Low-cost and Fast Failure Recovery Using In-VM Containers in Clouds

Tomonori Morikawa
Department of Creative Informatics
Kyushu Institute of Technology
Fukuoka, Japan
tomonori@ksl.ci.kyutech.ac.jp

Abstract—Recently, various services are provided using vir-
tual machines (VMs) in clouds. Therefore, it is necessary
to prepare for system failures of VMs, hosts running VMs,
and even data centers, e.g., using active/standby clustering.
However, a trade-off exists between the maintenance cost for
additional VMs and the recovery time in traditional techniques.
For example, hot standby can rapidly fail over to the secondary
system on a system failure, but the secondary system has to
always run the same number of VMs as the primary system. In
contrast, cold standby does not need to run VMs until a system
failure, but it has to boot VMs on failure recovery. In this paper,
we propose VCRecovery, which is the system for achieving both
low-cost and fast failure recovery. VCRecovery consolidates
services using containers inside VMs (in-VM containers) in
the secondary system. For hot standby, it can reduce the
maintenance cost by using only a smaller number of VMs
in the secondary system. For cold standby, it can reduce the
recovery time by quickly booting in-VM containers. If a VM
is overloaded after the recovery, VCRecovery can migrate
several in-VM containers to other VMs. To synchronize storage
between VMs in the primary system and in-VM containers
in the secondary system, it efficiently performs minimum
file-based synchronization based on software packages. We
have implemented VCRecovery using LXD and Zabbix and
examined the performance.

Keywords-failure detection, failure recovery, active/standby,
virtual machines, containers

I. INTRODUCTION

Recently, various services are provided using virtual ma-
chines (VMs) in clouds. Clouds are well maintained, but
they still suffer from system failures. For example, large
service disruption has occurred in Amazon S3 and AWS
[1], [2]. Therefore, it is necessary to prepare for system
failures of VMs, hosts running VMs, and even data centers.
To counteract system failures and achieve high availability in
clouds, redundancy is often introduced in systems by using
clustering. Active/standby clustering uses two systems and
fails over from the primary system to the secondary system
on a system failure.

Howeyver, a trade-off exists between the maintenance cost
for additional VMs and the recovery time in traditional
techniques. For example, hot standby always runs services
in VMs of the secondary system as well as the primary
system. Therefore, it can rapidly fail over to the secondary
system on a system failure. In exchange for this advantage,

Kenichi Kourai

Department of Computer Science and Networks

Kyushu Institute of Technology
Fukuoka, Japan
kourai@ksl.ci.kyutech.ac.jp

the additional maintenance cost for VMs in the secondary
system is high. In contrast, cold standby does not run VMs
until a system failure but has to boot VMs in the secondary
system on failure recovery. The maintenance cost for VMs
in the secondary system is zero, whereas the recovery time
is long because it takes a long time to boot multiple VMs.
Warm standby can take this trade-off, but a lower cost results
in a longer recovery time, and vice versa.

This paper proposes VCRecovery, which is the system for
achieving both low-cost and fast failure recovery. VCRecov-
ery runs a smaller number of VMs in the secondary system
and consolidates services in the VMs using the same number
of containers as that of VMs used in the primary system.
Using such in-VM containers, VCRecovery can improve the
trade-off between the maintenance cost and the recovery
time. For hot standby, the additional maintenance cost is
reduced only to that for a smaller number of VMs, while
the recovery time is almost the same as when using VMs in
the secondary system. For cold standby, the recovery time
is reduced by more quickly booting in-VM containers than
VMs on failure recovery although the maintenance cost can
increase a bit for faster recovery. If VMs are overloaded
after recovery, VCRecovery can migrate several containers
in the VMs to other VMs and reduce the system load.

We have implemented VCRecovery using LXD [3] inside
VMs provided by KVM. LXD is called a container-type
hypervisor and supports container migration. To synchronize
storage between VMs in the primary system and in-VM con-
tainers in the secondary system, VCRecovery performs mini-
mum file-based synchronization based on software packages.
It optimizes a list of files excluded from the synchronization
and achieves efficient synchronization. For failure detection,
VCRecovery obtains the state of VMs without installing
monitoring agents in VMs using libvirt-snmp [4] and notifies
the Zabbix server [5] of failure occurrence via SNMP.
Then, the Zabbix server executes the script for recovery
in the secondary system. To switch users from VMs in
the primary system to in-VM containers in the secondary
system, VCRecovery uses dynamic DNS update [6].

