
Detecting System Failures with GPUs and LLVM
Yuichi Ozaki

Kyushu Institute of Technology
bushido@ksl.ci.kyutech.ac.jp

Sousuke Kanamoto
Kyushu Institute of Technology
k_sousuke@ksl.ci.kyutech.ac.jp

Hiroaki Yamamoto
Kyushu Institute of Technology
hiroaki@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology
kourai@ksl.ci.kyutech.ac.jp

ABSTRACT
Since system failures cause a huge financial loss, they should
be detected as early and accurately as possible and then
be recovered rapidly. To detect system failures, there are
mainly two methods: black-box and white-box monitoring.
However, external black-box monitoring cannot obtain de-
tailed information on system failures, while internal white-
box one is largely affected by system failures. This paper
proposes GPUSentinel for more reliable white-box monitor-
ing using general-purpose GPUs. In GPUSentinel, system
monitors running in a GPU analyze main memory and in-
directly obtain the state of the target system. Since GPUs
are isolated from the target system, systemmonitors are not
easily affected by system failures. For easy development of
system monitors, GPUSentinel provides a development en-
vironment including program transformation with LLVM.
In addition, it also provides reliable notificationmechanisms
to remote hosts. We have implemented GPUSentinel using
CUDA and the Linux kernel and confirmed that GPUSen-
tinel could detect three types of system failures.

ACM Reference Format:
Yuichi Ozaki, Sousuke Kanamoto, Hiroaki Yamamoto, and Kenichi
Kourai. 2019. Detecting System Failures with GPUs and LLVM. In
10th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’19),
August 19–20, 2019, Hangzhou, China. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3343737.3343749

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APSys ’19, August 19–20, 2019, Hangzhou, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6893-3/19/08. . . $15.00
https://doi.org/10.1145/3343737.3343749

1 INTRODUCTION
Recently, the scale of computer systems is being larger and
the complexity is increasing. As a consequence, system fail-
ures are unavoidable. Once a system failure occurs, ser-
vices provided by the system often stop. This leads service
providers to a huge financial loss. For example, it is esti-
mated that Amazon lost $72 million during Prime Day’s
one-hour failure [2]. The users of such services can also suf-
fer from some loss due to service unavailability. To reduce
such loss, system failures should be detected as early and
accurately as possible and then be recovered rapidly.

Traditional failure detection is mainly categorized into
two methods: black-box and white-box monitoring. For ex-
ternal black-box monitoring, heartbeat monitoring of target
hosts and services is often used. This method can monitor
the target system even when system failures occur, but it is
difficult to obtain detailed information on the target system.
For internal white-box monitoring, system monitors run on
top of the operating system (OS) or are embedded into the
OS kernel. This method can detect system failures more ac-
curately using the internal state of the target system, but it is
largely affected by system failures because system monitors
strongly depends on the target system.
In this paper, we propose GPUSentinel for more reliable

white-box monitoring using general-purpose GPUs. Since
GPUs can run code independently of CPUs and main mem-
ory on top of which the target system runs, they are not
easily affected by system failures. In GPUSentinel, system
monitors in a GPU analyze main memory using the knowl-
edge of data structures used in the OS kernel and indirectly
obtain the state of the target system. As such, they can use
detailed information to detect system failures. For easy de-
velopment of system monitors, GPUSentinel provides a de-
velopment environment including program transformation
using LLVM [14]. In addition, it provides reliable notifica-
tion mechanisms of failure occurrences and root cause to
remote hosts.

We have implemented GPUSentinel using CUDA [10].
GPUSentinel uses the mapped memory mechanism in
CUDA and transparently accesses main memory from a

https://doi.org/10.1145/3343737.3343749
https://doi.org/10.1145/3343737.3343749

APSys ’19, August 19–20, 2019, Hangzhou, China Yuichi Ozaki, Sousuke Kanamoto, Hiroaki Yamamoto, and Kenichi Kourai

GPU. To allow the entire main memory to be mapped in the
GPU address space, we have modified the memory manage-
ment in the Linux kernel and the GPU driver. In addition,
we have developed a framework called LLView, which trans-
parently transforms the programs of system monitors so as
to translate virtual addresses of OS data to GPU addresses.
LLView also hides the differences between GPU program-
ming and OS kernel programming. Using GPUSentinel, we
have developed three system monitors for detecting CPU
anomaly, out-of-memory, and deadlocks. Through our ex-
periments, we confirmed that GPUSentinel could detect sys-
tem failures successfully.

