
Flexible and Efficient Partial Migration of Split-memory VMs

Takahiro Kashiwagi
Kyushu Institute of Technology
kashiwagi@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ksl.ci.kyutech.ac.jp

Abstract—Recently, virtual machines (VMs) with a large
amount of memory are being widely used. For flexible mi-
gration of such large-memory VMs without large hosts, split
migration has been proposed. It transfers VM fragments to
multiple smaller hosts and runs a split-memory VM across
those hosts with remote paging. However, the traditional
method cannot migrate a split-memory VM efficiently because
it always migrates the entire VM. In addition, it has to gather
all the VM fragments to one host and transfer them from that
host. To address these issues, this paper proposes flexible and
efficient partial migration of split-memory VMs. In particular,
subst migration migrates only part of a split-memory VM to
enable the maintenance of some of the hosts running the
VM. Merge migration efficiently consolidates VM fragments
distributed across multiple hosts into one host by directly trans-
ferring a VM fragment from each host. Even if a split-memory
VM itself causes remote paging during such partial migration,
the consistency of the VM is maintained by retransferring
and invalidating target memory. We have implemented partial
migration in KVM and showed its efficiency.

Index Terms—virtual machines, large-memory VMs, VM mi-
gration, partial migration, remote paging

1. Introduction

Recently, virtual machines (VMs) with a large amount
of memory are being widely used. As an extreme example,
Amazon EC2 provides High Memory instances with 24 TB
of memory [1]. Using such large-memory VMs enables
fast in-memory databases [2], [3] and efficient big data
analysis [4], [5]. One advantage of using VMs is service
continuity on host maintenance by VM migration. How-
ever, it becomes more difficult to find destination hosts
with sufficient free memory when larger-memory VMs are
migrated. Since hosts with a large amount of memory are
expensive, private clouds may not be able to afford to
prepare large hosts as the destination of occasional VM
migration. Even in public clouds, it would not be cost-
effective to always preserve many large hosts in preparation
to large-scale maintenance of data centers.

To address this issue, split migration has been proposed
[6], [7]. It divides a large-memory VM into small VM
fragments and transfers them to multiple smaller hosts, i.e.,

one main host and one or more sub-hosts. It transfers the
state of the VM core such as virtual CPUs and devices to
the main host. Also, it transfers likely accessed memory
of the VM to the main host. The rest of the memory is
transferred to the sub-hosts. After split migration, the VM
runs across these hosts by performing remote paging [8]–
[11] between the main host and one of the sub-hosts. Such
a VM is called a split-memory VM. However, if a split-
memory VM is migrated using traditional migration, it is
necessary to always migrate the entire VM even when only
some of the hosts are maintained. In addition, the migration
performance largely degrades due to frequent remote paging
caused by gathering VM fragments to one source host.

In this paper, we propose flexible and efficient partial mi-
gration of split-memory VMs. The partial migration enables
part of a split-memory VM to be directly transferred from
source hosts to destination hosts only when necessary. It is
classified into four types: subst, merge, split, and split/merge
migration. Subst migration transfers a VM fragment in the
main host or a sub-host to a new host and substitutes only
one host among the hosts running a split-memory VM. This
method enables only some of the hosts running a split-
memory VM to be maintained. Merge migration transfers
VM fragments in the hosts running a split-memory VM
to one host without remote paging. This method enables
efficient consolidation of a split-memory VM and eliminates
the overhead of remote paging.

We have implemented subst migration and merge mi-
gration in a system named IPmigrate, which is based on
KVM [12]. Merge migration is considered as the combina-
tion of subst migration for the main host and all the sub-
hosts, but we have implemented it separately because of the
consistency and efficiency of the migration. If a VM causes
remote paging during subst migration, IPmigrate retransfers
the target memory or invalidates already transferred mem-
ory at the destination host. This guarantees that the entire
memory in the target host is transferred without excess or
deficiency. According to our experiments, it was shown that
subst migration and merge migration could largely reduce
the migration time by reduced memory transfers and parallel
memory transfers.

The organization of this paper is as follows. Section 2
describes split-memory VMs and issues of its migration.
Section 3 proposes flexible and efficient partial migration of
split-memory VMs. Section 4 explains the implementation

of IPmigrate and Section 5 shows our experimental results.
Section 6 describes related work and Section 7 concludes
this paper.

