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Abstract—Recently, Infrastructure-as-a-Service clouds pro-
vide virtual machines (VMs) with a large amount of memory.
Such large-memory VMs make VM migration difficult because
it is costly to reserve large-memory hosts as the destination.
Using virtual memory is a remedy for this problem, but virtual
memory is incompatible with the memory access pattern in
VM migration. Consequently, large performance degradation
occurs during and after VM migration due to excessive paging.
This paper proposes split migration of large-memory VMs with
S-memV. Split migration migrates a VM to one main host and
one or more sub-hosts. It divides the memory of a VM and
transfers memory likely to be accessed to the main host. Since
it transfers the rest of the memory directly to the sub-hosts,
no paging occurs during VM migration. After split migration,
remote paging is performed between the main host and the sub-
hosts, but its frequency is lower thanks to memory splitting that
is aware of remote paging. We have implemented S-memV in
KVM and showed that the performance of split migration and
application performance after VM migration were comparable
to that of traditional VM migration with sufficient memory.

I. INTRODUCTION

In Infrastructure-as-a-Service (IaaS) clouds, many virtual
machines (VMs) are consolidated into a small number of
hosts to reduce costs. Recently, as the needs to IaaS clouds
are diversified, IaaS clouds also provide VMs with a large
amount of memory. For example, Amazon EC2 provides
the x1e.32xlarge instance type with 3.9 TB of memory. The
M128ms instances in Microsoft Azure also have 3.8 TB
of memory. Such large-memory VMs are required for big
data analysis, e.g., using Apache Spark [1] and Facebook
Presto [2], because big data can be analyzed efficiently by
maintaining data in memory as much as possible. Fast in-
memory databases such as SAP HANA [3] and Microsoft
SQL Server [4] are other applications that use a large amount
of memory.

There are two issues to migrate such large-memory VMs.
One is the migration time because that time is basically
proportional to the memory size of a migrated VM. This
issue has been resolved by using fast interconnects such
as 40 Gigabit Ethernet (GbE) [5] and parallelizing VM
migration [6]. The other unresolved issue is the availability
of the destination host. VM migration needs sufficient free
memory at the destination host. However, it is costly to
always reserve hosts with a large amount of free memory,
even if possible in clouds. If large-memory VMs cannot be
migrated, they have to be stopped during host maintenance
and big data analysis is disrupted for a long time. In addition,

the whole data in memory is lost and it takes much time to
restore the lost data in memory by reading storage or redoing
computation. This largely degrades performance for a long
time after VMs are restarted.

To migrate a large-memory VM to a host with insufficient
free memory, the virtual memory technology can be used.
Virtual memory enables the system to run a VM with a
larger amount of memory than physical memory by paging
out part of the memory to storage. However, virtual memory
is incompatible with the migration of a large-memory VM.
Since VM migration transfers the entire memory of a VM
to the destination host, memory that cannot be accommo-
dated in the host is paged out. At this time, the page-outs
are unconditionally done, regardless of the memory access
pattern inside the VM. After VM migration, such paged-out
memory is paged in again in a high probability. As such,
using virtual memory causes excessive paging during and
after VM migration and largely degrades the performance
of VM migration and applications running in the migrated
VM.

To solve this problem, this paper proposes split migration
of large-memory VMs with S-memV. Split migration enables
a large-memory VM to be migrated to multiple hosts by
dividing its memory. In split migration, the destination of
VM migration consists of one main host and one or more
sub-hosts. Split migration transfers VM’s core information
such as CPU and device states to the main host. It also
transfers memory likely to be accessed after VM migration
to the main host as much as possible. In contrast, it transfers
memory that cannot be accommodated in the main host
directly to the sub-hosts. Therefore, paging does not occur at
all during split migration. After split migration, the migrated
VM runs at the main host and remote paging [7]–[11] is
performed between the main host and the sub-hosts when
the VM requires memory in the sub-hosts. Thanks to the
awareness of locality of memory reference on memory
splitting of a VM, the frequency of remote paging can be
suppressed.