The organization of this paper is as follows. Section 2 de-
scribes issues of traditional failure detection. Section 3 pro-
poses GPUSentinel and Section 4 explains its implementa-
tion. Section 5 reports the results of our experiments. Sec-
tion 6 describes related work and Section 7 concludes this
paper.

2 FAILURE DETECTION
To reduce a huge financial loss due to system failures, rapid
recovery from system failures is important. For this pur-
pose, it is necessary to detect system failures as early as
possible after system failures occur. If possible, it is desir-
able to detect symptoms of system failures before systems
completely stop services. In addition, it is necessary to de-
tect system failures as accurately as possible. System admin-
istrators could not prevent next system failures unless they
cannot identify failure types or their root causes. If false pos-
itives occur, system administrators may have to investigate
the root causes of system failures that do not really occur
and stop services for that.

Traditionally, there are mainly two methods for detect-
ing system failures: black-box and white-box monitoring. An
example of black-box monitoring is heartbeat monitoring
of target hosts and services provided by target systems via
networks. External monitors can examine not only the state
of the entire systems but also the state of each service in a
finer-grained manner by periodically connecting to all the
services. If the responses are slow, theymay be symptoms of
system failures. If there are no responses, a system failure
probably occurs. However, it is difficult to obtain detailed
information on target systems when system failures occur
because external monitors cannot access the internal state
of the systems. Therefore, they cannot identify which types
of failures occur or the root causes.

If target hosts equip with hardware monitoring such as
IPMI [5], external monitors can obtain more detailed infor-
mation even outside the target systems. They can examine
the hardware state and use that information for failure de-
tection. For example, CPU usage, the amount of disk access,

CPU

OS

main
memory

GPU

system
monitor

monitor remote
host

target host

notify

Figure 1: The architecture of GPUSentinel.

and the number of network packets help external monitors
detect system failures more accurately than simple heart-
beat monitoring. Similarly, if target systems run in virtual
machines (VMs), external monitors can obtain the state of
virtual hardware from the outside of the VMs. However,
such extra information may be still insufficient to identify
exact failure types and root causes.
In white-box monitoring, on the other hand, internal

monitors run inside target systems and notify remote hosts
of system failures. They can obtain more detailed informa-
tion than black-boxmonitoring. In particular, when they are
embedded into the OS kernel, they can identify failure types
and root causes more easily. However, once a system failure
occurs, internalmonitorswould notwork correctly in a high
probability. For example, they cannot detect system failures
or identify the root causes if the OS kernel stops. Even if
the OS kernel continues to run normally, internal monitors
may be terminated by the OS kernel, e.g., the OOM killer in
Linux, when system memory runs out.

3 GPUSENTINEL
In this paper, we propose GPUSentinel for achieving more
reliable white-box monitoring by running system monitors
inGPUs. Figure 1 shows the system architecture of GPUSen-
tinel. In GPUSentinel, system monitors start to run at the
boot time of the target system, i.e., before any system fail-
ures occur. They occupy one GPU and run autonomously.
Even if the target system uses GPUs for graphics or com-
puting, GPUSentinel is available by installing another GPU.
To monitor the target system from a GPU, system moni-
tors analyze OS data stored in main memory. Using detailed
information at the OS level, GPUSentinel enables accurate
failure detection.

Using GPUs for failure detection has three advantages.
First, system monitors in a GPU can continue to run in a
high probability even when system failures occur. This is
because GPUs run independently of CPUs and main mem-
ory on top of which the target system runs. GPUs are usu-
ally used as co-processors and are controlled by CPUs, but
GPUSentinel takes control of one dedicated GPU by run-
ning system monitors indefinitely. Second, a GPU enables

GPUSentinel APSys ’19, August 19–20, 2019, Hangzhou, China

various system monitors to efficiently run at the same time
because it has many cores. Therefore, system monitors in
a GPU can investigate various symptoms of system fail-
ures in parallel. In addition, one system monitor can rapidly
examine the symptom of one system failure using many
cores. Third, GPUs are general-purpose hardware and we
can choose low-cost ones.