2. Migration of Split-memory VMs

2.1. Split-memory VMs

VM migration moves a VM running in one host to
another host without stopping it. Using VM migration,
any hosts running VMs can be maintained without service
disruption. VM migration is also used for load balancing
by VM deconsolidation and power saving by VM consoli-
dation. It first creates a new VM at the destination host and
then transfers the memory of the target VM to the new VM.
It retransfers the memory updated during VM migration and
stops the VM if the amount of memory to be retransferred
is small enough. In the final phase, it transfers the rest of
the updated memory and the state of the VM core such as
virtual CPUs and devices. Finally, it starts the execution of
the new VM at the destination host.

VM migration requires a larger amount of free memory
in the destination host than the memory size of a VM to be
migrated. Recently, the memory size of VMs is increasing
for in-memory database and big data analysis [1]. As a re-
sult, it becomes more difficult to find appropriate destination
hosts for such large-memory VMs. Private clouds may not
be able to prepare hosts with a large amount of memory as
the destination of occasional VM migration because such
large hosts are expensive and require a measurable amount
of power. Even in public clouds, it would not be cost-
effective to always preserve many large hosts in preparation
to large-scale maintenance of data centers. If there is no
appropriate host, a VM cannot be migrated and the users
cannot use services provided by the VM during host main-
tenance.

For flexible migration of large-memory VMs without
large hosts, split migration has been proposed [6], [7]. As
illustrated in Fig. 1, it divides the memory of a VM into
small VM fragments and transfers them to multiple smaller
hosts. The destination host running the VM core such as
virtual CPUs and devices is called the main host, while the
other destination hosts are called sub-hosts. Split migration
transfers the VM core and likely accessed memory to the
main host and the rest of the memory to the sub-hosts. Such
access prediction of the memory is performed using LRU
on the basis of the memory access history of the VM.

After split migration, the migrated VM runs across mul-
tiple hosts. This VM is called a split-memory VM. Since
the memory of the VM is distributed, a split-memory VM
runs by performing remote paging between the main host
and one of the sub-hosts. When the VM core requires the
memory existing in a sub-host, that memory is paged in
from the sub-host to the main host. In exchange, the most
unlikely accessed memory is paged out from the main host
to that sub-host. Since likely accessed memory has been
transferred to the main host in advance at the migration time,

memory

VM core

memory

VM core

memory

migration

main host

sub-hosts

source host

remote
paging

Figure 1: Split migration.

the frequency of remote paging is suppressed just after split
migration.

2.2. Migration Issues

In several situations, a split-memory VM is migrated
again. When a host with a larger amount of free memory
becomes available, it could be desirable to actively migrate
a split-memory VM to that large host. When the working
set size is less than the memory size in the main host, the
performance of a split-memory VM is as high as before split
migration [7]. However, if the working set size exceeds the
memory size, the performance degradation is crucial due to
frequent remote paging. The overhead of remote paging can
be mitigated by using RDMA [8], [10], [11] and correctly
identifying unused memory with machine learning [13], but
it is difficult to make this overhead negligible. Even if the
newly found host cannot accommodate the entire memory
of a split-memory VM, that host could be used as a better
main host by performing split migration.

In addition, when hosts running a split-memory VM are
maintained, the VM has to be always migrated to other
hosts. Since a split memory VM runs across multiple hosts,
the probability of maintaining one of those hosts becomes
higher. If possible, a split-memory VM should be migrated
to one large host and be run as a normal VM to avoid remote
paging. If there is no such large host, split migration needs
to be applied to a split-memory VM again.

However, two issues arise if a split-memory VM is
migrated using traditional one-to-one migration or split
migration. First, unnecessary transfers of VM fragments
can occur because traditional migration always migrates the
entire split-memory VM. Even when only some of the hosts
running a split-memory VM are maintained, VM fragments
in the other hosts have to be transferred to the destination
host(s) as well. This is inflexible and inefficient because
these hosts are still available and their VM fragments do not
have to be transferred. It would need a longer time before
completing the migration and starting host maintenance.
The migration would consume more CPU time and network
bandwidth. This can lead to the performance degradation of
the migrated VM.

Second, the migration performance largely degrades be-
cause remote paging frequently occurs during VM migra-

TABLE 1: The classification of partial migration. A, B, and
C are the existing hosts, while P and Q are new hosts.
Boldface means the main host running the VM core. a to d
are VM fragments.

type before migration after migration

Subst A[a], B[b], ...
P [a], B[b], ...
A[a], P [b], ...

Merge
A[a], B[b], ...

