Secure Out-of-band Remote Management of Virtual Machines
with Transparent Passthrough

Shota Futagami
Kyushu Institute of Technology
shota@ksl.ci.kyutech.ac.jp

ABSTRACT

Infrastructure-as-a-Service clouds provide out-of-band remote
management for users to access their virtual machines (VMs). Out-
of-band remote management is a method for indirectly accessing
VMs via their virtual devices. While virtual devices running in the
virtualized system are managed by cloud operators, not all cloud
operators are always trusted in clouds. To prevent information
leakage from virtual devices and tampering with their I/O data,
several systems have been proposed by trusting the hypervisor
in the virtualized system. However, they have various issues on
security and management. This paper proposes VSBypass, which
enables secure out-of-band remote management outside the vir-
tualized system using a technique called transparent passthrough.
VSBypass runs the entire virtualized system in an outer VM us-
ing nested virtualization. Then it intercepts I/O requests of out-of-
band remote management and processes those requests in shadow
devices, which run outside the virtualized system. We have imple-
mented VSBypass in Xen for the virtual serial console and GUI
remote access. We confirmed that information leakage was pre-
vented and that the performance was comparable to that in tradi-
tional out-of-band remote management.

KEYWORDS

Virtual machines, Virtualized systems, Remote management, In-
formation leakage, Nested virtualization

ACM Reference Format:

Shota Futagami, Tomoya Unoki, and Kenichi Kourai. 2018. Secure Out-
of-band Remote Management of Virtual Machines with Transparent
Passthrough. In 2018 Annual Computer Security Applications Conference
(ACSAC ’18), December 3—7, 2018, San Juan, PR, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3274694.3274749

1 INTRODUCTION

In Infrastructure-as-a-Service (IaaS) clouds, users can use a nec-
essary number of virtual machines (VMs) to construct large sys-
tems. To manage their VMs provided by clouds, users access their
VMs from remote hosts using remote management software such
as SSH and VNC. In addition to such a management method for di-
rectly accessing VMs, clouds provide a method called out-of-band

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’18, December 37, 2018, San Juan, PR, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6569-7/18/12...$15.00
https://doi.org/10.1145/3274694.3274749

Tomoya Unoki
Kyushu Institute of Technology
unoki@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology
kourai@ksl.ci.kyutech.ac.jp

remote management. This management method enables users to in-
directly access VMs via their virtual devices such as virtual serial
devices, keyboards, and video cards in the virtualized system. The
advantage of this method is that users can manage the systems in
VMs even on their network configuration errors and at boot time.
This is because out-of-band remote management does not rely on
VMs’ network or remote management servers running in VMs.

On the other hand, virtual devices in the virtualized system
are managed by cloud operators, who may be untrusted in clouds
[5, 12, 14, 17, 22, 31]. If there are malicious cloud operators, they
can easily eavesdrop on and tamper with I/O for out-of-band re-
mote management. To prevent information leakage from virtual
devices and tampering with their I/O data, several systems have
been proposed by trusting the hypervisor inside the virtualized
system [5, 7, 13]. However, it is relatively easy for cloud operators
resident in the same virtualized system to attack the hypervisor.
To trust the hypervisor, cloud operators cannot manage the entire
virtualized system after all. In addition, their applicability is not
high because it is required that the hypervisor is clearly separated
from the other components in the virtualized system.

This paper proposes VSBypass for enabling secure out-of-band
remote management outside the virtualized system, using a tech-
nique called transparent passthrough. VSBypass uses nested virtu-
alization [4] and runs the entire virtualized system in an outer
VM. When a user VM issues I/O requests to virtual devices, VS-
Bypass intercepts them and securely processes them in shadow
devices outside the virtualized system. Since I/O for out-of-band
remote management is completely processed outside the virtual-
ized system, untrusted cloud operators inside the virtualized sys-
tem cannot eavesdrop on or tamper with the I/O data. VSBypass
does not need to trust the hypervisor inside the virtualized system.
This means that cloud operators can manage the entire virtualized
system. In addition, existing virtualized systems can be used be-
cause VSBypass does not basically depend on them.

We have implemented VSBypass in Xen 4.8.0 [2]. In the cur-
rent implementation, VSBypass supports Xen and KVM [21] as a
virtualized system running in an outer VM called the cloud VM. It
can perform transparent passthrough of virtual serial devices, key-
boards, mice, and video cards. When a user VM accesses these vir-
tual devices, a VM exit occurs directly to the outside of the cloud
VM. Shadow devices for processing the intercepted I/O are pro-
vided by a proxy VM, which is a thin VM created for each user
VM. When virtual interrupts occur in shadow devices, they are
efficiently redirected to the corresponding user VM using shared
memory. We confirmed that VSBypass could prevent information
leakage from virtual devices and that the performance was com-
parable to that in the traditional out-of-band remote management.

https://doi.org/10.1145/3274694.3274749
https://doi.org/10.1145/3274694.3274749

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

virtualized system

1 1
1 1
1 1
client | SSH/VNC | virtual user i
D 17| devices VM !
1 1
1 1
ot b
! | hypervisor | E
1
1 1
1

Figure 1: Out-of-band remote management of a VM.

The organization of this paper is as follows. Section 2 discusses
information leakage and tampering in out-of-band remote man-
agement and four issues of previous approaches. Section 3 pro-
poses VSBypass to resolve the issues and Section 4 describes the
implementation. Section 5 compares VSBypass with the traditional
remote management and shows the experimental results. Section 6
describes related work and Section 7 concludes this paper.

2 OUT-OF-BAND REMOTE MANAGEMENT

Out-of-band remote management is a method for indirectly access-
ing VMs via their virtual devices running in the virtualized system,
as illustrated in Fig. 1. Users access virtual devices of VMs using
remote management clients such as SSH and VNC and perform
I/O for remote management. For out-of-band remote management,
virtual serial devices, keyboards, mice, and video cards are used.
When a remote client receives input data such as console and key-
board inputs from the user, it sends and writes the data to a virtual
device. If a VM attempts to read that data from the virtual device,
the hypervisor intercepts that access, obtains the data from the vir-
tual device, and returns it to the VM. Similarly, if a VM attempts
to write output data such as console and video outputs to a virtual
device, the hypervisor intercepts that access and writes the data
to the virtual device. Then, the data is read from the virtual device
and is sent to a remote client.

Virtual devices used for out-of-band remote management are
managed by cloud operators. Cloud operators are system admin-
istrators who are responsible for managing the entire virtualized
systems in clouds. The virtualized system consists of the hyper-
visor, privileged components including virtual devices, and user
VMs. Unfortunately, not all the cloud operators are always trusted.
It is reported that 28% of cybercrimes are caused by insiders [20].
One example of insiders is malicious system administrators, who
attack systems actively. In 2010, a site reliability engineer in Google
violated user’s privacy [27]. Another example is curious but honest
system administrators, who may eavesdrop on attractive informa-
tion that they can easily obtain from user VMs. It is revealed that
35% of system administrators have accessed sensitive information
without authorization [6].