GPUSentinel can detect system failures that can be found
from data stored in main memory. For example, system fail-
ures caused by running out system resources is detectable.
If processes use a large amount of memory or memory leaks
occur, the system cannot allocate necessary memory. Also,
system failures caused by resource starvation is detectable.
If all the CPUs cause deadlocks with spinlocks, the entire
system freezes. To detect these system failures, systemmon-
itors in a GPU can examine the amount of free memory and
consumed CPU time. If these values are abnormal, GPUSen-
tinel can detect that state as symptoms of a system failure.
Note that GPUSentinel cannot detect hardware failures be-
cause GPUs cannot access hardware except for main mem-
ory, e.g., CPUs and NICs.

To support easy development of systemmonitors running
in GPUs, GPUSentinel provides a framework called LLView.
When system monitors obtain OS data, they have to indi-
rectly access main memory from a GPU and analyze data
structures used in the OS kernel. In addition, the develop-
ment of GPU programs is largely different from that of nor-
mal system programs. To solve these issues, LLView trans-
parently transforms the programs of system monitors us-
ing LLVM [14] so that developers are not aware of such in-
direct memory access. Using a dedicated development en-
vironment including this program transformation, LLView
enables developers to write the programs of system moni-
tors as if they develop OS kernel modules.

GPUSentinel provides two reliable notification mecha-
nisms of system failures to remote hosts. Since the OS ker-
nel may stop on system failures, it is not guaranteed that
notification using the OS functions is available. In GPUSen-
tinel, system monitors in a GPU can directly write data to
the VRAM allocated in main memory and display informa-
tion on the screen. Using remote console in IPMI [5] and
KVM switches, remote system administrators can receive
notification of system failures. In addition, GPUSentinel can
notify remote hosts of system failures more flexibly using
RDMA. Remote hosts send requests to system monitors by
directly writing data to GPUmemory and receive responses
by directly reading data stored in GPU memory.

4 IMPLEMENTATION
We have implemented GPUSentinel using CUDA 8.0 [10]
and LLVM 5.0 [14]. To enable GPUs to monitor OS data,

CPU

main
memory

GPU

system
monitor

map

map

process

Figure 2: Mapping main memory with mapped mem-
ory.

we have modified Linux kernel 4.4 and NVIDIA GPU dri-
ver 375.66. System monitors in a GPU are implemented as
one GPU kernel.

4.1 Mapping Main Memory
GPUSentinel enables system monitors in a GPU to au-
tonomously access main memory using DMA. In CUDA,
DMA transfers can be initiated explicitly only from the CPU
side. After a system failure, the target system may not be
able to perform such DMA transfers. Therefore, GPUSen-
tinel uses the mapped memory mechanism provided by
CUDA. Mapped memory is used to map main memory onto
the GPU address space and make it accessible from GPU
kernels. When a GPU kernel accesses the mapped area, a
GPU performsDMA transfers transparently. Since GPUSen-
tinel sets up mapped memory before a system failure, sys-
tem monitors in a GPU can access main memory even after
the target system does not work correctly.

To use mapped memory for the entire main memory,
GPUSentinel first maps main memory onto a process ad-
dress space, as illustrated in Fig. 2. This is because CUDA
can map only process memory onto the GPU address space.
However, if GPUSentinel simplymaps the entiremainmem-
ory, free memory runs out and the system stops working.
When CUDAmaps themappedmainmemory onto the GPU
address space, it pins all thememory pages so that any pages
are not paged out. At this time, all the memory pages are
locked and become in use. It should be noted that /dev/mem
can be mapped without any pages being in use but cannot
be pinned.

To solve this problem, we have modified the memory
management of the Linux kernel so as to provide a special
device called /dev/pmem. When /dev/pmem is mapped onto
the process address space, the modified Linux kernel does
not increase the reference count of each memory page to
prevent the page from being in use. The reference count of a
free memory page is kept to zero. This does not raise a prob-
lem because the process itself does not use themappedmain
memory in GPUSentinel. In addition, when CUDA pins the

APSys ’19, August 19–20, 2019, Hangzhou, China Yuichi Ozaki, Sousuke Kanamoto, Hiroaki Yamamoto, and Kenichi Kourai

mapped memory pages, the modified Linux kernel does not
lock them.