P [ab], ...
A[ab], ...
B[ab], ...

A[a], B[b], C[c], ...
A[a], P [bc], ...
A[a], B[bc], ...

Split
A[ab], ...

P [a], Q[b], ...
A[a], P [b], ...
P [a], A[b], ...

A[a], B[bc], ...
A[a], P [b], Q[c], ...
A[a], B[b], P [c], ...

A[a], B[bc], ...
A[ab], P [c], ...

Split/ A[ab], B[c], ...
Merge

A[a], B[b], C[cd], ...
A[a], B[bc], P [d], ...
A[ac], B[bd], ...

tion. Traditional migration transfers the memory of a VM
from only one source host to the destination host(s). For a
split-memory VM, traditional migration causes many page-
ins from sub-hosts to the main host because the main host
has to transfer the memory existing in sub-hosts after the
page-ins. According to our experiment, it took 6x longer
time to migrate a split-memory VM using traditional one-
to-one migration, compared with migrating a normal VM.
For a VM with 24 GB of memory, the amount of paged-in
memory reached about 24 GB. Accordingly, CPU utilization
and network bandwidth would increase in the main host.

3. Partial Migration of Split-Memory VMs

To address the two issues of migrating split-memory
VMs, this paper proposes flexible and efficient partial migra-
tion of split-memory VMs. Partial migration moves part of
or the whole of a split-memory VM running in the source
hosts to the destination hosts. The source and destination
hosts can be completely different, partially different, or
exactly the same. Each source host directly transfers part of
a split-memory VM to some of the destination hosts. This
enables efficient VM migration because it is unnecessary to
transfer the memory of a split-memory VM existing in the
source sub-hosts via the source main host. Table 1 classifies
possible partial migration.

Subst migration is a type of partial migration that trans-
fers a VM fragment in one host to a new host. It can be
applied to either the main host or a sub-host. Subst migration
for the main host transfers both the VM core and part of the
memory of a split-memory VM, while that for a sub-host
transfers only part of the memory of a split-memory VM.
This migration enables efficient migration of a split-memory
VM when only several hosts are maintained among multiple
hosts running that VM.

Merge migration is a type of partial migration that con-
solidates VM fragments in several hosts into one host. When
merge migration is applied to the main host and sub-hosts,

the VM core in the main host and part of the memory of a
split-memory VM existing in the source hosts are transferred
to a new main host or one of the source hosts. When merge
migration is applied only to sub-hosts, part of the memory
of a split-memory VM existing in the source sub-hosts is
transferred to a new sub-host or one of the source sub-hosts.
If a new host with sufficient free memory is found, merge
migration can be performed to that host. If the existing host
releases memory, e.g., by terminating other VMs, it can be
the destination of merge migration. This migration is useful
for reducing remote paging caused by the split-memory VM
and running VM fragments in high-performance sub-hosts.

Split migration is also a type of partial migration that
divides a VM fragment in one host into multiple hosts.
Previously proposed split migration [6], [7] is a special case
of dividing a normal VM in one host into multiple new hosts.
When split migration is applied to the main host, part of the
memory of a split-memory VM is first divided into several
pieces. One memory piece and the VM core are transferred
to a new main host or are kept in the source main host.
The other memory pieces are transferred to new sub-hosts
or are kept in the source host, which is no longer the main
host. When split migration is applied to a sub-host, all the
memory pieces are transferred to new sub-hosts or only one
piece is kept in the source sub-host. This migration is used
when a substitute host with sufficient free memory is not
found on subst migration. If a host used for a split-memory
VM runs out of memory in some reason, split migration can
transfer part of the VM fragment to other hosts.

Split/merge migration is complex partial migration that
performs split migration for the source hosts and merge
migration for the destination hosts. For example, it can
divide a VM fragment in one host into multiple fragments
and consolidates each into multiple existing hosts. It can
transfer only several VM fragments to new hosts. Also, it
can move only part of VM fragments between the main host
and a sub-host or between sub-hosts.

In this paper, we focus on subst migration for the main
host and a sub-host and merge migration for all hosts. This
is because these are the basic forms of various types of
partial migration and contains common research issues to
be addressed.