Untrusted cloud operators can easily eavesdrop on and tam-
per with I/O data for out-of-band remote management via virtual
devices of user VMs. Consequently, for example, login passwords
typed by users may leak and, after login with the stolen password,
illegal commands may be executed in the user VM. To hide the ex-
ecution of such illegal commands, the video screen of the user VM

S. Futagami et al.

can be replaced with a normal one. To prevent such attacks, cloud
operators should be granted only the least privilege. However, it is
often difficult to do that because legitimate operations can be also
used for malicious purposes. If cloud operators can manage virtual
devices, they can also compromise them.

To prevent such attacks, several systems trusting the hypervisor
have been proposed. For example, FBCrypt [7] and SCCrypt [13]
encrypt input data in VNC and SSH clients, respectively. When
a user VM attempts to obtain the data from a virtual device, the
hypervisor decrypts it transparently. When a user VM attempts to
write output data to a virtual device, the hypervisor encrypts it and
the remote client decrypts it. FBCrypt can also detect tampering
with input data using message authentication code. As such, cloud
operators cannot eavesdrop on or tamper with the I/O data because
virtual devices process only encrypted data. Note that using the
trusted hypervisor can also prevent the leakage of such I/O data
from user VMs by encrypting their memory [14, 15, 25]. Although
user VMs have to handle decrypted input data and unencrypted
output data, cloud operators cannot eavesdrop on such data inside
user VMs even by using VM introspection [8] outside the VMs.

Unlike these systems, SSC [5] securely encrypts I/O data in
users’ special VMs instead of the hypervisor. The VMs are called
service domains (SDs) and are protected by the trusted hypervisor.
It should be noted that the targets are not virtual devices used for
out-of-band remote management but virtual disks. For example,
encrypted data is read from a physical device by a virtual device
and is decrypted by an SD. Data written to a physical device is
first encrypted by an SD. Since SSC isolates user VMs from cloud
operators by using the trusted hypervisor, all the cloud operators
cannot access I/O data inside user VMs.

As such, the trusted computing base (TCB) of these systems in-
cludes the hypervisor at least. In other words, it is assumed that
untrusted cloud operators in the virtualized system can compro-
mise privileged components including virtual devices, except for
the hypervisor. In addition, these systems depend on cryptography
to prevent information leakage from virtual devices and tampering
with their I/O data. Therefore, the following four issues arise.

Attacks against the hypervisor inside the virtualized sys-
tem. To enable privileged components to run on top of the hyper-
visor, the hypervisor provides rich management interfaces. This
means that the hypervisor is tightly coupled with privileged com-
ponents, as illustrated in Fig. 2. If untrusted cloud operators abuse
such interfaces, the trusted hypervisor can be easily compromised
if it has vulnerabilities [19, 23]. Consequently, encrypted I/O data
can be decrypted by using cryptographic keys stored in the hy-
pervisor. Illegal data can be also injected into out-of-band remote
management.

Management of the virtualized system. It has to be guaran-
teed that untrusted cloud operators cannot manage the trusted hy-
pervisor. If the hypervisor could be freely replaced with malicious
one, it would be no longer trusted. However, it is unrealistic to
manage the hypervisor and the rest of the virtualized system inde-
pendently. Since the hypervisor is tightly coupled with privileged
components as described above, the virtualized system has to be
updated as a whole. If only privileged components were updated,
the integrity of the virtualized system would not be maintained.

VSBypass

operator
virtual user
g attack devices VM

\ A

| hypervisor

Figure 2: The attack surface in the system using the trusted
hypervisor.

This means that cloud operators cannot maintain the virtualized
system at all as a result.

Feasibility of trusting the hypervisor. To trust only the hy-
pervisor, it is necessary that the hypervisor is clearly separated
from the other privileged components. Examples of such virtual-
ized systems are Xen, vSphere, and Hyper-V, which use bare-metal
hypervisors running directly on top of hardware. In contrast, since
KVM runs the hypervisor inside the host operating system, it is
difficult to separate only the hypervisor. Consequently, the entire
host operating system has to be trusted. However, the operating
system is much more complex than the hypervisor and therefore
the TCB becomes much larger.

Cryptography management. Cryptographic keys are neces-
sary for encryption, but it is not easy to securely manage keys
in practice. If the key management system has vulnerabilities, en-
cryption would be useless. In addition, remote management clients
need to be modified to provide an encryption mechanism of input
data and a decryption mechanism of output data. To preserve the
integrity of I/O data, they need a mechanism for calculating the
message authentication code of I/O data. Since new clients have to
be developed to support these mechanisms, users cannot use the
existing clients including commercial products.

3 VSBYPASS
3.1 Assumptions and Threat Model

We assume that cloud operators inside the virtualized system may
be untrusted. It is difficult to trust all of the cloud operators in
large-scale IaaS clouds. Unlike previous work [5, 7, 13], cloud oper-
ators have full control over the entire virtualized system, including
not only virtual devices but also the hypervisor. They can compro-
mise any components inside the virtualized system and eavesdrop
on and tamper with I/O data of out-of-band remote management
for user VMs.

In contrast, we assume that cloud providers are trusted. Since
a bad reputation is critical for cloud providers, this assumption
is widely accepted [5, 12, 14, 17, 22, 31]. Cloud providers main-
tain hardware and restrict physical access by untrusted cloud op-
erators. They also maintain the TCB for VSBypass, whose details
are described in the next subsection. For these purposes, cloud
providers should have a few trusted system administrators. We

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

cloud VM

virtualized system

SSH/VNC shadow

client virtual user
<

devices VM

"] devices
A

cloud hypervisor

Figure 3: The system architecture of VSBypass. Shaded com-
ponents are the TCB.

assume that such administrators do not perform malicious activ-
ities because they are proud of their jobs and are rewarded ade-
quately. A few trusted administrators and many untrusted oper-
ators form an administrative hierarchy, which is also adopted in
many systems, e.g., SYSDBA and SYSOPER in Oracle Database [18]
and eight types of administrators in IBM Domino [9].

In this paper, we do not consider direct attacks against user
VMs to eavesdrop on or tamper with I/O data of out-of-band re-
mote management. Such attacks can be prevented by previous
work [31], which is discussed in the next subsection. Denial-of-
service attacks against out-of-band remote management is out of
the scope of this paper because they do not cause information leak-
age or tampering.

3.2 Architecture

VSBypass achieves secure out-of-band remote management out-
side the virtualized system using a mechanism called transparent
passthrough. VSBypass runs the entire virtualized system in an
outer VM using nested virtualization [4]. It intercepts I/O requests
of user VMs and securely processes them in shadow devices run-
ning outside the virtualized system. This enables users to perform
out-of-band remote management without relying on the virtual-
ized system. Therefore, I/O data of out-of-band remote manage-
ment does not leak to untrusted cloud operators inside the virtu-
alized system. Also, cloud operators cannot tamper with the I/O
data in the virtualized system.