To show the effectiveness of VCRecovery, we conducted
several experiments, assuming abnormal termination of
VMs, and measured the recovery time. For hot standby, the

recovery time was almost the same as the traditional method
using only VMs although in-VM containers suffer from extra
virtualization overhead. For cold standby, the recovery time
was reduced by 50% because booting in-VM containers
was much faster than booting the same number of VMs. In
addition, we examined the performance overhead of running
containers inside VMs. As a result, it was shown that the
performance was largely affected by the storage drivers of
LXD, but the overhead was less than 10% for the highest-
performance storage driver.

The organization of this paper is as follows. Section II
describes countermeasures against system failures in clouds.
Section III proposes VCRecovery for achieving both low-
cost and fast failure recovery and Section IV explains its
implementation. Section V reports the results of our exper-
iments. Section VI describes related work and Section VII
concludes this paper.

II. COUNTERMEASURES AGAINST SYSTEM FAILURES

To counteract system failures and achieve high availability
in clouds, redundancy is often introduced in systems by
using clustering. Active/active clustering runs the same
number of VMs in two systems in parallel and both systems
always provide the same services to users. Even if a system
failure occurs in one system, the other system can seamlessly
continue to provide all the services. However, the total
system performance is reduced by half of that before a
system failure. To prevent this performance degradation,
each system has to have sufficient computing capabilities
by itself. This raises the cost twice.

On the other hand, active/standby clustering also uses two
systems, but only one system provides services in VMs at
the same time. A primary system provides services until
a system failure occurs. Upon a system failure, the primary
system fails over to a secondary system. Then, failure recov-
ery is completed by switching users to VMs in the secondary
system. The recovery time is defined as the time after a
system failure occurs until the recovery is completed. For
the secondary system, the maintenance cost for additional
VM:s is needed and depends on a system configuration. The
system configurations include hot standby, cold standby, and
warm standby, and a trade-off exists between the recovery
time and the maintenance cost.

Hot standby runs the same number of VMs with services
running in the secondary system as in the primary system.
This is illustrated in Fig. 1. As a result, it can rapidly fail
over to VMs in the secondary system on a system failure in
the primary system and reduce the recovery time. However,
the maintenance cost increases twice as in active/active
clustering because unused VMs for preparing system failures
always run in the secondary system and needs to synchronize
storage between VMs. To reduce this cost, it is possible to
run smaller VMs in the secondary system because the cost
is basically proportional to the size of VMs in clouds. This

primary system secondary system

synchronize

‘ failover l

VM VM VM VM

L4

Figure 1: Hot standby.

primary system secondary system

backup
> storage
| failover boot 1
I------| ' I------|
! !
A

Figure 2: Cold standby.

is a kind of warm standby, as described below. In this case,
users need to boot larger VMs and switch to them when
a system load cannot be accommodated in the small VMs
after recovery. This can result in longer downtime at the VM
switch.

In contrast, cold standby periodically saves the backups of
VMs in the primary system to remote storage, as illustrated
in Fig. 2. It does not run any VMs in the secondary system.
When a system failure occurs in the primary system, it
boots VMs in the secondary system and restores the system
state using the saved backups. As a result, the maintenance
cost can be suppressed only to that for the remote storage,
which is usually much less expensive than the cost for VMs.
However, cold standby cannot fail over to the secondary
system until it completes booting the same number of VMs
as in the primary system and restoring their state. This results
in a longer recovery time.

Warm standby is a system configuration between hot
standby and cold standby. Like cold standby, it always runs
VMs in the secondary system, but it does not run all the
services as in the primary system. All or some of the services
are started on failure recovery. Furthermore, the secondary
system may run a smaller number of VMs than the primary
system. For example, when the primary system runs multiple
application servers for load balancing, the secondary system
can run only one server. Therefore, the maintenance cost can
be reduced less than twice. The recovery time can become
longer than hot standby because several services have to
be started before failover. As such, warm standby can take
a trade-off between the maintenance cost and the recovery
time. However, a lower cost results in a longer recovery
time, while faster recovery results in a higher cost.

primary system secondary system

failover VM

é container | ===

Figure 3: Failure recovery in VCRecovery.