We have implemented S-memV in KVM and a memory
server that manages part of the memory of a VM at a sub-
host. We have developed a mechanism for obtaining the
memory access history from the extended page tables (EPT)
and implemented the least recently used (LRU) algorithm
using temporal locality of reference. Also, we have extended
the userfaultfd mechanism in Linux 4.3 for page-outs and



developed a remote paging system. According to our exper-
iments, split migration could achieve much less migration
time and downtime than VM migration with virtual memory.
Rather, it was comparable to traditional VM migration with
sufficient physical memory. These results came from no
paging during VM migration. In addition, S-memV could
suppress the degradation of application performance after
split migration by predicting memory access.

The rest of this paper is organized as follows. Section II
describes an issue in migrating VMs with a large amount of
memory. Section III proposes split migration and Section IV
describes its implementation. Section V shows experimental
results of split migration with S-memV. Section VI describes
related work and Section VII concludes this paper.

II. MIGRATION OF LARGE-MEMORY VMS

VM migration enables a running VM to be moved to
another host without stopping it. Using VM migration,
administrators can maintain a host without service disruption
after they migrate all the VMs running at that host. VM
migration first creates a new VM at the destination host.
In the first iteration, it copies the memory contents of a
target VM running at the source host to the memory of
the newly created VM via the network. In the following
iterations, it re-transfers modified memory contents because
the memory of the VM at the source host continues to be
modified during the memory transfer. VM migration repeats
the re-transfers and enters the last iteration when the amount
of memory to be re-transferred is small enough. At this time,
VM migration stops a VM at the source host and transfers
the remaining modified memory and CPU and device states.
At the destination host, it resumes the virtual devices using
received device states and finally restarts the new VM.

Recently, VMs with a large amount of memory, e.g.,
4 TB, are being widely used in IaaS clouds, but such
large-memory VMs make VM migration difficult. This is
because it is not cost-efficient to always reserve hosts with
a large amount of free memory as the destination of VM
migration. Larger-capacity memory modules are needed for
large-memory hosts, but they are much more expensive
than smaller-capacity ones. Also, inflexibility in managing
large-memory hosts leads to higher management cost. If a
large-memory host is used for running many small VMs,
administrators have to first migrate these VMs to obtain
necessary free memory. This is a time-consuming task and
increases the time until the migration of a large-memory VM
is completed.

When there is not sufficient free memory at the destination
host for VM migration, the virtual memory technology is
traditionally used. Using virtual memory, the system can
run a VM with a larger amount of memory than physical
memory. The memory pages that cannot be accommodated
in physical memory are paged out to storage, as illustrated in
Fig. 1. If a VM requires paged-out pages, the virtual memory
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Figure 1: VM migration with virtual memory.

system pages in them to physical memory. Instead of the
paged-in pages, it pages out unused pages to storage, usually,
on the basis of the LRU algorithm. Frequent paging degrades
VM performance largely, but several techniques have been
proposed to suppress such performance degradation [12].
Using SSDs instead of HDDs as swap space also remedies
this problem although even SSDs are still one or two orders
of magnitude slower than memory.

However, virtual memory is incompatible with the migra-
tion of a large-memory VM. In the first iteration of VM
migration, all the memory pages of a VM are transferred in
order and pages that cannot be accommodated in physical
memory are paged out to storage. Since all the pages are
accessed only once in this iteration, the LRU algorithm
usually used in paging is completely ineffective. This leads
to a long migration time. Worse, since the page-outs are
performed on the basis of the LRU algorithm, pages that
have been transferred earlier are unconditionally paged out,
regardless of the memory access pattern inside the VM. This
can result in degrading the performance of virtual memory
after VM migration.

In the following iterations, not only page-outs but also
page-ins can occur frequently. When memory pages are re-
transferred due to memory updates, those that are not resi-
dent in physical memory are first paged in from storage and
then overwritten. At the same time, unused pages in physical
memory are paged out. The number of such modified pages
can become larger for a larger-memory VM because it
takes a longer time to transfer all the memory pages in the
first iteration. When VM migration is completed, frequently
modified pages are likely to reside in physical memory.
However, frequently accessed read-only pages can be paged
out because VM migration does not re-transfer memory
pages that are not modified. Therefore, paging is caused by
accessing such read-only pages after VM migration.