Fig. 3 illustrates the system architecture of VSBypass. The vir-
tualized system including user VMs runs in an outer VM called the
cloud VM. Shadow devices run outside the cloud VM and process
1/O requests of user VMs like virtual devices inside the virtualized
system. Users can access shadow devices, instead of virtual de-
vices, for secure out-of-band remote management. The cloud VM
and shadow devices run on top of the hypervisor called the cloud
hypervisor. To distinguish two hypervisors, we call the original hy-
pervisor inside the virtualized system the guest hypervisor.

The TCB for VSBypass is the cloud hypervisor and shadow de-
vices. These components are remotely attested with TPM by re-
mote users or the trusted third party. The TCB and the cloud VM
are maintained only by trusted system administrators in cloud
providers and cannot be accessed by any cloud operators. Since
the entire virtualized system is isolated from the TCB by the cloud

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

cloud VM
" virtualized
operator system
shadow
devices
attack

i

cloud hypervisor

Figure 4: The attack surface in VSBypass.

VM more strictly in VSBypass, it is easier to grant the least priv-
ilege to cloud operators. To prevent attacks against user VMs, we
can use CloudVisor [31], which also uses nested virtualization. In
CloudVisor, the cloud hypervisor called the security monitor re-
stricts access to user VMs by cloud operators. In this paper, we
focus on attacks against virtual devices and the guest hypervisor
in the virtualized system, the integration of VSBypass and Cloud-
Visor is our future work.

In VSBypass, out-of-band remote management is performed as
follows. For input, a remote client sends and writes input data to a
shadow device via SSH or VNC. When the user VM attempts to ac-
cess a virtual device to obtain that input data, the cloud hypervisor
directly intercepts that access without intervention by the guest
hypervisor. It obtains input data from the corresponding shadow
device and returns that data to the user VM. For output, when a
user VM attempts to write output data to a virtual device, the cloud
hypervisor directly intercepts that access. Then it passes that data
to the corresponding shadow device. A remote client receives the
output data from the shadow device via SSH or VNC.

VSBypass can resolve the four issues in out-of-band remote
management, which are described in Section 2.

Smaller attack surface to the TCB. It is more difficult for un-
trusted cloud operators to attack the TCB, i.e., the cloud hypervisor
and shadow devices outside the cloud VM. This is because the en-
tire virtualized system is confined in the cloud VM, as illustrated
in Fig. 4. The attack surface from the cloud VM to the cloud hy-
pervisor is much smaller than that from privileged components
to the guest hypervisor. The cloud hypervisor provides only the
hardware interface to the cloud VM, which is the boundary of vir-
tualization.

Management of the entire virtualized system. Cloud op-
erators can manage the entire virtualized system including the
guest hypervisor because VSBypass does not need to trust the
guest hypervisor inside the virtualized system. They can update
not only privileged components but also the guest hypervisor al-
though the validity of their management has to be checked by
trusted cloud providers. Consequently, VSBypass enables cloud
providers to clearly separate the responsibility of system manage-
ment at the boundary of virtualization.

Support for various virtualized systems. Any virtualized
systems are available in VSBypass because the entire virtualized
system is virtualized using the cloud VM. Specifically, VSBypass

S. Futagami et al.

can easily support not only bare-metal hypervisors but also hosted
hypervisors. To perform out-of-band remote management, VSBy-
pass does basically not depend on the internals of the virtualized
system.

No cryptography. Cryptographic key management is not nec-
essary because VSBypass does not rely on encryption to prevent
information leakage and tampering. VSBypass does not need to
encrypt I/O data of out-of-band remote management or calculate
message authentication code of them. Therefore, users can use the
existing remote management software.

In terms of performance, the approach of using nested virtu-
alization is feasible because it is reported that the overhead is 6-
8% for common workloads [4]. Special-purpose cloud hypervisors
as used in CloudVisor [31] and TinyChecker [26] can improve
the performance of nested virtualization more. Recently, hardware
support for nested virtualization has been also added. For example,
Inte] VMCS Shadowing [10] can eliminate VM exits due to VM-
READ and VMWRITE instructions for accessing virtual machine
control structure (VMCS). The ARMv8.3 architecture [1] supports
nested virtualization and its extension called NEVE has been pro-
posed for coalescing and deferring traps [16].

4 IMPLEMENTATION

We have implemented VSBypass in Xen 4.8.0 [2]. We run the hy-
pervisor where VSBypass is implemented as the cloud hypervisor
and the unmodified hypervisor as the guest hypervisor in the cloud
VM. VSBypass currently supports Xen and KVM as virtualized sys-
tems. We run shadow devices as QEMU [3] in the management VM
called Dom0. VSBypass supports virtual serial devices, keyboards,
mice, and video cards as shadow devices.

4.1 Proxy VM

VSBypass runs a VM called a proxy VM per user VM on top of the
cloud hypervisor, as illustrated in Fig. 5. A proxy VM is a VM used
only for providing virtual devices as shadow devices to a user VM.
Users can transparently perform secure out-of-band remote man-
agement of a user VM by specifying the ID of the corresponding
proxy VM and accessing its virtual devices. VSBypass assigns the
same number of virtual CPUs (vCPUs) as the cloud VM to each
proxy VM. The vCPUs of a proxy VM are mapped to those of the
cloud VM one-to-one to easily redirect I/O requests, as described
in Section 4.2. In contrast, VSBypass assigns minimum amounts of
memory and disk used only for the boot of a proxy VM and does
not assign NICs.

Using proxy VMs is not so costly for IaaS providers. After a
proxy VM is booted, it is paused except for virtual devices used
as shadow devices. Since any vCPUs are not scheduled, the proxy
VM does not consume CPU time at all after the boot. Similarly, the
bandwidth of memory and disk is not consumed at all. The vir-
tual devices of the proxy VM consume CPU time, memory, and the
network bandwidth, whereas those of the corresponding user VM
are not used instead because they are bypassed by VSBypass. The
management cost of these resources increases a bit, but that can
be justified by the increase in security.

VSBypass
cloud VM
user user
had VM 1 VM 2
. « .| shadow | _| proxy |__ N §
client 2 11 jevices 2 w2 |7 : :
)

1 EPT1| |EPT2
H T
shadow proxy i guest :
i «—> I ' hypervisor |
client 1 devices 1 VM 1 ' vP E
, i :
b e e |

R i,

cloud hypervisor

Figure 5: Shadow devices provided by a proxy VM for each
user VM. Shaded components are added to the traditional
virtualized system.

To map a user VM to a proxy VM in the cloud hypervisor, VS-
Bypass identifies a user VM using the extended page tables (EPT),
which are created for each user VM. This is because a user VM is an
abstraction inside the virtualized system and the cloud hypervisor
cannot directly identify a user VM. VSBypass obtains the EPT ad-
dress from the VMCS of a user VM when it intercepts I/O requests
in the user VM. If the address is a newly detected one, VSBypass
associates it with a new proxy VM. In the current implementation,
VSBypass creates several proxy VMs in advance and assigns one
of them when detecting a new EPT address.