VM VM

cost A hot
standby

warm

L

Y
\ cold
[J

standby
O

» time

Figure 4: The improvement of the trade-off by VCRecovery.

III. VCRECOVERY

This paper proposes VCRecovery, which enables both
low-cost and fast failure recovery using containers inside
VMs (in-VM containers) for active/standby clustering. Un-
like a VM virtualizing an entire computer, a container is
a virtual execution environment provided by the operat-
ing system. Fig. 3 shows failure recovery in VCRecovery.
VCRecovery runs multiple containers in each VM of the
secondary system and runs one service in each container.
Since clouds charge fees to VMs, the maintenance cost for
failure recovery can be reduced by consolidating services
using in-VM containers. In addition, the recovery time can
be reduced because containers are more lightweight than
VMs.

Using in-VM containers, VCRecovery can improve the
trade-off between the maintenance cost and the recovery
time, as shown in Fig. 4. First, it can achieve lower-cost hot
standby. When several services run using multiple VMs in
the primary system, VCRecovery runs those services using
several containers in one VM of the secondary system. If a
system failure occurs in the VMs of the primary system,
VCRecovery rapidly fails over to the containers in the
secondary system and seamlessly continues to provide the
services. Thus, the additional maintenance cost is reduced
only to one VM in the secondary system. The recovery time
is almost the same as traditional hot standby because failure
recovery is basically not affected by the difference between
VMs and in-VM containers.

Second, VCRecovery can achieve more rapidly recover-
able cold standby. Upon a system failure in the primary
system, VCRecovery boots in-VM containers using backups
in the secondary system. Since the boot time of a container is

L VM
migration
CTTTTTTTY 1
container | | f coo container
\ b

Figure 5: Load balancing with container migration.

usually much shorter than that of a VM, the recovery time
is reduced. Before booting the containers, it is necessary
to boot VMs for running the containers although a smaller
number of VMs are sufficient. To reduce the boot time
of these VMs, VCRecovery can share idle VMs between
multiple service providers in the secondary system. Each
service providers can rapidly boot containers in these VMs.
The maintenance cost for idle VMs can be split between
multiple providers. In consideration of security, each idle
VM is exclusively used by only one provider at one time.

Similarly, VCRecovery can achieve lower maintenance
cost and faster recovery for warm standby. For services
that always run in the secondary system, VCRecovery can
consolidate containers running them into a smaller number
of VMs. For services to be started on failure recovery, it
can quickly boot in-VM containers. This can reduce the
recovery time, compared with the traditional warm standby.
VCRecovery needs shared VMs for the quick boots, but the
increase in cost due to the shared VMs would be less than the
cost reduction by the consolidation using in-VM containers.

When the load of VMs in the secondary system becomes
high after failure recovery, VCRecovery can migrate several
containers to other VMs. In the secondary system, multiple
services are consolidated into one VM using containers.
Since those services run using multiple VMs in the primary
system, the VM in the secondary system can be overloaded
by increasing the demand of system resources such as the
number of virtual CPUs, the amount of memory, and disk
and network bandwidth. In such a case, VCRecovery boots a
new VM with appropriate resources and seamlessly migrates
containers to it, as illustrated in Fig. 5. Thus, it can reduce
the load of VMs without stopping services.

During normal operation, VCRecovery synchronizes data
from a VM in the primary system to the corresponding
in-VM container in the secondary system. For traditional
synchronization between VMs, block-level synchronization
is usually used and the two disk images are kept to be
identical. However, disk images are different between a VM
and a container in general. Therefore, VCRecovery uses file-
level synchronization instead of block-level one. In addition,
there are many files that are necessary in a VM but not in a
container. For example, kernel-related files are unnecessary
in a container because a container does not have a dedicated
operating system kernel. Such files may be harmless even if
they exist, but they increase the size of the disk image of
a container and the synchronization overhead. To prevent
unnecessary files from being synchronized, VCRecovery

primary system secondary system

VM

VM VM

Zabbix sender |_ Zabbix agent
. DNS
| Zabbix DNS
"1 server server |+ update

Figure 6: The architecture of VCRecovery.

performs package-based synchronization and excludes the
files included in specified software packages, e.g., kernel-
related packages.

IV. IMPLEMENTATION

Fig. 6 illustrates the system architecture of VCRecovery.
VCRecovery runs VMs using KVM and in-VM containers
using LXD [3]. LXD is the container-type hypervisor devel-
oped mainly in Ubuntu. There are many container systems
such as Docker and OpenVZ, but we adopted LXD because
of the support for container migration.