In the last iteration, the occurrence of paging is critical be-
cause a VM is stopped during this iteration and performance
degradation due to paging leads to a long downtime. Paging
in this iteration can be caused by transferring modified
memory pages, as in the previous iterations. If both the
memory of a VM and the memory used for the virtual
devices are managed by the same virtual memory system,
as in KVM, resuming the virtual devices can cause paging.
Since the virtual devices do not run yet at the destination
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Figure 2: Split migration.

host, most of their memory has been paged out. Therefore,
many page-ins are necessary to write received device states
to their memory and access the memory for re-initializing
the virtual devices.

According to our experiments in Section V, it is shown
that the migration time becomes 11.7 times longer and the
downtime exceeds 30 seconds at worst when HDDs are
used as swap space. Even using SSDs, the migration time is
still 2.2 times longer and the downtime is near 4 seconds.
Also, our experimental result shows that, even when SSDs
are used, it takes 21 minutes to restore the performance of
memcached [13] after VM migration.

III. SPLIT MIGRATION

In this paper, we propose split migration of large-memory
VMs with S-memV. As illustrated in Fig. 2, a VM running
in one host is migrated to multiple hosts in split migration.
The destination hosts consist of one main host and one
or more sub-hosts. The main host runs VM core such as
virtual CPUs and devices with part of the memory of a
VM, while sub-hosts manage the rest of the memory. Split
migration divides a large amount of memory of a VM into
smaller pieces and directly transfers them to these hosts. It
transfers VM’s core information and memory pages likely
to be accessed to the main host. This enables the VM to
access its memory without paging after VM migration. In
contrast, split migration transfers memory pages that cannot
be accommodated in the main host to sub-hosts.

After split migration, S-memV runs the migrated VM at
the main host, performing remote paging [7]–[11] between
the main host and the sub-hosts. Remote paging is a mech-
anism for paging in/out memory pages from/to the memory
at other hosts via the network, instead of local storage. If
the network is fast enough, remote paging is faster than
paging with local storage. When a memory page accessed
by the VM does not exist in the main host, S-memV pages
in the requested memory page from one of the sub-hosts. To
balance the amount of memory at the main host, it pages out
a page unlikely to be accessed to the sub-host. For efficiency,
S-memV pages in/out several pages including the target page
at once.
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Figure 3: The system architecture in split migration.

In S-memV, remote paging is not caused at all during
split migration. While a VM is being migrated, memory
pages that cannot be accommodated in the main host are not
paged out from the main host to the sub-hosts. Instead, they
are directly transferred to the sub-hosts. Therefore, there is
no wasteful network transfer between the main host and the
sub-hosts at both the first memory transfer and the following
re-transfers in VM migration. Also, the system load at the
destination main host is not increased by remote paging.
Without remote paging during VM migration, split migration
can achieve less migration time and downtime.

On the other hand, S-memV requires remote paging after
split migration, but the frequency is less than after traditional
VM migration with virtual memory. This is because memory
splitting in split migration is aware of remote paging per-
formed after the migration. Split migration stores memory
pages likely to be accessed in the memory of the main host
so that remote paging occurs as infrequently as possible. To
divide the memory of the VM in such a manner, S-memV
monitors the memory access pattern of the VM. Using the
obtained memory access history, it predicts future memory
access on the basis of the LRU algorithm.

IV. IMPLEMENTATION

We have implemented S-memV in QEMU-KVM 2.4.1
and Linux 4.3. As illustrated in Fig. 3, the system consists
of one source host, one destination main host, and one
or more destination sub-hosts. The source host and the
destination main host run QEMU-KVM in which S-memV
is implemented and run VMs on top of it. Each destination
sub-host runs a memory server, which manages part of the
memory of VMs.

A. Migration Overview

To migrate a VM to multiple hosts, we have extended
the migration mechanism of QEMU-KVM. In S-memV,
QEMU-KVM at the source host (hereafter, source QEMU-
KVM) connects to not only QEMU-KVM at the destination
main host (hereafter, destination QEMU-KVM) but also
the memory servers at the destination sub-hosts. The sub-
hosts are chosen appropriately by a server that manages free



memory, the performance of CPU and memory, the system
load, and network latency of all the hosts. Existing cloud
management systems such as OpenStack already provide
such servers for VM placement.