A user can securely specify his user VM using a VM tag [17]
and obtain the ID of the corresponding proxy VM from the cloud
hypervisor. A user VM registers a unique VM tag to the cloud hy-
pervisor in advance using an ultracall [17]. An ultracall is a mech-
anism for directly invoking the cloud hypervisor from a user VM
inside the virtualized system. It is achieved by executing the vm-
call instruction to cause a VM exit to the cloud hypervisor. Then
the cloud hypervisor associates the VM tag with the EPT address
of the user VM.

4.2 1/0 Interception

Using nested virtualization, I/O requests of a user VM are usually
processed as illustrated in Fig. 6. When a user VM executes an I/O
instruction, a VM exit occurs from the cloud VM running the user
VM to the cloud hypervisor, not to the guest hypervisor. The cloud
hypervisor performs a VM entry into the cloud VM to emulate that
instruction in the guest hypervisor of the cloud VM. The guest
hypervisor communicates with a virtual device in the cloud VM
to process I/O. After that, when the guest hypervisor attempts to
perform a VM entry into the user VM, a VM exit occurs to the cloud
hypervisor. Finally, the cloud hypervisor performs a VM entry into
the user VM.

In contrast, VSBypass does not forward I/O requests of a user
VM to the guest hypervisor but completely process them outside
the cloud VM, as illustrated in Fig. 3. When a user VM executes
an I/O instruction, a VM exit occurs to the cloud hypervisor as
usual. If that I/O request is for port-mapped I/O, the cloud hyper-
visor examines the port address used in the I/O instruction that

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

cloud VM

virtual user VM exit

devices VM

t

| guest hypervisor
A

A

client

VM entry
| cloud hypervisor |<—

Figure 6: Traditional I/O processing in nested virtualization.

Table 1: Intercepted port addresses.

device port addresses

serial device 3F8-3FF

keyboard/mouse 60, 64

video card 1CE-1CF, 3B0-3BB, 3C0-3DF

has caused a VM exit. If the address is used by virtual serial de-
vices, keyboards, mice, or video cards, the cloud hypervisor emu-
lates that instruction. Table 1 lists such intercepted port addresses.
If that I/O request is for memory-mapped I/O, the cloud hypervi-
sor examines the memory address that has caused a VM exit by
EPT violation. If the address is used by virtual video cards, the
cloud hypervisor emulates that instruction. Such intercepted mem-
ory addresses are A@@@0-BFFFF, which is used for accessing video
memory (VRAM). Otherwise, the cloud hypervisor performs a VM
entry into the cloud VM as usual.

The cloud hypervisor redirects the intercepted I/O request to
the corresponding shadow device, as in Fig. 7. It first obtains the
EPT address from the VMCS of the user VM that has caused a VM
exit and finds the proxy VM corresponding to the user VM. Then it
identifies the proxy VM’s vCPU corresponding to the cloud VM’s
vCPU used for I/O of the user VM. One of the vCPUs in the cloud
VM is used to execute an I/O instruction in the user VM. Next,
the cloud hypervisor copies the request in the I/O request buffer
for the cloud VM’s vCPU to the buffer for the proxy VM’s. Finally,
it blocks the cloud VM’s vCPU and sends an event to the target
shadow device.

VSBypass returns the result of the I/O processing to the user VM
as follows. When the shadow device completes I/O processing, it
attempts to send an event to the proxy VM’s vCPU as usual. At this
time, the cloud hypervisor intercepts that event and redirects it to
the corresponding cloud VM’s vCPU. First, it finds the cloud VM’s
vCPU and copies the result and state in the I/O request buffer for
the proxy VM’s vCPU to the buffer for the cloud VM’s. Finally, it
unblocks the cloud VM’s vCPU and performs a VM entry into the
user VM. As a result, the user VM’s vCPU receives the result and
continues to run from the next instruction of the intercepted I/O
instruction.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

proxy VM cloud VM
user VM VM
PR exit
shadow
device 7
1
OO0O@O||0O0@O
L \

0 L

cloud hypervisor 1/0 request buffer

Figure 7: I/O processing in VSBypass.

4.3 Redirection of Virtual Interrupts

Virtual interrupts caused in shadow devices have to be redirected
to user VMs. However, it is difficult to do that without relying on
the guest hypervisor inside the virtualized system. If the interrupt
mechanism is para-virtualized, only the guest hypervisor can send
virtual interrupts to user VMs. Even if not, the virtual interrupt
controller is often implemented in the guest hypervisor. To avoid
relying on the virtualized system as much as possible, it is possible
to communicate between a shadow device and an interrupt server
running in the virtualized system and redirect virtual interrupts
via the guest hypervisor. However, this method suffers from large
overhead of the virtual network in nested virtualization. Although
Xen-Blanket [30] reduces this overhead using the Blanket driver,
it largely relies on the virtualized system because that driver has
to be implemented in the operating system of Dom0 and a new
hypercall has to be added to the guest hypervisor.

Therefore, VSBypass shares a ring buffer between a shadow de-
vice and the interrupt server using an ultracall, as illustrated in
Fig. 8. Since an ultracall enables the interrupt server in the virtual-
ized system to directly invoke the cloud hypervisor, it is unneces-
sary to modify the guest hypervisor for that. The cloud hypervisor
sends information on the ring buffer passed by the ultracall to a
shadow device and makes the interrupt server and the shadow de-
vice share the ring buffer. To prevent the memory page used for the
ring buffer from being swapped out to a disk, the interrupt server
pins allocated memory by issuing the mlock system call. For the
redirection of virtual interrupts, the shadow device writes an IRQ
and an assertion level of a virtual interrupt to the ring buffer. For
example, the numbers of ISA IRQ are 4 for serial devices and 1 for
keyboards.

To enable a shadow device to handle the memory address of the
ring buffer passed from the interrupt server, the cloud hypervisor
translates the virtual address of the ring buffer into a physical ad-
dress. For this address translation, it obtains the value of the CR3
register from cloud VM’s vCPU. Since the interrupt server runs
in Dom0, whose vCPUs are para-virtualized, the register contains
the address of the page directory for the interrupt server. Then the
cloud hypervisor walks the page tables from the page directory
and obtains the physical address of the ring buffer. Since the mem-
ory is also para-virtualized in Dom0, the obtained physical address

S. Futagami et al.

cloud VM
virtual interrupt server
SR interrupt _ ring user
device - buffer VM
A ¢ hypercall T
sharingt ultracall | guest hypervisor |
reques
v

cloud hypervisor |

Figure 8: The delivery of virtual interrupts using shared
memory.

is one of the cloud VM. The address is sent to the specified shadow
device with a pseudo I/O request. The shadow device can map the
memory page of the ring buffer by specifying the physical address
to the hypercall.