For failure detection and recovery, VCRecovery uses
libvirt-snmp [4] and Zabbix [5]. libvirt-snmp is a tool for
monitoring the state of VMs using SNMP. When it receives a
request from a management system, it returns information on
the VM. When a system failure occurs in a VM, libvirt-snmp
sends an SNMP trap to a management system. Compared
with traditional SNMP, observable information is limited in
libvirt-snmp, but it is not necessary to install SNMP agents
inside VMs. Zabbix is an integrated monitoring tool and
consists of the server, senders, and agents. It enables Zabbix
agents to execute actions triggered by state changes.

A. VM-to-container Synchronization

VCRecovery performs file-based real-time synchroniza-
tion using rsync and Isyncd [7]. An rsync client runs
in each VM of the primary system, whereas an rsync
server runs in a VM running containers, not in each in-
VM container, of the secondary system, as illustrated in
Fig. 7. This is because not all the in-VM containers run
before a system failure in cold standby and warm standby.
Isyncd also runs in each VM of the primary system and
detects writes to files using the inotify mechanism in Linux.
Upon write detection, Isyncd invokes an rsync client and
performs synchronization. If only periodic synchronization
is sufficient, VCRecovery does not use Isyncd.

If a simple directory is used as a storage backend of
LXD, VCRecovery modifies the user and group IDs of
synchronized files. LXD supports several types of storage
backends, and this type of storage backend allocates a
directory in a host system to a container on top of it as
storage. To enable files of containers to coexist with those

primary system secondary system

VM

VM

rsync client

container

rsync server

Figure 7: File-based synchronization between a VM and an
in-VM container.

of a host system in one filesystem, LXD assigns different
user and group IDs to files used in containers. Specifically,
it adds 100,000 to the original user and group IDs used in
containers. In containers, user and group IDs are virtualized
and the original ones are provided. Therefore, we have
modified the rsync server so as to add the same value to
user and group IDs used in a VM of the primary system.

For efficient synchronization between a VM and a con-
tainer, VCRecovery generates a list of excluded paths, which
are contained only in unnecessary software packages. At this
time, it optimizes the list so that only upper directories are
included as much as possible to reduce the synchronization
overhead. This is because it takes a longer time to process a
longer list. For example, Fig 8(a) lists the files contained in
the apparmor package. The files in the /etc/apparmor
directory could be replaced with that directory if that direc-
tory includes only unnecessary files. However, they could
not be replaced with /etc because that directory includes
necessary files as well, e.g., /etc/passwd. As a result,
the list is optimized as shown in Fig. 8(b)

The algorithm for this optimization is as follows. First,
it extracts all the files contained in specified unnecessary
packages and sorts them in dictionary order. This list in-
cludes all the directories used for the files. For example, the
directories of /, /etc, and /etc/apparmor are included
for the file /etc/apparmor/subdomain.conf. Then,
VCRecovery checks a path in the list one by one. If the path
includes the excluded directory, VCRecovery skips that path.
Note that the excluded directory is empty at first. If the path
is included only in unnecessary packages, VCRecovery adds
that path to a list of excluded paths. In addition, if that path is
a directory, VCRecovery regards it as the excluded directory
in the next checks. If the path is included in necessary
packages as well, VCRecovery skips that path.

When packages are installed or uninstalled in VMs of the
primary system, VCRecovery reboots in-VM containers in
the case of hot standby and, if necessary, warm standby.
Ubuntu packages contain scripts executed before and after
installation and uninstallation. These scripts are automati-
cally executed in VMs, where packages are installed and
uninstalled with the package management system. However,
they are not executed in containers because VCRecovery

/

/etc

/etc/apparmor
/etc/apparmor/subdomain.conf
/etc/apparmor/parser.conf
/etc/init.d
/etc/init.d/apparmor
/etc/init
/etc/init/apparmor.conf
/etc/apparmor.d
/etc/apparmor.d/force-complain

/1lib
/lib/apparmor
/lib/apparmor/functions

(a) Files contained in the package

/etc/apparmor/
/etc/init.d/apparmor
/etc/init/apparmor.conf
/etc/apparmor.d/

/1lib/apparmor/

(b) Optimized paths

Figure 8: The excluded paths for the apparmor package.

synchronizes only installed and uninstalled files. This means
that installed servers are not started and uninstalled servers
are not stopped. To synchronize the running status of servers,
VCRecovery periodically obtains the package list by execut-
ing the package management command outside an in-VM
container. If the package list changes, VCRecovery starts
and stops servers by rebooting the container.