3.1. Subst Migration

When subst migration is applied to the main host, it
transfers the VM core and part of the memory of a split-
memory VM existing in the source main host to a new
destination main host, as in Fig. 2. At this time, it does
not transfer the memory data existing in sub-hosts but
only information on that memory. After subst migration
is completed, the destination main host runs the migrated
split-memory VM and performs remote paging between that
host and the sub-hosts in which VM fragments are kept.
Similarly, when subst migration is applied to a sub-host, it
transfers only part of the memory of a split-memory VM
existing in the source sub-host to a new destination sub-
host, as illustrated in Fig. 3. After the migration, the main

memory

VM core

migration

destination main host

memory

VM core

memory

source main host

sub-hosts

remote
paging

Figure 2: Subst migration for the main host.

migration

memory

VM core

memory

main host

source
sub-hosts

remote
paging

memory

destination
sub-host

Figure 3: Subst migration for a sub-host.

host performs remote paging to the new sub-host and the
sub-hosts in which VM fragments are kept.

When a split-memory VM causes remote paging by
accessing the memory existing in a sub-host during subst
migration, IPmigrate not only transfers the memory without
excess or deficiency but also preserves consistency in the
entire memory of the split-memory VM. For subst migration
for the main host, when a page-in occurs to the main host
during the migration, IPmigrate transfers the target memory
from the source main host to the destination main host if
necessary. This transfer is required when the target memory
is never transferred yet or when it is not transferred after
updated. When a page-out occurs from the main host during
the migration, IPmigrate invalidates the target memory in
the destination main host if the memory has been already
transferred. This is necessary to prevent the same memory
region from existing in both the sub-host and the destination
main host.

For subst migration for a sub-host, IPmigrate also per-
forms similar operations for consistency when remote pag-
ing occurs during the migration. When a page-out occurs
to the sub-host, IPmigrate transfers the target memory to
the destination sub-host if necessary. If the target memory
has been already transferred to the destination sub-host,
IPmigrate invalidates the memory in the destination sub-
host.

memory

VM core

memory

VM core

memory

migration

main host

sub-hosts

destination host

remote
paging

Figure 4: Merge migration for all hosts.

3.2. Merge Migration

Fig. 4 illustrates merge migration for all hosts. Con-
ceptually, merge migration can be achieved by combining
subst migration for the main host and all the sub-hosts and
specifying the same host as the destination. However, it
is difficult to efficiently perform merge migration without
excess or deficiency only by that simple combination. To
achieve efficient merge migration, IPmigrate supports paral-
lel memory transfers in the network and the destination host
and enables subst migration for multiple hosts in parallel.

When remote paging occurs during merge migration,
IPmigrate performs page-ins and page-outs with additional
information on whether the memory should be transferred
or not. It is necessary to pass such information between
the source main host and sub-hosts because each source
host independently transfers part of the memory of a split-
memory VM in merge migration. Even if the memory that is
not yet transferred is paged in or out, it is guaranteed that the
memory is transferred to the destination host. In addition,
IPmigrate does not invalidate the transferred memory even
if remote paging occurs for that memory. Since the entire
memory is finally transferred to one destination host in
merge migration, the same memory region never exists in
multiple hosts unlike subst migration for a single host.

4. IPmigrate

We have implemented subst migration for the main host
and a sub-host and merge migration for all of the hosts run-
ning a split-memory VM. For these migration methods, we
have developed a system named IPmigrate using QEMU-
KVM 2.4.1 and Linux 4.3.

4.1. System Architecture

The system architecture of IPmigrate is illustrated in
Fig. 5. The main host runs QEMU-KVM modified for IPmi-
grate, while each sub-host runs a memory server maintaining
part of the memory of a split-memory VM. The modified
QEMU-KVM maintains the network page table and the sub-
host table. The network page table manages the mapping
from a page frame number to a host identifier to enable

QEMU-KVM

main host sub-host

memory server

VM core

memory

network

page table
memory page

sub-table

bitmaps bitmaps

Figure 5: The system architecture of IPmigrate.

remote paging. The sub-host table manages the mapping
from a host identifier to the IP address of the host. A
memory server maintains the page sub-table for managing
the mapping from a page frame number to the pointer to
the memory data contained in the page.

In addition to these tables, each source host involved
in partial migration maintains three bitmaps: transfer, re-
transfer, and invalidate bitmaps. The transfer bitmap man-
ages whether each page has been transferred or not. The
retransfer bitmap manages whether each page should be
(re)transferred or not. For this bitmap, the main host uses
the dirty bitmap, which manages updated pages for VM mi-
gration in the existing QEMU-KVM. The invalidate bitmap
manages whether each transferred page should be removed
or not at the destination host.

