. Ganapathy, and A. Srivastava, “On the Control Plane of a

Self-service Cloud Platform,” in Proc. Symp. Cloud Computing, 2014.
[25] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,

T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono,
S. Chiba, Y. Shinjo, and K. Kato, “BitVisor: A Thin Hypervisor for
Enforcing I/O Device Security,” in Proc. Int. Conf. Virtual Execution
Environments, 2009, pp. 121–130.

[26] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour, “The Tur-
tles Project: Design and Implementation of Nested Virtualization,” in
Proc. USENIX Symp. Operating Systems Design and Implementation,
2010, pp. 423–436.

[27] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection Using
Sequences of System Calls,” Computer Security, vol. 6, pp. 151–180,
1998.

[28] The OpenStack Project, “OpenStack Open Source Cloud Computing
Software,” https://www.openstack.org/.