B. Failure Detection

VCRecovery obtains the CPU usage of a VM from KVM
using libvirt-snmp to detect overload and abnormal stop
of the system in the VM. For this purpose, VCRecovery
executes the snmpwalk command every 5 seconds and
then calculates CPU utilization from current and previous
CPU usage. Then, it sends the calculated CPU utilization
with the UUID of the VM to the Zabbix server using the
zabbix_sender command. If the CPU utilization keeps too
high or 0%, it is possible that a system failure occurs in the
VM.

To detect a crash of a VM, VCRecovery uses an SNMP
trap. libvirt-snmp can issue an SNMP trap when the status
of a VM changes. Since that SNMP trap is recorded in a
log file, VCRecovery detects the change of the file using
the inotifywait command. Then, it obtains the issue time,
the UUID, and the status from the trap and sends that
information to the Zabbix server. When the status of a VM
changes to shutoff, the Zabbix server detects that the VM
crashes.

To detect failures of hosts and data centers running VMs,

VCRecovery performs alive monitoring between the Zabbix
server and agents. The Zabbix server periodically sends
heartbeats to a Zabbix agent running each host. When it
cannot receive any response from a Zabbix agent, it is
possible that a host failure occurs. When all of the Zabbix
agents in a data center do not respond, a failure may occur
in the entire data center.

C. Failure Recovery

When VCRecovery detects a system failure, it sends an
action to a Zabbix agent in the secondary system. The
Zabbix agent runs a recovery script as an action using the
remote command function, which enables users to execute
arbitrary commands. For cold standby, VCRecovery boots
in-VM containers using backups saved from VMs of the
primary system. If shared VMs in the secondary system
are not used, VCRecovery also boots new VMs. For hot
standby, it is not necessary to boot in-VM containers because
containers always run.

Next, VCRecovery attempts to connect to the network
ports used by services in the in-VM containers. After all the
connections are established, VCRecovery switches services
to the in-VM containers using dynamic DNS update. The
nsupdate command updates DNS records so that the DNS
server returns the IP addresses of the in-VM containers for
host names used by the services.

V. EXPERIMENTS

We conducted several experiments to show the effec-
tiveness of VCRecovery. We ran four VMs providing Web
services in the primary system. Among them, three VMs ran
the Apache Web server and one VM ran the MySQL server.
For hot standby, we ran four containers providing the same
Web services inside one VM in the secondary system. For
cold standby, we did not run the four containers until failure
recovery. For comparison, we used the traditional system
running four VMs in the secondary system. For hosts in the
primary and secondary systems, we used two PCs with an
Intel Xeon E3-1226 v3 processor, 8 GB of memory, 500
GB of disk, and Gigabit Ethernet. We ran Linux 4.4 and
KVM 2.5.0. We used VMs with two virtual CPUs, 2 GB of
memory, 50 GB of disk and ran Linux 4.4 and LXD 3.7.

A. Recovery Time vs. Maintenance Cost

First, we compared the recovery time and the maintenance
cost for hot standby. We forced VMs in the primary system
to terminate and measured the time until Web services
were switched to the secondary system. Fig. 9(a) shows the
recovery time in VCRecovery and the traditional system.
From this result, it was shown that VCRecovery could fail
over in almost the same time as the traditional system
although the performance of in-VM containers is lower than
that of VMs. Fig. 9(b) shows the estimation of the additional

4.0

W
o

| [traditional
| |mmm VCRecovery

[|EEE traditional b
30 . VCRecovery

201 -
1.0+ - -
0.0 0

(a) Recovery time

N
a

cost (1000%/year)
o 5 o 8
T T T T
P I R R S B

recovery time (sec)

(b) Maintenance cost

Figure 9: The comparison for hot standby.

n
o

6T T T T T 1
. Il traditional = = traditional B
5201 | mmm VCRecovery t % « VCRecovery| |
L r Q4+ \ _
151 4 &t \]
= L i S 3l \ -
= s3s
© 10— = z T
3 | 1 Ber f
3 S j
¢ st : b]
L] L T
0 ol & & & & & &

o

1 2 3 4 5 6 7
of service providers

(a) Recovery time (b) Maintenance cost

Figure 10: The comparison for cold standby.

maintenance cost. For this estimation, we used t3.2xlarge on-
demand instances with Red Hat Enterprise Linux provided
in Amazon EC2 and calculated the fee in one year. This
result shows that VCRecovery can reduce the cost of about
$15,000 per year by using only one VM instead of four VMs
as in the traditional system.