Next, the source QEMU-KVM splits the memory of a
VM for the main host and chosen sub-hosts. This memory
splitting is based on the LRU algorithm. S-memV assigns
memory pages that are more likely to be accessed after VM
migration to the main host in order, while it assigns the rest
of the pages to the sub-hosts. S-memV performs memory
splitting using the memory access history at the beginning of
VM migration and does not consider memory access during
VM migration. This is because the amount of transferred
memory can increase if the destination host for each page
changes during VM migration.

Once S-memV determines the destination host for each
memory page, the source QEMU-KVM transfers memory
data to either the destination QEMU-KVM or one of the
memory servers. It can do that in parallel as proposed in
[6]. At the re-transfer of modified pages, it transfers memory
data to the same host. For a memory page accommodated
in the main host, the source QEMU-KVM transfers a pair
of the offset to a memory block and the data of the page
to the destination QEMU-KVM as usual. In addition, it
transfers the memory access history for the page so that the
destination QEMU-KVM can continue to use the history for
remote paging.

For a page accommodated in a sub-host, in contrast, the
source QEMU-KVM transfers the physical memory address
in the VM and the data of the page to the sub-host. The
memory servers at sub-hosts maintain received pages using
page sub-tables. In addition, the source QEMU-KVM also
transfers the following information to the main host: the
IP address of the destination sub-host and the offset to
a memory block. The destination QEMU-KVM creates a
network page table and maintains in which host each page
is located to enable remote paging.

When VM migration is completed, the destination
QEMU-KVM connects to the memory servers at the destina-
tion sub-hosts for remote paging. S-memV performs remote
paging between the main host and one of the sub-hosts when
it detects VM’s access to the pages that are not located in
the main host. If VM migration fails due to problems of the
network or the destination hosts, it is aborted and the VM
continues to run at the source host like traditional pre-copy
migration. For fault tolerance after split migration, we could
use a technique proposed in [10].

B. Memory Access History

To maintain the memory access history of a VM, S-memV
keeps track of page access inside a VM. First, QEMU-KVM
issues the extended ioctl system call to the modified KVM
module in the Linux kernel to obtain information on memory
access. At that time, it allocates an access bitmap whose
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Figure 4: Updates in memory access history.

bit corresponds to each memory page and passes it to the
system call. Next, the KVM module traverses the extended
page tables (EPT) for all the physical pages assigned to the
target VM and examines the page table entries. Their access
bit is set by a CPU with support for EPT A/D bit when the
corresponding page is accessed. The KVM module records
the value of the access bit to the passed bitmap. Finally, it
resets the access bit so that CPUs can record new memory
access in EPT for the next period.

S-memV supports the aging algorithm as LRU approx-
imation. For each page-out, S-memV finds a page that is
least accessed for a certain period as a victim. Therefore,
it requires a multi-bit memory access history for each
page. In the current implementation, S-memV allocates eight
bits to each page. S-memV periodically traverses EPT and
accumulates the value of an obtained access bit in the most-
significant bit of the memory access history for a while,
as illustrated in Fig. 4. After a certain period, it shifts the
memory access history to the right by one bit. This method
enables S-memV to maintain a relatively long history with
less bits and consider the latest memory access. Without
this accumulation of access bits, S-memV could maintain
the history only in eight seconds if it shifts the history every
second. It could maintain a longer history if it obtains access
bits every 10 seconds, but it could not consider memory
access in the latest 10 seconds at worst.

C. LRU-based Memory Splitting

S-memV splits the memory of a VM on the basis of
the memory access history on VM migration. This memory
splitting is done in a granularity of a chunk, which consists
of contiguous memory pages. The purpose of using a chunk
is to achieve efficient remote paging. S-memV pages in a
chunk including a faulting page located in a sub-host and
pages out another chunk located in the main host.

To split the memory in the chunk granularity, S-memV
needs to calculate the access history for each chunk, which
is called the chunk history. The chunk history can be
calculated by a bitwise OR of the 8-bit values of the memory
access history for all the pages in a chunk, as illustrated in
Fig. 5. For optimization, S-memV directly updates the chunk
history whenever it obtains memory access information from
EPT. Then, it assigns the pages in a chunk with a larger value
to the main host in order.
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Figure 5: LRU-based memory splitting (chunk size of 2).