4.2. Subst Migration for the Main Host

At the source main host, QEMU-KVM transfers part
of the memory of a split-memory VM to the destination
main host using the network page table. For a page existing
in the main host, it transfers the memory data and sets
the corresponding bit in the transfer bitmap. For a page
existing in a sub-host, it transfers only the IP address of the
sub-host to the destination main host. If pages are updated
during subst migration, QEMU-KVM retransfers them on
the basis of the retransfer bitmap. Finally, it waits for the
completion of pending paging requests and stops the VM.
Then, it transfers the rest of the memory and the state of
the VM core and completes the migration.

At the destination main host, QEMU-KVM registers the
entire memory region used by a new VM to the user-
faultfd mechanism in Linux when the migration is started.
userfaultfd is a mechanism for notifying the QEMU-KVM
process of information on page faults that occur for the
registered memory region. When QEMU-KVM receives
memory data from the source main host, it allocates a new
page to the VM and stores the data in the page. Then, it
registers the page to the network page table to record that
the page exists in the main host. When it receives only
the IP address of a sub-host, it registers the page to the
table to record that the page exists in that sub-host. After
QEMU-KVM receives information on the entire memory
and the VM core, it establishes the connections to the source
sub-hosts and restarts the execution of the split-memory

destination main hostsource main host

source sub-host

page out page in

retransfer

invalidate

Figure 6: Handling remote paging during subst migration
for the main host.

VM. After the migration, IPmigrate performs remote paging
between the destination main host and the source sub-hosts.

When a page-in occurs from a sub-host during the
migration, QEMU-KVM in the source main host examines
the transfer bitmap. If the target page has not yet been
transferred, QEMU-KVM sets the corresponding bit in the
retransfer bitmap. Then, it transfers the page to the destina-
tion main host later, as illustrated in Fig. 6. When a page-
out occurs to a sub-host, QEMU-KVM similarly examines
the transfer bitmap. Unlike the case of page-ins, it sets the
corresponding bit in the invalidate bitmap if the target page
has been already transferred to the destination main host. On
the basis of the invalidate bitmap, QEMU-KVM transfers
an invalidation request to the destination main host later.
Then, QEMU-KVM in the destination main host removes
the target page from the memory region of the VM.

4.3. Subst Migration for a Sub-host

To execute subst migration for a sub-host, IPmigrate
first sends a special command to QEMU-KVM in the main
host using the QEMU machine protocol (QMP). This is
because this migration does not move the VM core to the
destination host unlike traditional migration. When QEMU-
KVM receives this command, it sends a request for subst
migration to the specified sub-host. At that source sub-host,
the memory server transfers the memory data of each page
existing in that host to the destination sub-host. Then, it sets
the corresponding bit in the transfer bitmap.

If remote paging occurs during the migration, IPmigrate
handles it in a similar manner to subst migration for the
main host, as illustrated in Fig. 7. When a page-in occurs
to the main host, the memory server in the source sub-
host examines the transfer bitmap. If the target page has
been transferred to the destination sub-host, the memory
server sets the corresponding bit in the invalidate bitmap.
The memory server sends an invalidation request to the
destination sub-host later. Unlike subst migration for the
main host, the memory server in the destination sub-host
removes the page from the page sub-table and releases it.
When a page-out occurs from the main host, the memory

destination

sub-host

source main host

source

sub-host

page out page in

retransfer

invalidate

Figure 7: Handling remote paging during subst migration
for a sub-host.

server sets the corresponding bit in the retransfer bitmap. It
transfers the page to the destination sub-host later.

If the number of pages to be transferred becomes small
enough, the memory server sends a request for temporarily
stopping remote paging to the main host. When QEMU-
KVM in the main host receives this request, it acquires a
lock so that it does not send any page-in or page-out requests
to the sub-host. In addition, it waits for the completion
of pending paging requests. After that, the memory server
transfers the rest of the pages to be transferred and sends
completion notification to the main host. QEMU-KVM in
the main host updates the sub-host table so that the sub-host
identifier is mapped to the IP address of the destination sub-
host. Finally, it establishes the connection to the destination
sub-host and releases the lock for remote paging.

4.4. Merge Migration

Merge migration basically performs subst migration for
the main host in parallel with that for all the sub-hosts to the
same destination host. When QEMU-KVM in the destina-
tion host receives memory data from the source main host,
it handles the data in a similar manner to subst migration
for the main host. Unlike single subst migration, QEMU-
KVM in the source main host does not transfer memory
information on the pages existing in the sub-hosts. Such
information is not necessary because memory data of those
pages are transferred from the sub-hosts. For memory data
transferred from the source sub-hosts, QEMU-KVM in the
destination host handles received data unlike subst migration
for sub-hosts. The thread dedicated for each source sub-host
receives data and stores it in the memory of a new VM.