To enable such memory pages to be unmapped cor-
rectly, we have modified not only the Linux kernel but also
the GPU driver. When the mapped memory pages are un-
mapped, they are usually unpinned and unlocked. Then, the
reference count of each pages is decreased. Since the main
memory mapped with /dev/pmem is not locked, GPUSen-
tinel does not unlock those pages. Similarly, it does not de-
crease the reference count. Note that the source code of the
NVIDIA GPU driver is basically closed-source but the code
for memory pinning is open.

To work around the limitation of CUDA and enable the
entire main memory to be mapped, GPUSentinel hooks the
sysinfo system call. CUDA limits the size of mapped mem-
ory only to a bit smaller amount of memory than the size
of main memory. The reason is probably that CUDA pre-
vents the system from stopping by pinning all the memory
pages. This is unnecessary limitation for GPUSentinel be-
cause mapped memory pages are not really pinned. There-
fore, GPUSentinel intercepts the sysinfo system call and re-
turns a bit larger size as the size ofmainmemory. As a result,
it can map the entire main memory.

4.2 Transparent Address Translation
To transparently translate virtual addresses of the OS ker-
nel into GPU addresses, LLView compiles the programs of
system monitors using LLVM and transforms the interme-
diate representation called bitcode.When bitcode reads data
frommemory, the load instruction is used. LLView replaces
the load instruction so that bitcode invokes the g_map func-
tion for address translation and executes the load instruc-
tion for the translated address. The g_map function returns
the passed address as is if the passed address is not the vir-
tual address of the OS kernel.

LLView uses the LLVM Pass framework for transforming
bitcode.When LLView finds the load instruction in bitcode,
it obtains the target variable and its type. Using that infor-
mation, it generates the bitcast and call instructions for
invoking the g_map function and inserts them just before
the load instruction. Then, it generates a new load instruc-
tion that reads data from the translated address, inserts that
instruction, and removes the original load instruction. At
this time, LLView rewrites all the instructions using the lo-
cal variable in which data is stored by the original load in-
struction. That local variable is replaced with the new one
whose value is stored by the new load instruction.

The g_map function first translates a virtual address into a
physical address using the page tables of the OS kernel. Us-
ing the knowledge of the Linux kernel, LLView optimizes
this address translation in the following two cases. When

a virtual address is in the range of direct mapping of main
memory, LLView performs address translation by subtract-
ing the top address of the range from the virtual address. For
the address range in which the kernel text area is mapped,
LLView does similarly. Next, the g_map function translates
the physical address into a GPU address. For this transla-
tion, LLView simply adds the physical address to the top
GPU address in which main memory is mapped.

To enable system monitors to access global variables in
the OS kernel, LLView replaces the kernel variables in bit-
code with the corresponding virtual addresses used in the
OS kernel. It obtains the mapping between kernel symbols
and virtual addresses from the System.map file.

4.3 Development Environment
LLView enables developers to write the programs of sys-
tem monitors as OS kernel modules using the source code
of the Linux kernel. Let us consider an example of a system
monitor that obtains process information. This systemmon-
itor traverses the process list, which is a circular list start-
ing with init_task, using the list_entry macro. During
that traversal, it obtains information such as the IDs and
names of all the processes through the task_struct struc-
ture, which is defined in linux/sched.h.

GPUSentinel enables developers to write the programs
of system monitors in C. CUDA programs consist of device
code running in GPUs and host code running in CPUs. Both
are usually written in C++. However, it is difficult to reuse
the source code of the Linux kernel written in C and compile
device code using it as C++. For example, variable names in
C can conflict with the reservedwords in C++, e.g., new. C++
requires type casts that are unnecessary in C and disallows
arithmetics for void pointers.

For LLView, we have modified the Clang compiler front
end so that device code is compiled as C.Clang defines spec-
ification used for compilation for each type of program. We
changed the specification used for CUDA programs to C90
and GCC extensions. In GPUSentinel, CUDA programs are
compiled as follows. First, LLView compiles device code us-
ing modified clang. It applies our passes to the generated
bitcode using opt. Then, it creates embeddable binary called
fat binary using ptxas and fatbinary. Finally, it compiles host
code using the original clang++ and embeds the fat binary
into the generated object file.