Next, we compared the recovery time and the maintenance
cost for cold standby. As shown in Fig. 10(a), VCRecovery
could reduce the recovery time by 50%. This is because
booting four containers in a shared VM took a shorter time
than booting four VMs. Fig. 10(b) shows the estimation of
the maintenance cost in VCRecovery when we used the same
instances above. The additional cost is zero in the traditional
system, while it is a fee of one VM in VCRecovery.
However, the cost can be reduced as the number of service
providers increases because one VM can be shared among
multiple providers for recovery. From the result, it is shown
that the cost can be suppressed when several providers share
a VM.

B. Performance of Synchronization

To examine the impact of our optimization in package-
based synchronization between a VM and an in-VM con-
tainer, we first measured the generation time of a list of
excluded paths. Before our optimization, we manually listed
all the files contained in packages related to the operating
system kernel. The number of those files was approximately
30,000. Fig. 11(a) shows the generation time without and
with our optimization. Surprisingly, the time was shorter
when the optimization was applied. This is because the

I no optimization Il no optimization
Il optimization Il optimization

0OMB 600 MB

(a) Generation (b) Synchronization

Figure 11: The performance of disk synchronization.

number of generated paths was reduced only to 74 by
our optimization. Compared with the execution time of our
optimization algorithm, it took a longer time to write a long
list of excluded paths to a disk.

Next, we measured the synchronization time using the
generated list without and with the optimization. The total
size of the target files was 11 GB. Fig. 11(b) shows the
synchronization time when the target files were not modified
at all and when 600 MB of them were modified. From these
results, it was shown that our optimization could constantly
reduce the synchronization time by 16.5 seconds. This is
because it took a longer time to read the list of excluded
paths from a disk and check the list for each target file.
This is critical when we use Isyncd, which executes rsync
whenever files are modified in a VM of the primary system.

C. Performance of in-VM containers

To examine the performance degradation of using con-
tainers inside a VM, we compared the performance of an
in-VM container with that of a VM. As storage backends of
LXD, we used a simple directory, Logical Volume Manager
(LVM), Btrfs, and ZFS. We indicate four types of containers
with these storage backends by C.dir, C.lvm, C.btrfs, and
C.zfs, respectively.

Fig. 12 shows the results when we ran UnixBench 5.1.3.
The score of an in-VM container is normalized for that of
a VM. The performance of an in-VM container degraded in
most operations. For example, the performance degradation
in pipe throughput, context switches, and system calls was
13-17%. The performance of file copies largely depended
on a storage backend used for the in-VM container. The
performance degradation was only by 10% for C.dir and
C.lvm, whereas that was 55-65% for C.btrfs and 85% for
C.zfs. When using ZFS, in particular, the VM froze when
UnixBench copied a file of 4 KB. As a result, we could
not obtain the score of that operation and the total score,
which were probably less than that for C.btrfs. From these
results, we can conclude that the performance degradation
of an in-VM container is 7-8% when we use C.dir or C.lvm.

For further investigation of file I/O in an in-VM container,
we measured file access performance using fio 3.1. Fig. 13
shows the throughput of sequential and random read/write.

o 1.0 VM

8 B C.dir

2 B C.lvm

£ 0° C.btrfs

© B C.zfs

00 & e v © © @ o N ®
S . ' N Y
& &S g &K & P & & N
& 53 & 2 N4 e & © Y § N e
& $~(\‘?’ N N S 3 3
Figure 12: The scores of UnixBench.
600 100 1200
L mvv | r 1 L] [emvm
=001 mCdr || o 80 : & 10007 1 |mm C.dir
o) 400 I C.lvm | _|) t 1 o 8001 | |WE C.lvm
=3 Cbtrfs 2 sl i =] Cbirfs
= [b = = [b B C.zf
3 s00}- 4 3] 3 600 . Ze
< L B < < L 4
S 9 401 — S
3 200 4 38 | | 3 400 -
£t 1 £ £ 1
100~ - 20~ 7 200 _
0 0 0

(a) Sequential read

50 2
466

(b) Sequential write
0

N
o
T
|
o
T
|

[]
=]
T
|

n
o
T
|

throughput (MB/s)
throughput (MB/s)
>
T
I

-
o
T
|
[&)]
T
|

o

0

(c) Random read (d) Random write

Figure 13: The throughput of file access.