IPmigrate enables parallel memory transfers from the
main host and sub-hosts by using multiple NICs at the
destination host. Using policy-based routing in iproute2,
IPmigrate creates a routing table for each NIC and adds a
rule for referring to the routing table on the basis of the IP
address assigned to the NIC. Without such special routing,
only one NIC can be used to send packets in one network
segment. It is possible to use network interface bonding,
but this configuration depends on network switches. The

destination host

source main host

source sub-host

page out page in

retransfer

Figure 8: Handling remote paging during merge migration.

link aggregation function in several switches transfers data
to only one NIC.

When the memory transfer is completed from one of
the source hosts, IPmigrate finishes the migration for that
host. If the memory transfer is completed earlier from the
source main host, QEMU-KVM in the destination host
establishes the connections to the source sub-hosts for which
the migration is not completed. Then, it runs the migrated
VM whose memory is still split using remote paging. Note
that page-outs are not performed because the destination
host has sufficient free memory in merge migration. After
that, merge migration becomes simple subst migration for
sub-hosts. If the memory transfer is completed from a source
sub-host, IPmigrate just finishes subst migration for that sub-
host. The VM can directly access the memory that has been
transferred from the sub-host in the destination host.

If the memory transfer from a sub-host is completed
earlier than from the main host, QEMU-KVM in the main
host connects to the destination host. Then, QEMU-KVM
in the destination host needs to perform remote paging as a
memory server. Otherwise, we need to run a memory server
to share the memory of the VM and perform remote paging.
Since neither implementation was easy, the memory server
in the sub-host does not complete the migration but waits at
this time. When it receives a page-in or page-out request, it
handles that request. After QEMU-KVM in the source main
host stops the VM in the final phase, it sends a completion
request to the sub-host. Then, the memory server in the sub-
host finishes the migration.

When a page-in occurs to the source main host during
the migration, the memory server in the source sub-host
sends the target page as well as whether the page has to
be transferred or not to the source main host. A page needs
to be transferred if the corresponding bit is not set in the
transfer bitmap or if that is set in the retransfer bitmap.
According to the received information, QEMU-KVM in the
source main host transfers the target page to the destination
host by setting the corresponding bit in the retransfer bitmap,
as illustrated in Fig. 8. Unlike single subst migration for a
sub-host, the memory server does not invalidate the paged-in
page.

Similarly, when a page-out occurs to a source sub-host
during the migration, QEMU-KVM in the source main host

sends the target page as well as whether the page has to be
transferred or not to the destination host. The memory server
in the sub-host transfers the page only if the page has to
be transferred. Unlike single subst migration, QEMU-KVM
does not invalidate the paged-out page.

5. Experiments

We conducted experiments for examining the perfor-
mance of subst migration and merge migration. For com-
parison, we performed traditional one-to-one migration for
a normal VM. For the (main) hosts running the VM core, we
used two PCs with an Intel Xeon E3-1270 v3 processor, 32
GB of memory, and two Intel X540-T2 dual-port adaptors
for 10 Gigabit Ethernet (GbE). We ran Linux 4.3 and
QEMU-KVM 2.4.1. For sub-hosts, we used up to three PCs.
Two PCs equipped with an Intel Core i7-8700 processor, 64
GB of memory, and an Intel X550-T2 adaptor and ran Linux
4.15. The other PC equipped with an Intel Xeon E3-1270 v2
processor, 16 GB of memory, and an Intel X540-T2 adaptor
and ran Linux 4.3. These five PCs were connected with a
10 GbE switch.

We created a VM with one virtual CPU and changed
the memory size from 4 to 24 GB. This VM did not have
so large memory due to the hardware limitation, but that
was sufficient to show the effectiveness of partial migration.
For a split-memory VM, we equally divided the memory
into 2 to 4 hosts. We measured the migration time and the
downtime at least 5 times.

5.1. Performance of Subst Migration

To examine the performance of subst migration, we first
measured the migration time and the downtime in subst
migration for the main host. In this experiment, we used an
idle VM without running any active applications. Fig. 9(a)
shows the time needed for migrating a split-memory VM
across various numbers of hosts. Compared with traditional
migration of a normal VM, the migration time was reduced
to approximately 50%, 33%, and 25% for a split-memory
VM across 2, 3, and 4 hosts, respectively. This is because
the migration time is basically proportional to the amount
of transferred memory. In subst migration, only the memory
existing in the main host was transferred.