To obtain information on virtual interrupts written by the
shadow device, the interrupt server periodically polls the ring
buffer. Using polling, it does not rely on the notification mecha-
nism of virtual interrupts, which needs to modify the guest hyper-
visor and/or the operating system in Dom0. When the interrupt
server detects the write of virtual interrupts, it reads that infor-
mation and sends a virtual interrupt to the user VM via the guest
hypervisor by issuing a hypercall. Since the redirection of virtual
interrupts depends on the interrupt server and the guest hyper-
visor in an untrusted virtualized system, virtual interrupts may
not be correctly delivered to user VMs. However, confidentiality
is maintained because virtual interrupts include no sensitive in-
formation.

When KVM [21] is used as a virtualized system, the interrupt
server is embedded into QEMU running on top of the host operat-
ing system. This is because only QEMU can invoke the guest hy-
pervisor for injecting virtual interrupts into user VMs. Note that it
is not necessary to modify the host operating system and the guest
hypervisor in the virtualized system.

4.4 Sharing VRAM

The VRAM for a virtual video card in Xen is allocated as part of
the memory of a user VM. Its physical address is fixed to F1000000
and the size is 16 MB. A user VM can access the VRAM through
the memory region of A@@@@-BFFFF as traditional. This memory-
mapped I/O causes a VM exit by EPT violation to the hypervisor.
The hypervisor invokes the virtual video card and the device can
handle the I/O. In VSBypass, a VM exit occurs directly to the cloud
hypervisor, as described in Section 4.2 and the shadow video card
can handle the I/O.

Unfortunately, the user VM not only performs such memory-
mapped I/O but also accesses the VRAM directly. Since such di-
rect access of the VRAM does not cause a VM exit by default, the
shadow video card cannot handle the I/O. If the cloud hypervi-
sor intercepts all accesses to the VRAM, that imposes too large
overhead. Traditionally, a virtual video card obtains data from the

VSBypass
proxy VM cloud VM
user VM
shadow |_ share (VF(AM)
devices
A
dirty | guest hypervisor |
bitmap

cloud hypervisor |

Figure 9: Sharing the VRAM of a user VM with a proxy VM.

VRAM if necessary, e.g., when it sends the screen data of a user VM
to a VNC client. In addition, the shadow video card needs to access
the VRAM after memory-mapped I/O is trapped. Therefore, a vir-
tual video card has to be largely modified to develop the shadow
one because it is more complicated to access the memory of a user
VM from a shadow video card. Like the other shadow devices, it is
desirable to reuse the code of existing virtual devices as much as
possible.

For the ease of developing a shadow video card, a proxy VM
shares VRAM with a user VM, as illustrated in Fig. 9. Using the
shared VRAM, a shadow video card can obtain data in the VRAM
of a user VM from the corresponding proxy VM as if the proxy VM
were the user VM. To enable the VRAM of a user VM to be shared,
the cloud hypervisor records a list of memory pages used for the
VRAM at the first memory-mapped I/O by the user VM. At this
time, it translates physical addresses of the memory pages in the
user VM into those in the cloud VM using EPT so that the VRAM
can be accessed by a shadow video card. After that, a shadow
video card issues a new hypercall for obtaining the page list of
the VRAM. Then it maps these pages and replaces the VRAM of
the proxy VM with it. Note that untrusted cloud operators cannot
access the VRAM by the memory protection of CloudVisor [31].

A shadow video card tracks updates of the shared VRAM by
a user VM to detect updated screen areas. Traditionally, the hy-
pervisor write-protects the VRAM pages of a user VM in EPT and
records updated pages in a dirty bitmap. Then, a virtual video card
periodically obtains the dirty bitmap from the hypervisor. In VSBy-
pass, instead of the guest hypervisor, the cloud hypervisor write-
protects the VRAM pages of a user VM in the EPT of the cloud VM
and manages a dirty bitmap for the user VM. For this purpose, the
cloud hypervisor provides a new hypercall to shadow video cards.

4.5 VM Migration

Using shadow devices makes it difficult to migrate a user VM. Since
the migration manager in the virtualized system transfers the state
of a user VM, it cannot obtain or transfer the state of shadow de-
vices. If the state of shadow devices is lost at the destination host,
remote users may not be able to connect to a migrated VM after
VM migration. One possible solution is to migrate a user VM with
the corresponding proxy VM by using a co-migration technique of
VMs [11]. However, it is difficult to apply this technique because

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

proxy VMs are out of control of the migration manager in virtual-
ized system. It is risky to give a privilege for migrating proxy VMs
to that migration manager.

Another possible solution is that the migration manager obtains
the state of shadow devices running outside the virtualized system.
To achieve this, it is necessary to develop a secure communication
channel to shadow devices because this interface can become a
new attack surface. This is our future work.

5 EXPERIMENTS

We conducted experiments to show the effectiveness of VSBypass.
First, we attempted to eavesdrop on I/O for out-of-band remote
management. Second, we measured the response time of input and
the throughput of output in out-of-band remote management. For
comparison, we used the traditional cloud without nested virtual-
ization (Cloud) and the traditional virtual cloud with nested virtu-
alization (vCloud).

We used a PC with an Intel Xeon E3-1290 v2 processor and 8 GB
of memory. We assigned two or three vCPUs and 4 GB of memory
to the cloud VM and two or three vCPUs and 1 GB of memory to
a user VM in the cloud VM. The cloud VM ran Xen 4.4.0 as a vir-
tualized system and the user VM and Dom0 ran Linux 3.13. As the
cloud hypervisor, we ran modified Xen 4.8.0. To run a remote man-
agement client, we used a PC with an Intel Xeon E3-1270 processor
and 8 GB of memory. These PCs were connected using Gigabit Eth-
ernet. When using a virtual serial console, we used the OpenSSH
6.0p1 client. When using GUI remote access, we used TightVNC
Java Viewer 2.0.95 [28].

5.1 Eavesdropping on I/O data

First, we attempted to eavesdrop on I/O data in a virtual serial de-
vice and the guest hypervisor of the virtualized system. To record
a log in the device, we modified the device implemented in QEMU
running inside the virtualized system. When the device processed
access to I/O ports, it analyzed I/O access and recorded input and
output characters in a log file. In addition, we modified the handler
for processing VM exits caused by the execution of I/O instructions
in the guest hypervisor. The modified handler analyzed I/O access
and wrote input and output characters to a local console. Then, we
connected to the SSH server and accessed a shadow or virtual se-
rial device. In Cloud and vCloud, we could eavesdrop on all of the
input and output characters. For VSBypass, in contrast, we could
not obtain any I/O data.

Next, we attempted to eavesdrop on I/O data in virtual key-
board and video devices of the virtualized system. For keyboard
inputs, we modified the keyboard device in QEMU and recorded
input characters in a log file when the device processed input data.
To record inputs in human-readable characters, we handled shift
keys correctly and translated scancodes generated by a keyboard
into X11 keysyms. For video outputs, we modified the video device
in QEMU and recorded the contents of VRAM to a log file periodi-
cally. Then, we connected to the VNC server and accessed shadow
or virtual keyboard and video devices. As a result, we could ob-
tain all the input characters and capture the screen of the user VM
in Cloud and vCloud, but we could not in VSBypass. The screens
captured in three environments are shown in Fig. 10.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

(]
|
B
2]
B
-]
]
a
]
(]

[N

(a) Cloud and vCloud (b) VSBypass

Figure 10: The screens captured from virtual video devices.