For several variables and functions that CUDA provides
to device code, LLView provides wrapper functions written
in C. Since device code is compiled as C in LLView, CUDA
variables and functions implemented in C++ cannot be used
as is. For example, CUDA provides the threadIdx variable
that returns a thread index in a block. For this variable,

GPUSentinel APSys ’19, August 19–20, 2019, Hangzhou, China

LLView provides the C function called get_thread_id that
returns a thread ID using that variable.

4.4 Failure Notification
During normal time, systemmonitors in a GPU notify a host
process in the target system of failure occurrences and root
causes using a ring buffer. In preparation for system failures,
GPUSentinel provides a mechanism called direct VRAM out-
put for failure notification without relying on the target sys-
tem. This mechanism enables system monitors to display
images and characters on the screen by writing graphics
data to the VRAM allocated in main memory. For charac-
ters, the font data stored in the Linux kernel is used. One
limitation is that this mechanism requires a GPU that allo-
cates VRAM in main memory.

Therefore, GPUSentinel also provides amechanism called
direct GPU communication to notify a remote host of failure
information. This mechanism uses GPUDirect RDMA [11],
which enables a remote host to directly access GPUmemory
without CPU intervention. GPUSentinel maps GPU mem-
ory into the physical address space of the target system
using the GPUDirect mechanism in advance and uses the
RDMA feature provided by NICs. A dedicated thread in a
GPU polls GPUmemory andwaits for a remote host to write
a request with an RDMA write. If it receives a request, it
writes requested information to GPUmemory. Then, the re-
mote host reads that information by polling GPU memory
with RDMA reads.

5 EXPERIMENTS
We conducted several experiments to confirm that system
monitors in GPUSentinel could detect system failures. In
this experiment, we used a PC with an Intel Core i7-7700
processor, 8 GB of DDR4-2400 memory, and two GPUs of
NVIDIA GeForce GTX 960 and Intel HD Graphics 630. We
ran Linux 4.4.67, NVIDIA GPU driver 375.66, and CUDA
8.0.61.

5.1 Detection of CPU Anomaly
We have developed a system monitor that calculated CPU
utilization every second in a GPU. This system monitor de-
tected anomaly if the utilization of all the CPUs exceeded
90% for more than 5 seconds. To confirm that this system
monitor could detect CPU anomaly, we ran a program that
intensively used CPUs in the target system. This program
ran 4 processes for a while, stopped them, and ran 8 pro-
cesses. After a while, the system monitor displayed the red
image for failure notification, as shown in Fig. 3.

Figure 4 shows changes in CPU utilization calculated by
this system monitor. After the program increased the num-
ber of processes at time 17 second, the systemmonitor could

Figure 3: Failure notification on the screen.

0 10 20 30 40
elapsed time (sec)

0

100

200

300

400

500

600

700

800

900

to
ta

l
C

P
U

 u
ti
liz

a
ti
o
n
 (

%
)

CPU 7
CPU 6
CPU 5
CPU 4
CPU 3
CPU 2
CPU 1
CPU 0

Figure 4: Changes in CPU utilization.

detect CPU high loads in 22 seconds. Note that this does not
always mean a system failure because normal heavyweight
tasks may run. Therefore, system administrators need to
consider other system states as well.

5.2 Detection of Out-of-memory
We have developed a system monitor that obtained the
amounts of free memory and swap space and calculated the
ratios to the total amounts, respectively. This system moni-
tor detected out-of-memory if both the ratios were less than
30%. To confirm that this system monitor could detect out-
of-memory, we ran a program that used a large amount of
memory in the target system. This program allocated 20 GB
of memory in total and write data to it. After a while, the re-
sponse of the target system slowed down. Finally, this sys-
tem monitor displayed the notification image and the ID of
the process consuming the largest amount of memory.
Figure 5 shows changes in amounts of free memory and

swap space. The log output by the host process temporarily
stopped at time 1 second because the host process slowed
down extremely and could not write a log to a file. From
this point, the system monitor could detect the failure in 57
seconds.