Fig. 9(b) shows the downtime during the migration. The
downtime of subst migration for the main host was always
shorter than that of traditional migration. This is because
QEMU-KVM could not accurately estimate the downtime.
QEMU-KVM enters the final phase of the migration when
it estimates that the rest of the memory will be transferred
in 300 ms. In subst migration, the rest of the memory
often includes the pages existing in sub-hosts. Therefore, the
final memory transfer was completed earlier because only a
smaller amount of memory was actually transferred to the
destination host than during the estimation.

The downtime tended to slightly increase as the total
memory size of a VM became larger. This is because it
took a longer time for QEMU-KVM to check the entire

0 4 8 12 16 20 24
total memory size (GB)

0

5

10

15

20

25

m
ig

ra
ti
o
n
 t
im

e
 (

s
e
c
)

traditional
subst (main, 2 hosts)
subst (main, 3 hosts)
subst (main, 4 hosts)

(a) Migration time

0 4 8 12 16 20 24
total memory size (GB)

0

100

200

300

400

500

600

d
o

w
n

ti
m

e
 (

m
s
)

traditional
subst (main, 2 hosts)
subst (main, 3 hosts)
subst (main, 4 hosts)

(b) Downtime

Figure 9: The performance of subst migration for the main
host.

0 4 8 12 16 20 24
total memory size (GB)

0

5

10

15

20

25

m
ig

ra
ti
o
n
 t
im

e
 (

s
e
c
)

traditional
subst (sub, 2 hosts)
subst (sub, 3 hosts)
subst (sub, 4 hosts)

(a) Migration time

0 4 8 12 16 20 24
total memory size (GB)

0

100

200

300

400

500

600

d
o

w
n

ti
m

e
 (

m
s
)

traditional
subst (sub, 2 hosts)
subst (sub, 3 hosts)
subst (sub, 4 hosts)

(b) Downtime

Figure 10: The performance of subst migration for a sub-
host.

dirty bitmap for memory retransfers if the memory size was
larger. For a split-memory VM across 2 hosts, the downtime
increases largely in several memory sizes, i.e., 2 GB and
more than 12 GB. This reason is under investigation.

Next, we measured the migration time in subst migration
for a sub-host. Fig. 10(a) shows the migration time of a
split-memory VM across various numbers of hosts. The
migration time was very similar to that in subst migration
for the main host because the amount of transferred memory
was almost the same. However, the proportion of memory-
unrelated tasks was smaller than that in subst migration for
the main host. This is because subst migration for a sub-
host is simpler than that for the main host. Unlike subst
migration for the main host, the downtime was zero, as
shown in Fig. 10(b). Since this migration does not transfer
the VM core, it does not need to stop the VM. If the split-
memory VM causes remote paging during the final phase
of the migration, only that virtual CPU is suspended until
the final phase finishes. This can become the downtime,
but remote paging did not occur at the final phase in our
experiment.

5.2. Performance of Merge Migration

To examine the performance of merge migration, we
measured the migration time and the downtime. Fig. 11(a)

0 4 8 12 16 20 24
total memory size (GB)

0

5

10

15

20

25
m

ig
ra

ti
o
n
 t
im

e
 (

s
e
c
)

traditional
merge (2 hosts)
merge (3 hosts)
merge (4 hosts)

(a) Migration time

0 4 8 12 16 20 24
total memory size (GB)

0

100

200

300

400

500

600

d
o

w
n

ti
m

e
 (

m
s
)

traditional
merge (2 hosts)
merge (3 hosts)
merge (4 hosts)

(b) Downtime

Figure 11: The performance of merge migration.

0

50

100

150

200

250

m
ig

ra
ti
o

n
 t

im
e

 (
s
e

c
)

traditional
paging
merge

(a) Migration time
0

10

20

30

40

p
a
g
e
d
-i
n
 m

e
m

o
ry

 (
G

B
) traditional

paging
merge

0.160

(b) Page-ins

Figure 12: Comparison between merge migration and paging
migration.

shows the migration time of a split-memory VM across var-
ious numbers of hosts. Compared with traditional migration
of a normal VM, the migration time was reduced to approx-
imately 50% and 33% for a split-memory VM across 2 and
3 hosts, respectively. However, the proportion of memory-
unrelated tasks was larger than that in subst migration. This
is because of the complexity of the mechanism of merge
migration. On the other hand, the migration time of a split-
memory VM across 4 hosts was almost the same as that
across 3 hosts or even increased. This is due to the hardware
limitation. The PC used for the destination main host did not
have a sufficient bandwidth of PCI Express for four 10 GbE
communications. Therefore, we used only three out of four
network ports provided by two NICs.