Like UnixBench, we could not obtain data for C.zfs. The
throughput of sequential read is equivalent to the result of
UnixBench. In contrast, the throughput of sequential write
was largely different. The performance for C.dir and C.lvm
was slightly higher than that for a VM. The throughput
of random read was also largely different from that of
sequential read. The performance for C.dir was too high.
For random write, the throughput for a VM and C.dir was
almost the same but that for C.btrfs was much higher. These
reasons are under investigation.

To examine the overhead for network performance, we
measured the TCP throughput using iperf 3.1.3. As shown
in Fig. 14, the performance did not degrade at all even in
an in-VM container.

D. Performance of Container Migration

To examine the migration performance of an in-VM con-
tainer, we migrated a container between two VMs running
different hosts and measured the migration time and the
downtime. In this experiment, we used LXD 2.21 because
LXD 3.7 could not migrate running containers. We used
four storage backends, but we could not migrate a container
using Btrfs. For comparison, we migrated a native container

Figure 14: The network throughput.

Il native

I C.dir

I C.lvm
C.zfs

n
o
T
|

-
o
T
|

-
o
T
|

migration time (sec)

4]
T
|

0

Figure 15: The migration time.

using a simple directory without using VMs between hosts.
The number of files in the containers was the same, but the
storage size of the container was 807-945 MB, depending
on storage backends.

Fig. 15 shows the migration time. This result shows that
the migration performance of an in-VM container is com-
parable to that of a native container. Rather, the migration
of a container using ZFS was slightly faster. The downtime
was 5.4-9.0 seconds because LXD does not support live
migration, which migrates containers without stopping them
as much as possible. Since CRIU [8] used by LXD can
achieve process migration with negligible downtime, LXD
could support live migration in the near future.

VI. RELATED WORK

Wood et al. discuss economic benefits of disaster recovery
as a cloud service [9]. They focus only on warm standby and
compare the cost between a public cloud and a private data
center. According to their analyses, much lower cost can be
achieved by using a cloud for a multi-tier web application
because only one small VM is necessary for synchronization
during normal operation. In contrast, cost reduction depends

on synchronization frequency for data warehouse because of
the I/O intensive nature.

Several systems have been proposed to consolidate mul-
tiple services into a small number of VMs. Picocenter [10]
runs a mostly idle service using a container in a VM. When
a service is not used and its container becomes inactive, the
container is swapped out to storage and swapped in when a
request is sent to the service again. Using this mechanism,
VCRecovery could rapidly swap in in-VM containers on
failure recovery for cold standby, instead of booting them.
FlexCapsule [11] runs a service in a lightweight VM inside
a VM using nested virtualization. A lightweight VM is
achieved by using a library operating system and para-
virtualization. FlexCapsule can dynamically optimize the
number and the size of VMs in a fine-grained manner and
reduce the cost. However, the overhead of nested virtualiza-
tion is large.

Several systems can synchronize not only storage but also
the other VM state such as CPUs and memory. Remus [12]
frequently transfers the differences of the CPU state and the
memory of VMs in the primary system to the secondary sys-
tem. It stores network transmission and disk writes in buffers
until the periodic synchronization is completed. Kemari [13]
reduces the frequency of the synchronization by performing
the synchronization only on network transmission and disk
writes. COLO [14] delivers request packets to both VMs in
primary and secondary systems and waits for the VMs until
response packets from them match. Unlike these systems,
VCRecovery synchronizes storage between a VM and a
container.

There are several studies to reduce the boot time of VMs.
Fast parallel VM setup [15] can rapidly boot multiple VMs
at the same time by using fine-grained locks and caching
XenStore data. LightVM [16] enables even a single VM
to be booted rapidly by redesigning Xen’s toolstack. Since
cold standby needs to boot VMs on failure recovery, these
mechanisms can reduce the recovery time. However, these
techniques can reduce the boot time of VMs, but the boot
time of the operating system is still long.