To achieve this assignment without sorting a large number
of chunks, S-memV first creates a histogram about the 8-
bit value of the chunk history. Next, it sums up the number
of chunks in the histogram in descending order of history
values until the sum exceeds the number of chunks that can
be accommodated in the main host. The history value at
that time is a threshold. S-memV assigns chunks with history
values larger than the threshold to the main host. For chunks
with the history value of the threshold, it assigns chunks to
the main host as much as possible and the rest to the sub-
hosts. It assigns chunks with smaller history values to the
sub-hosts.

D. Memory Server

A memory server runs at a sub-host and manages part of
the memory of a VM in a page granularity. For the memory
management, it creates a page sub-table, which is a one-
dimensional array whose index is a page frame number and
whose value is the pointer to the data of the corresponding
memory page. A memory server handles page-out and
page-in requests. A page-out request consists of a physical
memory address in a VM and the data of the corresponding
memory page. When a memory server receives a page-out
request, it allocates 4-KB memory, copies the received data
to it, and adds it to the page sub-table. In contrast, a page-in
request consists of only a physical memory address. When
a memory server receives a page-in request, it searches the
page sub-table and returns the data of the corresponding
memory page. At the same time, it removes the data from
the page sub-table and releases the memory for that data.

E. Remote Paging

To achieve remote paging for a VM at the main host,
S-memV uses the userfaultfd mechanism, which was in-
troduced in Linux 4.3. In KVM, the memory of a VM
is allocated by anonymous memory mapping. When the
destination QEMU-KVM receives data from the source
host and writes it to the corresponding memory page, a
physical memory page is assigned. For the other pages,
physical memory is not assigned yet. To trap access to non-
existent memory pages, the destination QEMU-KVM issues
the userfaultfd system call at the end of split migration
and registers all the memory pages of the migrated VM to
userfaultfd.

QEMU-KVM

Linux kernel
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main host
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memory 
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Figure 6: Remote paging using userfaultfd.

Fig. 6 illustrates how a memory page is paged in/out using
userfaultfd. When a virtual CPU in the VM accesses a non-
existent page, a page fault occurs and an event is notified
to QEMU-KVM. QEMU-KVM translates the notified host
memory address into the physical memory address used
inside the VM. Then it sends page-in requests to the mem-
ory server at the sub-host that manages the corresponding
memory pages. At this time, it first sends a request for
the faulting page including the accessed memory address
and then sends requests for the other pages in the chunk
including the faulting page. This is because QEMU-KVM
can handle the faulting page at first and continue to run the
virtual CPU as early as possible. QEMU-KVM finds that
sub-host by searching the network page table, which is a
one-dimensional array whose index is a page frame number
and whose value is the identifier of the host where the page
is resident.

When QEMU-KVM receives the data of the correspond-
ing page from the sub-host, it assigns physical memory to
the page and writes the data using userfaultfd. At this time,
the faulting virtual CPU in the VM is resumed. In addition,
QEMU-KVM modifies the network page table so that the
paged-in pages exist in the main host.

To balance the amount of memory, QEMU-KVM at the
main host performs page-outs after page-ins. First, S-memV
determines a paged-out chunk on the basis of the memory
access history. Using the chunk history described in Sec-
tion IV-C, S-memV finds a chunk with the smallest history
value. Next, QEMU-KVM obtains the memory contents of
the pages in the found chunk and removes the assignment
of physical memory to those pages. To execute these two
operations atomically with the VM running, we extended the
userfaultfd mechanism so that it can clear the corresponding
page table entries and return the page contents at the same
time. Next, QEMU-KVM sends page-out requests for the
pages in the chunk to the memory server at the sub-host
where a chunk has been paged in. In addition, QEMU-KVM
modifies the network page table so as to reflect the paged-out
pages.

V. EXPERIMENTS

To show the effectiveness of split migration, we measured
migration performance and application performance after the



0

10

20

30

40

50

m
ig

ra
ti
o

n
 t

im
e

 (
s
e

c
)

ideal
split

SSD
HDD

141

(a) Migration time
0

2

4

6

8

10

d
o

w
n

ti
m

e
 (

s
e
c
)

ideal
split

SSD
HDD

30

(b) Downtime

Figure 7: Migration performance (idle).

migration. For split migration, we used the chunk size of
256 pages, which achieved the best performance of remote
paging. For comparison, we executed VM migration with
virtual memory, which performed paging with local storage
during and after the migration. We call VM migration
using SSDs and HDDs as swap space SSD- and HDD-
assisted migration, respectively. For the baseline, we used
the traditional ideal VM migration, which migrated a VM
to the destination host with sufficient free memory.