7 60
[|EE Cloud) [| Cloud 7
6~ | mm VSBypass N 50| |HEE VSBypass i
[|l vCloud 1 & L Il vCloud i
@ 5+ = £
3 ® 40
g4 £
° = 30
23 32
9 (=]
2 320
L2 =

-
o

o
o

2 vCPUs

3 VvCPUs

2 vCPUs 3 VvCPUs
(b) Throughput

(a) Response time

Figure 11: The performance of a virtual serial console.

5.2 Performance of a Virtual Serial Console

5.2.1 Response Time. We measured the response time of a virtual
serial console using SSH. The response time was from when the
SSH client sent a console input until it received a console output
caused by its remote echo in the user VM. Fig. 11(a) shows the re-
sponse time when we assigned the different number of vCPUs to
the cloud VM. The response time in VSBypass was 1.3 ms longer
than that in Cloud. This is because it took a longer time to process
input data in the user VM due to the overhead of nested virtualiza-
tion. The user VM had to process a received character and echo it
back. In contrast, VSBypass was 1.4 ms shorter than vCloud. The
virtual serial device inside the virtualized system suffered from the
overhead of nested virtualization, while the shadow serial device
outside it did not. The response time in VSBypass was not affected
by the number of vCPUs although that in Cloud was 6% slower in
three vCPUs.

5.2.2 Throughput. We measured the throughput of a virtual se-
rial console using SSH. We printed the contents of a text file us-
ing the cat command in the user VM and measured the time from
when the command was executed until the output was completed.
Fig. 11(b) shows the throughput. Surprisingly, the throughput in
VSBypass was almost the same as that in Cloud although the re-
sponse time was slower. In this experiment, the shadow or virtual
serial device processed a large amount of output data and domi-
nated the throughput. Since the shadow serial device did not suf-
fer from the overhead of nested virtualization in VSBypass, VSBy-
pass could achieve high throughput. In contrast, the throughput
in vCloud was 87% lower due to that overhead in the virtual serial

S. Futagami et al.

(S

IS
N
o

nN
n
o

response time (ms)
w
throughput (chars/ms)
W
o

o

o
o

2 vCPUs 3VvCPUs 2 vCPUs
(b) Throughput

3VvCPUs

(a) Response time

Figure 12: The impact of the polling interval.

device inside the virtualized system. When the number of vCPUs
of the cloud VM increased, the throughput was degraded by 3.5%
in VSBypass unexpectedly.

5.2.3 Impact of the Polling Interval. We examined the impact of
the polling interval on the performance. At the specified polling
interval, the redirection mechanism of virtual interrupts checked a
ring buffer in shared memory. We measured the response time and
throughput of a virtual serial console when we changed the polling
interval between 1 and 1000 ps. As shown in Fig. 12, the response
time was almost constant for the polling interval between 1 and
100 ps. However, it became clearly longer at the polling interval
of 1000 ps, especially for the cloud VM with two vCPUs. This is
because it took a longer time to deliver a virtual interrupt to the
user VM after a console input was received by the shadow serial
device. In contrast, the throughput was almost not affected by the
polling interval. Therefore, we adopted the polling interval of 100
s to reduce the polling overhead as much as possible.

5.24 Performance of Interrupt Redirection. We compared the per-
formance of the redirection mechanism of virtual interrupts. For
this purpose, we have developed a variant of VSBypass, which redi-
rected virtual interrupts using the virtual network, as described in
Section 4.3, instead of using shared memory. Fig. 13 shows the re-
sponse time and throughput of a virtual serial console using SSH
when we used shared memory or the virtual network. Using the
virtual network, the response time was only 2.0 ms longer due to
the extra overhead. However, the throughput degradation was 40-
51% because the virtual network device inside the virtualized sys-
tem suffered from the overhead of nested virtualization. In this ex-
periment, the number of redirected virtual interrupts was two for
printing each character. Increasing the number of vCPUs slightly
improved the throughput in VSBypass.

5.25 Using KVM as a Virtualized System. We examined the per-
formance when we used KVM as a virtualized system. In this ex-
periment, we used a PC with an Intel E3-1226 v3 processor and 8
GB of memory. We assigned two vCPUs and 3 GB of memory to
the cloud VM and two vCPUs and 1 GB of memory to a user VM.
The cloud VM ran Linux 4.2 and QEMU-KVM 2.4.1, and the user
VM ran Linux 4.2.

-
o

VSBypass
8 50
7 | [mmm shared memory] | shared memory]
L | virtual network] sl Il virtual network i
28 12
! 1 @
o> 7 =30
£ 0 1
o T — =
£l 1 £
g3 1%
I 1 8
oL] £

3VvCPUs 2 vCPUs

(b) Throughput

2 vCPUs 3VvCPUs

(a) Response time

Figure 13: The comparison to network-based interrupts.

400
10~ [Cloud : 350 [HE Cloud]
| | EEM VSBypass | | | mEm VSBypass]
_ I vCloud % 300 | MM vCloud -
% 81 B £ L 4
E | 1l @
= 2 250 —
E 6 4 &_ 1 1
- =200+ 3
S 4L . = 150 — 3
7] >
o < [1
=7 1 £ 100 T
2 = - F 4
| | 50 -
0 0
a) Response time rou, u
Resp ti b) Throughput

Figure 14: The performance of a virtual serial console for
KVM.

First, we measured the response time and the throughput. As
shown in Fig.14(a), the trend of the response time was similar to
that for Xen in Fig. 11(a). However, the performance difference was
smaller, while the variance was larger. In contrast, the trend of
the throughput was largely different, as shown in Fig. 14(b). The
throughput in Cloud was much better, even compared with that for
Xen in Fig. 11(b). This is probably because there is some difference
in a virtual serial console between KVM and Xen. In addition, the
throughput in VSBypass was lower than that in vCloud and was
the worst. One of the reasons is that our redirection mechanism of
virtual interrupts is unstable for KVM due to too frequent inter-
rupts. Fixing this problem is our future work.

Next, we compared the performance of the redirection mecha-
nism of virtual interrupts. As shown in Fig. 15, it is shown that the
performance difference was relatively small. Using shared mem-
ory, the response time became 0.9 seconds shorter, but the through-
put increased only by 13%. One possible reason is that the vir-
tual network in KVM is faster than in Xen, but the biggest reason
would be the implementation issue in our redirection mechanism
for KVM.

5.3 Performance of GUI Remote Access

5.3.1 Response Time. We measured the response time of a key-
board input in out-of-band GUI remote access using VNC. When

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

10 35
- |mmm shared memory 1 30; I shared memory]
8l I virtual network | | MEE virtual network |
‘@
@ | | £ 25 -
E % | l
o 6 — I
£ 5 20— =
o [1 5 T]
@ |- -
S5 4 E % 15
Q = 4
2 3
o T 1 =10 -
2 4 T 1
L 4 5 [7
0 0

(a) Response time (b) Throughput

Figure 15: The comparison to network-based interrupts for
KVM.