5.3 Detection of Deadlocks
We have developed a system monitor that calculated in-
kernel CPU utilization per process and obtained the number

APSys ’19, August 19–20, 2019, Hangzhou, China Yuichi Ozaki, Sousuke Kanamoto, Hiroaki Yamamoto, and Kenichi Kourai

0 10 20 30 40 50 60
elapsed time (sec)

0

2

4

6

8

fr
e

e
 s

iz
e

 (
G

B
)

physical memory
swap space

Figure 5: Changes in free memory and swap space.

of context switches. This system monitor detected a dead-
lock if this CPU utilization was larger than 95% for more
than 5 seconds or there were no context switches for 1 sec-
ond. To confirm that this system monitor could detect a
deadlock, we created a Linux kernel module that ran two
threads acquiring two spinlocks, respectively. This module
made the specified number of threads wait for the release
of these spinlocks. After we ran the kernel module using
2 threads, the notification image was shown on the screen
in 5.1 seconds. When we ran the kernel module using 8
threads, the entire system stopped the response immedi-
ately and the notification image was shown in 1.7 seconds.
At this time, the number of context switches did not change
for 1 second. From this result, it was shown that GPUSen-
tinel could detect even a system hang.

6 RELATEDWORK
SHFH [16] detects system failures using only minimum per-
formance metrics. It classifies the root causes of system
failures into six types, e.g., infinite loops, deadlocks, and
resource shortage. Then it finds performance metrics on
CPUs, processes, memory, and disk I/O to detect system fail-
ures. SHFH is implemented as a real-time user process and
a kernel module. In a normal state, the process monitors the
system in a lightweight manner. When the process detects
symptoms of a system failure, the kernel module investi-
gates the system state in further detail. Therefore, SHFH
cannot detect system failures that make the OS kernel hang.

For reliable failure detection, Falcon [8] runs spies in
different layers of the system such as the OSes and net-
work switches. Using the spies, it detects the failure of a
higher layer from the lower layer, but the target is only a
crash failure. Pigeon [7] enables applications to obtain more
information about failures by running sensors in system
components. Panorama [4] can detects gray failures, whose
manifestation is subtle, by automatically inserting report-
detection code into applications. Since these frameworks
depend on target components, they are easily affected by
component failures.

For security, various mechanisms have been proposed to
monitor the system without being affected by attacks. Us-
ing such mechanisms, it is possible to achieve failure detec-
tion that is not affected by system failures. Copilot [12] ob-
tains the contents of kernel memory using a dedicated PCI
card. SPE Observer [6] runs a monitoring system on an SPE
in a Cell/B.E processor, which can be isolated from a PPE
running the OS. Also, monitoring systems using Intel pro-
cessors have been proposed. HyperCheck [15] runs a net-
work driver in System Management Mode (SMM), transfers
memory contents to a remote host, and monitors them. Hy-
perSentry [1] enables a monitoring agent to securely run in
the target hypervisor. Flicker [9] uses Intel TXT and runs a
monitoring system securely.
When the target system runs in a VM, monitoring sys-

tems can obtain OS data outside the VM using a technique
called VM introspection [3]. If this technique is applied to
the detection of system failures, the detection system is not
easily affected by system failures and has high detection
ability. However, this technique cannot be used for systems
that do not use VMs. GPUSentinel applies VM introspection
to not-virtualized systems by using GPUs.

7 CONCLUSION
This paper proposes GPUSentinel for reliable failure detec-
tion by running system monitors in GPUs. To detect sys-
tem failures, GPUSentinel monitors OS data in main mem-
ory from GPUs. It uses modified Linux kernel and GPU dri-
ver to enable the entire main memory to be mapped onto
the GPU address space without pinning. To support easy
development of system monitors, GPUSentinel provides a
framework called LLView, which enables developers to use
the source code of the OS kernel as much as possible. In
addition, GPUSentinel provides reliable failure notification
mechanisms. Using GPUSentinel, we have developed three
system monitors and confirmed that they could detect sys-
tem failures.
One of our future work is to support all of the perfor-

mance metrics proposed in SHFH [16]. Then, we need to
detect system failures more accurately on the basis of more
information to reduce false positives. Another direction is to
recover from system failures by rewriting OS data in main
memory. For example, CPU high loads can be mitigated by
temporarily removing processes from run queues of the pro-
cess scheduler [13].

ACKNOWLEDGMENT
The research results have been achieved by the “Resilient
Edge Cloud Designed Network (19304),” the Commissioned
Research of National Institute of Information and Commu-
nications Technology (NICT), Japan.