For the source host and the destination (main) host, we
used two PCs with an Intel Xeon E3-1270v3 processor and
16 GB of DDR3 SDRAM. When executing split migration
and VM migration with virtual memory, we adjusted free
memory at the destination main host to the half of VM’s
memory. As swap space, we used 275 GB of Crucial MX300
SSD or 1 TB of SATA 3 HDD. For the destination sub-host,
we used a PC with an Intel Xeon E3-1270v2 processor and
12 GB of DDR3 SDRAM. These PCs were connected with
10 Gigabit Ethernet (GbE). We ran Linux 4.3.0 and QEMU-
KVM 2.4.1. For a VM, we assigned one virtual CPU and
12 GB of memory. This VM did not have so large memory,
but that was suitable to analyze the performance in detail. In
fact, that size of memory was necessary to complete HDD-
assisted migration in a realistic time.

A. Performance of VM Migration

First, we migrated an idle VM without explicitly running
applications inside it. The migration time is shown in
Fig. 7(a). Compared with ideal migration, split migration
increased the migration time only by 5%. For VM migration
with virtual memory, in contrast, the migration time was
2.2 times longer even when SSD-assisted migration was
executed. For HDD-assisted migration, the migration time
was 11.7 times longer. This is because 6 GB of memory in
the VM was paged out at the destination host during VM
migration.

Fig. 7(b) shows the downtime of the migrated VM.
For split migration, the downtime was only 7 ms longer
than that in ideal migration. However, SSD- and HDD-
assisted migration increased the downtime by 3.4 seconds
and 30 seconds, respectively. These increases were caused
by excessive paging. For an idle VM, the last iteration was
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Figure 8: Migration performance (RapidWrite).

started in the middle of the first iteration in KVM because
of a small number of memory pages to be re-transferred.
Therefore, many page-outs as in the first iteration occurred
while a VM was stopped. In addition, many heap pages used
by QEMU-KVM for the virtual devices were paged in.

Next, we migrated a memory-intensive VM, which ran a
benchmark called RapidWrite. The benchmark allocated 6
GB of memory and repeatedly modified it. To avoid infinite
memory re-transfers in VM migration, RapidWrite slept for
five seconds after modifying 6 GB of memory.

Fig. 8(a) shows the migration time when we migrated
the memory-intensive VM. Compared with the migration of
an idle VM, the migration time increased by 31 seconds
even in ideal migration. For split migration, in contrast, the
increase was only 23 seconds. This is probably due to the
timing of executing the sleep of five seconds in RapidWrite.
In fact, the variance of the migration time was quite large.
For SSD- and HDD-assisted migration, the migration time
was 55 and 188 seconds longer, respectively. This is because
paging overhead during VM migration further increased the
number of re-transferred pages.

On the other hand, the downtime was almost the same
as that in an idle VM, as shown in Fig. 8(b), except for
HDD-assisted migration. The downtime in HDD-assisted
migration decreased by 26 seconds. When the memory-
intensive VM is migrated, modified memory pages tend to
be resident in physical memory at the destination host. As a
result, paging due to memory re-transfers was less frequent
in the last iteration.

B. Impact of VM Size and Network

To investigate the impact of the memory size of a VM,
we compared migration performance between two memory
sizes of 2 GB and 12 GB. Fig. 9(a) shows the migration
time of two idle VMs. Compared with the 2-GB VM, the
migration time in the 12-GB VM was 3.5 to 4.4 times longer
although the memory size was 6 times larger. The reason is
that it takes a constant time to migrate a VM although the
migration time is basically proportional to the memory size.

Fig. 9(b) shows the comparison of the downtime. For
ideal and split migration, the downtime was only slightly
increased in the 12-GB VM. For VM migration with virtual
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Figure 10: The performance comparison of VM migration
(1 GbE vs. 10 GbE).

memory, in contrast, the downtime in the 12-GB VM in-
creased largely. This is because the virtual memory system
paged out approximately 700 MB of memory unused in
several processes and assigned it to the VM. As a result,
83% of the VM’s memory was resident in the 2-GB VM,
while only 56% was resident in the 12-GB VM.