20 100
| (HH Cloud] - | Cloud R
Il VSBypass Il VSBypass
15 [vCloud | 801" | mm vCloud 7

fo2]
o

N
o

response time (ms)
=
response time (ms)

(&
n
o

2 vCPUs

3 VvCPUs

2 vCPUs
(b) Graphic mode

3 vCPUs

(a) Text mode

Figure 16: The response time of GUI remote access.

a user pressed a key, the VNC client first sent the keyboard input
to the user VM via the VNC server and a shadow or virtual key-
board device. Then, the input was processed in the user VM and
the input character was displayed in the text console or GUI ter-
minal, depending on the screen mode. Finally, the VNC server sent
the updated screen data in VRAM to the VNC client. The response
time was the time from when the VNC client received a keyboard
input until it received updated screen data from the server.

Fig. 16(a) shows the response time in the text and graphic
modes. When we used the text mode, the response time in VS-
Bypass was 1.1 ms longer than Cloud for the cloud VM with three
vCPUs. This result is similar to that for a virtual serial console in
Fig. 11(a). However, the response time was 0.5 ms shorter for the
cloud VM with two vCPUs. This is probably due to the complex im-
plementation of screen update using a timer in VNC. In contrast,
when we used the graphic mode, the response time in VSBypass
was clearly longer and was almost the same as that in vCloud. This
is because the processing overhead in the user VM dominated the
response time. When we increased the number of vCPUs, the re-
sponse time decreased in the text mode but slightly increased in
the graphic mode.

5.3.2 Screen Update Time. We measured the update time of the
screen data. In VNG, after the VNC client sent a request for screen
update, the VNC server returned updated screen data if the screen

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

=]

90
g0 |HH Cloud -
- |mEm VSBypass E
70~ M vCloud T
E 60 r i
%]]
o 40 B
© 4

2 vCPUs

3 VvCPUs

Figure 17: The screen update time of GUI remote access.

was updated. The update time was the time from when the VNC
client sent the request until it received updated screen data. To
always update the screen of the user VM, we drew a rectangle of
300x600 with random colors every second in the user VM. Fig. 17
shows the screen update time in the graphic mode. The update
time in VSBypass was 23 ms longer than Cloud. Like in the above
experiment, the processing in the user VM became a bottleneck in
VSBypass. Increasing the number of vCPUs slightly improved the
performance.

6 RELATED WORK

Device passthrough is a mechanism for directly accessing physi-
cal devices from VMs. This mechanism is used to reduce the over-
head of device virtualization and improve I/O performance of VMs.
Passthrough is available for various devices such as PCI, VGA,
GPU, HDD, and NIC. Since transparent passthrough in VSBypass
is used with nested virtualization, it has two advantages over tradi-
tional one. First, it enables device passthrough without configuring
user VMs. Second, it can make all user VMs access the same type
of virtual devices using passthrough. This is because the targets
of passthrough are not the limited number of physical devices but
unlimited virtual devices.

BitVisor [24] provides a mechanism called para-passthrough
and the hypervisor can intercept part of device access in a VM only
when necessary. Using this mechanism, BitVisor enables security
features such as disk and network encryption. However, the hy-
pervisor has to be trusted to guarantee the security. Transparent
passthrough in VSBypass can add security feature in the cloud hy-
pervisor without relying on the guest hypervisor in the virtualized
system.

CloudVisor [31] introduces the security monitor below the vir-
tualized system using nested virtualization and protects user VMs
in the virtualized system from untrusted cloud operators. Like VS-
Bypass, it assumes that untrusted cloud operators manage the hy-
pervisor and virtual devices in the virtualized system. It can restrict
access to VMs’ memory by cloud operators. In addition, it can pre-
vent information leakage and tampering by encrypting memory
and disk and checking the integrity. However, CloudVisor does not
protect virtual devices used for out-of-band remote management.
VSBypass is orthogonal to CloudVisor and can be integrated with
CloudVisor.

S. Futagami et al.

V-Met [17] enables intrusion detection systems (IDSes) to be of-
floaded outside the virtualized system using nested virtualization.
It prevents IDSes from being compromised by untrusted cloud op-
erators and allows even such cloud operators to manage the entire
virtualized system. It provides deep VM introspection to obtain the
internal state of user VMs. VSBypass uses several techniques pro-
posed for V-Met, e.g., an ultracall.

FBCrypt [7] and SCCrypt [13] prevent information leakage in
out-of-band remote management. I/O data is encrypted between
a remote management client and a trusted hypervisor. FBCrypt
also checks the integrity of input data using message authentica-
tion code. In VSBypass, such encryption and integrity check are
not necessary because I/O processing is not performed in virtual
devices of the untrusted virtualized system. These systems sup-
port para-virtualized I/O devices as well as fully virtualized ones
by modifying the virtualized system. VSBypass supports only fully
virtualized I/O devices to intercept I/O of user VMs without relying
on the virtualized system.

VMware vSphere [29] runs virtual devices and a VNC server in
the hypervisor. If the hypervisor is trusted, information leakage
from virtual devices is prevented. Otherwise, I/O data of out-of-
band remote management can leak. In VSBypass, the hypervisor
in the virtualized system does not process such data at all.

SSC [5] prevents information leakage from virtual devices using
service domains (SDs), which are provided by a trusted hypervi-
sor. Although virtual devices still run in the untrusted system-wide
management VM, SDs can securely encrypt I/O data of user VMs
and pass it to untrusted virtual devices. This mechanism can be ap-
plied to virtual devices used for out-of-band remote management,
but there are the same issues as FBCrypt and SCCrypt. Since SSC
establishes an SSL channel between a client and a trusted per-client
management VM, users may perform secure out-of-band remote
management if they can run appropriate virtual devices in SDs.
However, the TCB for SSC is relatively large. It includes the hy-
pervisor and the VM called domB for creating VMs as the system-
level TCB and per-client management VMs called Udom0 and SDs
as the client-level TCB.

7 CONCLUSION

This paper proposed VSBypass for enabling secure out-of-band re-
mote management outside the virtualized system using transpar-
ent passthrough. VSBypass runs the entire virtualized system in
the cloud VM using nested virtualization. It intercepts I/O requests
of user VMs outside the virtualized system and processes them in
shadow devices. Thus, untrusted cloud operators in the virtual-
ized system cannot eavesdrop on or tamper with I/O data of out-
of-band remote management. We have implemented transparent
passthrough for virtual serial devices, keyboards, mice, and video
cards. We confirmed that information leakage from virtual devices
was prevented and that the performance of a virtual serial con-
sole was comparable to that in the traditional out-of-band remote
management.