GPUSentinel APSys ’19, August 19–20, 2019, Hangzhou, China

REFERENCES
[1] A. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. Skalsky. Hy-

perSentry: Enabling Stealthy In-context Measurement of Hypervisor
Integrity. In Proceedings of ACM Conference on Computer and Com-
munications Security, pages 38–49, 2010.

[2] Digital Commerce 360. The Potential Cost of Amazon’s Prime Day
Miss? $72Million. https://www.digitalcommerce360.com/2018/07/17/
the-potential-cost-of-amazons-prime-day-miss-72-million/, 2018.

[3] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of Network
and Distributed Systems Security Symposium, pages 191–206, 2003.

[4] P. Huang, C. Guo, J. Lorch, L. Zhou, and Y. Dang. Capturing and
Enhancing in Situ System Observability for Failure Detection. In Pro-
ceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation, pages 1–16, 2018.

[5] Intel, Hewlett-Packard, NEC, and Dell. Intelligent Platform Manage-
ment Specification Second Generation v2.0, 2004.

[6] K. Kourai and T. Nagata. A Secure Framework for Monitoring Oper-
ating Systems Using SPEs in Cell/B.E. In Proceedings of Pacific Rim
International Symposium Dependable Computing, pages 41–50, 2012.

[7] J. Leners, T. Gupta, M. Aguilera, and M.Walfish. Improving Availabil-
ity in Distributed Systems with Failure Informers. In Proceedings of
the 10th USENIX Conference on Networked Systems Design and Imple-
mentation, pages 427–442, 2013.

[8] J. Leners, H. Wu, W. Hung, M. Aguilera, and M. Walfish. Detecting
Failures in Distributed Systems with the Falcon Spy Network. In Pro-
ceedings of the 23rd ACM Symposium on Operating Systems Principles,
pages 279–294, 2011.

[9] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker:
An Execution Infrastructure for TCB Minimization. In Proceedings of
European Conference on Computer Systems, pages 315–328, 2008.

[10] NVIDIA Corporation. CUDA Toolkit Documentation v8.0. https://
docs.nvidia.com/cuda/archive/8.0/.

[11] NVIDIA Corporation. Developing a Linux Kernel Module Us-
ing RDMA for GPUDirect. Technical Report TB-06712-001 v10.1,
NVIDIA, 2019.

[12] N. Petroni, Jr., T. Fraser, J. Molina, and W. Arbaugh. Copilot – a
Coprocessor-based Kernel Runtime Integrity Monitor. In Proceedings
of USENIX Security Symposium, 2004.

[13] H. Tadokoro, K. Kourai, and S. Chiba. A Secure System-wide Pro-
cess Scheduler across Virtual Machines. In Proceedings of Pacific Rim
International Symposium Dependable Computing, 2010.

[14] The LLVM Foundation. The LLVM Compiler Infrastructure. https:
//llvm.org/.

[15] J.Wang, A. Stavrou, andA. Ghosh. HyperCheck: AHardware-assisted
Integrity Monitor. In Proceedings of International Symposium Recent
Advances in Intrusion Detection, pages 158–177, 2010.

[16] Y. Zhu, Y. Li, J. Xue, T. Tan, J. Shi, Y. Shen, and C. Ma. What is System
Hang andHow toHandle it. In Proceedings of International Symposium
on Software Reliability Engineering, pages 141–150, 2012.

https://www.digitalcommerce360.com/2018/07/17/the-potential-cost-of-amazons-prime-day-miss-72-million/
https://www.digitalcommerce360.com/2018/07/17/the-potential-cost-of-amazons-prime-day-miss-72-million/
https://docs.nvidia.com/cuda/archive/8.0/
https://docs.nvidia.com/cuda/archive/8.0/
https://llvm.org/
https://llvm.org/

	Abstract
	1 Introduction
	2 Failure Detection
	3 GPUSentinel
	4 Implementation
	4.1 Mapping Main Memory
	4.2 Transparent Address Translation
	4.3 Development Environment
	4.4 Failure Notification

	5 Experiments
	5.1 Detection of CPU Anomaly
	5.2 Detection of Out-of-memory
	5.3 Detection of Deadlocks

	6 Related Work
	7 Conclusion
	References