Next, we examined the impact of the network to migration
performance. In this experiment, we used a 2-GB idle VM.
Fig. 10(a) shows the migration time in 1 GbE and 10 GbE.
Using 10 GbE, the migration time in split migration became
7 times shorter, as in ideal migration, although the network
became 10 times faster. This is due to the constant overhead
of VM migration. In contrast, SSD-assisted migration be-
came only 2.9 times faster in 10 GbE. While the migration
time was almost the same as ideal migration in 1 GbE, it
was much longer in 10 GbE. This is because only slower 1
GbE could hide the performance degradation due to paging.
Surprisingly, the migration time of HDD-assisted migration
was shorter in 1 GbE than in 10 GbE. One reason is that
the downtime is much longer in 10 GbE, which is discussed
below.

Fig. 10(b) shows the downtime in 1 GbE and 10 GbE.
For ideal and split migration, the downtime almost did not
change. For SSD-assisted migration, however, the downtime
was doubled in 10 GbE. Worse, HDD-assisted migration
increased the downtime by 18 seconds. This is because much
more pages had to be transferred in the last iteration when
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Figure 11: The sort performance after VM migration.
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Figure 12: The memcached performance after VM migra-
tion.

10 GbE is used and more paging occurred. In KVM, VM
migration enters the last iteration if the remaining memory
can be transferred in 300 ms. Obviously, 10 GbE can transfer
10 times more data than 1 GbE.

C. Performance after VM Migration

We measured the performance of GNU sort running in
a VM after the migration. To obtain the memory access
history, we first ran the sort command for 2 GB of data
in 60 seconds. Then, we paused that process, migrated
the VM, and resumed the process. Fig. 11 shows the
time to complete the command and the number of page-
ins during the command execution. Compared with ideal
migration, performance degradation due to split migration
was only 3.5%, whereas SSD-assisted migration degraded
the performance by 36%. The reason of these differences
is the number of page-ins. Split migration could suppress
the number only to 2.8% of that in SSD-assisted migration.
This means that split migration could transfer the memory
accessed by the sort command to the main host successfully.

Next, we measured the performance of memcached [13]
after VM migration. We assigned 5 GB of memory to
memcached and accessed the data using the memaslap
benchmark. We ran memaslap for 12 minutes before VM
migration to obtain the memory access history, migrated the
VM, and ran memaslap again. Fig. 12 shows the through-
put and the number of page-ins every five seconds. After
ideal migration, the throughput was always stable. For split
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Figure 13: The effectiveness of using the LRU algorithm.

migration, the performance was degraded by 66% just after
the migration due to remote paging, but that was recovered
only in 5 seconds. The network bandwidth consumed for this
performance recovery was 3.4 Gbps, which was not so large
in 10 GbE. The stable throughput was only 0.6% lower than
that after ideal migration. On the other hand, performance
degradation after VM migration with virtual memory was
critical because of thrashing. For SSD-assisted migration, it
took 21 minutes to restore the same performance as before
the migration.

When the working set size exceeded the memory size
of the main host, remote paging largely affected the per-
formance of memcached after split migration. For example,
the throughput was degraded by 69% for memcached with
6 GB of memory assigned. However, remote paging with
RDMA [9], [11] could suppress such performance degrada-
tion, e.g., up to 27% in memcached.

D. Effectiveness of Using LRU

To show the effectiveness of LRU approximation, we
randomly performed memory splitting and page-outs in
remote paging and compared application performance after
VM migration. In this experiment, we executed GNU sort
and memcached as in Section V-C. Fig. 13 shows the
execution time of sort and the throughput of memcached
after VM migration. For GNU sort, the execution time in the
LRU algorithm was 5.7% shorter than that in the random
algorithm. For memcached, unlike the LRU algorithms, it
took 60 seconds to recover the throughput in the random
algorithm. Even after performance recovery, the throughput
was 6.7% lower. These show that using LRU algorithms for
memory splitting and page-outs is effective.

E. Overhead of Using LRU

We examined the overhead of using LRU in S-memV.
In this experiment, we executed three mechanisms using
LRU independently of the Linux kernel and QEMU-KVM
so that we could perform the measurement regardless of
the size of physical memory. We changed the memory size
from 1 GB to 2 TB. We configured access bits in EPT and
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Figure 14: The overhead of using LRU.

memory access history randomly and split the memory into
two equally.