One of our future work is to dynamically create a proxy VM
when a user VM is booted. In the current implementation, we cre-
ate a proxy VM manually in advance. We need a mechanism for
synchronizing the creation of a proxy VM with the boot of a user

VSBypass

VM. Another direction is to support the migration of user VMs. In
the current implementation, after a user VM is migrated, the state
of shadow devices is not transferred to the destination. As a re-
sult, out-of-band remote management is not continued correctly.
We are currently developing a mechanism for securely saving and
loading the state of shadow devices from the migration tool inside
the virtualized system.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI Grant Num-
ber JP16K00101.

REFERENCES

(1]
(2]

=

[13]

[14]

[15

[16]

[17]

[18]

[19]

[20]
[21]
[22

[23]

[24]

ARM Ltd. 2017. ARM Architecture Reference Manual — ARMvS, for ARMvS-A
Architecture Profile.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, 1.
Pratt, and A. Warfield. 2003. Xen and the Art of Virtualization. In Proc. ACM
Symp. Operating Systems Principles. 164-177.

F. Bellard. [n. d.]. QEMU. https://www.qemu.org/.

M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gordon, A.
Liguori, O. Wasserman, and B.-A. Yassour. 2010. The Turtles Project: Design
and Implementation of Nested Virtualization. In Proc. USENIX Symp. Operating
Systems Design and Implementation. 423-436.

S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy. 2012. Self-service
Cloud Computing. In Proc. ACM Conf. Computer and Communications Security.
253-264.

CyberArk Software. 2009. Global IT Security Service.

T. Egawa, N. Nishimura, and K. Kourai. 2012. Dependable and Secure Remote
Management in IaaS Clouds. In Proc. IEEE Intl. Conf. Cloud Computing Technol-
ogy and Science. 411-418.

T. Garfinkel and M. Rosenblum. 2003. A Virtual Machine Introspection Based
Architecture for Intrusion Detection. In Proc. Network and Distributed Systems
Security Symp. 191-206.

IBM Corporation. 2018. IBM Domino 9.0.1 Social Edition Documen-
tation. https://www.ibm.com/support/knowledgecenter/en/SSKTMJ_9.0.1/
admin/conf_restrictingadministratoraccess_t.html.

Intel Corp. 2013. 4th Generation Intel Core vPro Processors with Intel VMCS
Shadowing.

S. Kawahara and K. Kourai. 2014. The Continuity of Out-of-band Remote Man-
agement across Virtual Machine Migration in Clouds. In Proceedings of the 7th
IEEE/ACM International Conference on Utility and Cloud Computing. 176-185.
K. Kourai and K. Juda. 2016. Secure Offloading of Legacy IDSes Using Remote
VM Introspection in Semi-trusted Clouds. In Proc. IEEE Int. Conf. Cloud Comput-
ing. 43-50.

K. Kourai and T. Kajiwara. 2015. Secure Out-of-band Remote Management Using
Encrypted Virtual Serial Consoles in IaaS Clouds. In Proc. IEEE Int. Conf. Trust,
Security and Privacy in Computing and Communications. 443-450.

C. Li, A. Raghunathan, and N. K. Jha. 2010. Secure Virtual Machine Execution
under an Untrusted Management OS. In Proc. IEEE Int. Conf. Cloud Computing.
172-179.

C.Li, A. Raghunathan, and N. K. Jha. 2012. A Trusted Virtual Machine in an Un-
trusted Management Environment. IEEE Trans. Services Computing 5, 4 (2012),
472-483.

J. T.Lim, C. Dall, S. Li, J. Nieh, and M. Zyngier. 2017. NEVE: Nested Virtualization
Extensions for ARM. In Proc. ACM Symp. Operating Systems Principles. 201-217.
S. Miyama and K. Kourai. 2017. Secure IDS Offloading with Nested Virtualiza-
tion and Deep VM Introspection. In Proc. European Symp. Research in Computer
Security, Part II. 305-323.

Oracle Corporation. 2018. Oracle Database 2 Day DBA.
//docs.oracle.com/en/database/oracle/oracle-database/18/admqs/
administering-user-accounts-and-security.html.

G. Pék, L. Buttyan, and B. Bencsath. 2013. A Survey of Security Issues in Hard-
ware Virtualization. Comput. Surveys 45, 3 (2013), 40:1-40:34.

PwC. 2014. US Cybercrime: Rising Risks, Reduced Readiness.

Red Hat, Inc. [n. d.]. Kernel Based Virtual Machine. http://www.linux-kvm.org/.
N. Santos, K. P. Gummadi, and R. Rodrigues. 2009. Towards Trusted Cloud Com-
puting. In Proc. USENIX Workshop on Hot Topics in Cloud Computing.

D. Sgandurra and E. Lupu. 2016. Evolution of Attacks, Threat Models, and So-
lutions for Virtualized Systems. Comput. Surveys 48, 3 (2016), 46:1-46:38.

T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hi-
rano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato.
2009. BitVisor: A Thin Hypervisor for Enforcing I/O Device Security. In Proc.
ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environments. 121-130.

https:

[25]

[26]

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

H. Tadokoro, K. Kourai, and S. Chiba. 2012. Preventing Information Leakage
from Virtual Machines’ Memory in IaaS Clouds. IPS} Online Trans. 5 (2012),
156-166.

C. Tan, Y. Xia, H. Chen, and B. Zang. 2012. TinyChecker: Transparent Protection
of VMs against Hypervisor Failures with Nested Virtualization. In Proc. IEEE/IFIP
Int. Workshop on Dependability of Clouds, Data Centers and Virtual Machine Tech-
nology.

TechSpot ~ News. 2010. Google Fired Employees for
Breaching ~ User Privacy. http://www.techspot.com/news/
40280- google-fired-employees-for-breaching-user-privacy.html.

TightVNC Group. [n. d.]. TightVNC. http://www.tightvnc.com/.

VMware Inc. [n. d.]. VMware vSphere Hypervisor. http://www.vmware.com/.
D. Williams, H. Jamjoom, and H. Weatherspoon. 2012. The Xen-Blanket: Vir-
tualize Once, Run Everywhere. In Proc. ACM European Conf. Computer Systems.
113-126.

F. Zhang, J. Chen, H. Chen, and B. Zang. 2011. CloudVisor: Retrofitting Protec-
tion of Virtual Machines in Multi-tenant Cloud with Nested Virtualization. In
Proc. ACM Symp. Operating Systems Principles. 203-216.

https://www.qemu.org/
https://www.ibm.com/support/knowledgecenter/en/SSKTMJ_9.0.1/admin/conf_restrictingadministratoraccess_t.html
https://www.ibm.com/support/knowledgecenter/en/SSKTMJ_9.0.1/admin/conf_restrictingadministratoraccess_t.html
https://docs.oracle.com/en/database/oracle/oracle-database/18/admqs/administering-user-accounts-and-security.html
https://docs.oracle.com/en/database/oracle/oracle-database/18/admqs/administering-user-accounts-and-security.html
https://docs.oracle.com/en/database/oracle/oracle-database/18/admqs/administering-user-accounts-and-security.html
http://www.linux-kvm.org/
http://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
http://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
http://www.tightvnc.com/
http://www.vmware.com/

	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