VII. CONCLUSION

This paper proposes VCRecovery, which enables both
low-cost and fast failure recovery using in-VM containers.
VCRecovery can consolidate lightweight containers in one
VM and reduce the maintenance cost for hot standby. Since
a container can boot more quickly than a VM, VCRecovery
can rapidly recover from system failures in cold standby.
We have developed VCRecovery using LXD and Zabbix
and optimized VM-to-container synchronization based on
software packages. According to our experiments, it was
shown that VCRecovery could reduce the recovery time and
the maintenance cost and that the performance overhead of
in-VM containers was acceptable.

One of our future work is to run various services and
cause various system failures. Failure recovery can depend
on types of services and system failures. Another direction
is to apply VCRecovery to multi-cloud environments. Since
network latency is larger between clouds, storage synchro-
nization and failure detection are challenging.

ACKNOWLEDGMENT

The research results have been achieved by the ‘“Resilient
Edge Cloud Designed Network (19304),” the Commissioned
Research of National Institute of Information and Commu-
nications Technology (NICT), Japan.

REFERENCES

[1] Amazon Web Services, Inc., “Summary of the Amazon S3
Service Disruption in the Northern Virginia (US-EAST-1)
Region,” https://aws.amazon.com/message/41926/.

[2] ——, “Summary of the AWS Service Event in the Sydney
Region,” https://aws.amazon.com/jp/message/4372T8/.

[3] Canonical Ltd., “Linux Containers,” https://linuxcontainers.
org/.

[4] Red Hat, Inc., “Libvirt-snmp,” https://wiki.libvirt.org/page/
Libvirt-snmp.

[5] Zabbix LLC, “Zabbix :: The Enterprise-Class Open Source
Network Monitoring Solution,” https://www.zabbix.com/.

[6] B. Wellington, “Secure Domain Name System (DNS) Dy-
namic Update,” IETF, RFC 3007, 2000.

[7] A. Kittenberger, “Lsyncd — Live Syncing (Mirror) Daemon,”
https://axkibe.github.io/lsyncd/.

[8] The CRIU Team, “CRIU,” https://www.criu.org/.

[9] T. Wood, E. Cecchet, K. K. Ramakrishnan, P. Shenoy, J. V. der
Merwe, and A. Venkataramani, “Disaster Recovery as a Cloud
Service: Economic Benefits & Deployment Challenges,” in
Proc. USENIX Conf. Hot Topics in Cloud Computing, 2010.

[10] L. Zhang, J. Litton, F. Cangialosi, T. Benson, D. Levin,
and A. Mislove, “Picocenter: Supporting Long-lived, Mostly-
idle Applications in Cloud Environments,” in Proc. European
Conf. Computer Systems, 2016.

[11] K. Kourai and K. Sannomiya, “Seamless and Secure Appli-
cation Consolidation for Optimizing Instance Deployment in
Clouds,” in Proc. Int. Conf. Cloud Computing Technology and
Science, 2016, pp. 318-325.

[12] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield, “Remus: High Availability via Asynchronous
Virtual Machine Replication,” in Proc. USENIX Symp. Net-
worked Systems Design and Implementation, 2008.

[13] Y. Tamura, “Kemari: Virtual Machine Synchronization for
Fault Tolerance using DomT,” Xen Summit Boston 2008,
2008.

[14] Y. Dong, W. Ye, Y. Jiang, L. Pratt, S. Ma, J. Li, and H. Guan,
“COLO: COarse-grained LOck-stepping Virtual Machines for
Non-stop Service,” in Proc. Annual Symp. Cloud Computing,
2013.

[15] V. Nitu, P. Olivier, A. Tchana, D. Chiba, A. Barbalace,
D. Hagimont, and B. Ravindran, “Swift Birth and Quick
Death: Enabling Fast Parallel Guest Boot and Destruction in
the Xen Hypervisor,” in Proc. ACM SIGPLAN/SIGOPS Int.
Conf. on Virtual Execution Environments, 2017, pp. 1-14.

[16] E. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer,
S. Sati, K. Yasukata, C. Raiciu, and F. Huici, “My VM is
Lighter (and Safer) Than Your Container,” in Proc. Symp.
Operating Systems Principles, 2017, pp. 218-233.