Fig. 14(a) shows the time for the collection of memory
access history. The collection time was proportional to the
memory size and 0.6 seconds for 2-TB memory. Although
this overhead is not small, parallel collection using multiple
CPUs could reduce the time. Fig. 14(b) shows the time for
memory splitting. For 2-TB memory, it took 0.8 seconds to
split the memory of a VM, but this is negligible, compared
with a long migration time. Fig. 14(c) shows the time for
page-out decision. The decision time was 12.7 ms for 2-
TB memory, but this overhead would not largely affect the
performance of remote paging because page-outs are less
critical than page-ins.

VI. RELATED WORK

Post-copy VM migration [14] is a special case of split
migration in that it runs a VM using two hosts for a while.
While the migrated VM is running at the destination host,
the source host transfers the memory of the VM on demand
or in the background like page-ins from a sub-host. However,
since this situation is transient, the VM finally runs at only
one destination host after VM migration is completed. In
addition, difficult page-out decision is not necessary.

Scatter-Gather live migration [15] uses multiple interme-
diate hosts between the source and destination hosts. It
pushes the memory of a VM to intermediate hosts as fast
as possible and the destination host obtains the memory
from these hosts. This is similar to split migration in that
the source host transfers the memory to multiple hosts and
that the destination host pages in that from remote hosts.
However, Scatter-Gather migration does not need to predict
memory access of VMs to reduce remote paging. Since it
finally migrates a VM to one destination host, it does not
need page-outs, resulting in simpler paging.

Unlike S-memV, MemX [10] always runs a VM using
the memory of multiple hosts. In the MemX-VM mode, the
guest operating system in a VM provides a block device
to access the memory at the other hosts. In the MemX-
DD mode, Dom0 in Xen provides such a block device. In
the MemX-VMM mode, MemX provides a VM with the
memory extension to access the memory at the other hosts
transparently. When a VM accesses a memory page that does



not exist at the host, MemX obtains the corresponding page
at another host and assigns it to the VM. This mechanism is
similar to remote paging in S-memV, but only the MemX-
VM mode allows VM migration.

vNUMA [16] enables running one large VM with not
only the memory but also CPUs of multiple hosts. The VM
can transparently access the memory of all the hosts using
distributed shared memory. While S-memV uses only one
host for running a VM and the other hosts for providing
memory, these systems use all the hosts for running a
VM. Therefore, the overhead for the cooperation between
multiple hosts is much larger.

The optimization for restoring checkpointed VMs can be
applied for performance improvement after split migration.
Working set restore [17] prefetches the working set of the
VM’s memory from a disk. For working-set estimation, it
scans access bits in the page tables of the guest operating
system. Halite [18] groups VM’s memory pages likely to be
accessed together into locality blocks upon checkpointing.
To predict access locality of memory pages, Halite uses
the locality in virtual address spaces of the guest operating
system.

VII. CONCLUSION

This paper proposed split migration with S-memV, which
divides the memory of a large-memory VM into small
pieces and directly transfers them to multiple hosts. Split
migration transfers the memory likely to be accessed to
the destination main host and the remaining memory to
the sub-hosts. Unlike VM migration with virtual memory,
paging does not occur at all during VM migration. Af-
ter split migration, the VM runs at the main host and
S-memV performs remote paging between the main host and
sub-hosts when necessary. Thanks to LRU-based memory
splitting, the frequency of remote paging is much lower.
We have implemented S-memV in KVM and confirmed
that the performance of split migration was comparable to
that of ideal VM migration. In addition, S-memV could
suppress the degradation of application performance after
split migration.

One of our future work is to evaluate split migration in
various configurations. We are interested in the migration of
larger-memory VMs, e.g., with 4 TB of memory, using faster
networks such as 100 GbE with RDMA. We need to also
compare the performance with SSD-assisted migration using
faster NVMe SSDs. In addition, we are planning to develop
the migration of a VM running across multiple hosts after
split migration. For example, a split-memory VM should
be merged into one host again if possible. Fault tolerance
after split migration is another challenge. We can apply
the RAID-like recovery mechanism that has been proposed
in [10]. Another direction is to apply the mechanisms of
split migration to VM migration with virtual memory, where
swap space is considered a sub-host.
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