Fig. 11(b) shows the downtime. This result is very
similar to that in subst migration for the main host. The
downtime in merge migration was less than that in tra-
ditional migration. It tended to increase gradually as the
memory size of a VM increased. For a split-memory VM
across 2 hosts, the downtime was long for several memory
sizes of a VM.

Finally, we compared merge migration with paging mi-
gration, which migrated a split-memory VM to one host
using traditional one-to-one migration. As pointed out in
Section 2.2, paging migration caused frequent remote pag-
ing. In this experiment, we ran a split-memory VM with
24 GB of memory across 2 hosts. Fig. 12(a) shows the
migration time. Paging migration of a split-memory VM
took 6.1x longer time than traditional migration of a normal
VM. Merge migration could improve the performance by

tradi-
tional

merge subst
(main)

subst
(sub)

0

20

40

60

80

100

m
ig

ra
ti
o

n
 t

im
e

 (
s
e

c
)

idle
memory-intensive

(a) Migration time

tradi-
tional

merge subst
(main)

subst
(sub)

0

200

400

600

d
o

w
n

ti
m

e
 (

m
s
)

idle
memory-intensive

0

(b) Downtime

Figure 13: The performance of various types of migration
for a memory-intensive VM.

12x. This performance improvement came from the dramatic
reduction of page-ins, as shown in Fig. 12(b). In merge
migration, all of the page-ins are caused by the internal
activity of the VM.

5.3. Migration of a Memory-intensive VM

To examine the migration performance of a memory-
intensive VM, we performed partial migration of a VM with
24 GB of memory across two hosts. A benchmark program
modified 6 GB of the memory repeatedly. Fig. 13(a) shows
the migration time of the memory-intensive VM and, for
comparison, an idle VM. Except for subst migration for a
sub-host, the migration time of the memory-intensive VM
became longer than that of the idle VM. This is because a
large amount of memory was retransferred due to continuous
memory updates. The reason why the migration time of
subst migration for a sub-host did not increase is that mem-
ory retransfers were not performed. Since the size of the
working-set memory was smaller than the physical memory
size of the main host, updated memory was not paged out to
the sub-host. It should be noted that the increase in migration
time of merge migration and subst migration for the main
host was smaller than that of traditional migration.

Fig. 13(b) shows the downtime of the two VMs. Com-
pared with the idle VM, the memory-intensive VM in-
creased the downtime in all the migration methods. As a
result, the downtime became almost the same. This means
that the amount of memory to be transferred in the final
phase became almost the same. As described in the above
experiments, QEMU-KVM stops a VM if the amount of
memory to be transferred becomes less than the threshold.
In traditional migration, that amount of transferred data is
almost the same between the memory-intensive VM and
the idle VM because the entire memory of a VM exists
in the source host. In merge migration and subst migration
for the main host, in contrast, this is not always the case.
The amount of transferred data in the memory-intensive VM
is often larger than that in the idle VM. The memory to be
transferred can include pages existing in the sub-host for the
idle VM. For the memory-intensive VM, that did not include
such pages because the transferred memory is updated one,
which usually exists in the source main host. This means that

0 30 60 90 120 150 180
elapsed time (sec)

0

2

4

6

8

10

12

14

16

T
P

S
 (

K
o
p
s
/s

)

after traditional migration
after merge migration
before merge migration

Figure 14: The performance of memcached after merge
migration.

the downtime of the memory-intensive VM is rather correct
in terms of the migration algorithm of QEMU-KVM.

5.4. Performance after Merge Migration

To examine the performance of a VM after merge mi-
gration, we ran memcached [14] in a split-memory VM and
measured its throughput after the migration. For comparison,
we also measured that after traditional one-to-one migration
of a normal VM. We used a VM with 24 GB of memory
and assigned 12 GB of memory to memcached running in
it. Before the migration, we set data to memcached for 300
seconds using the memaslap benchmark [15] with 100%
SET operation. After the migration, we accessed data in
memcached for 180 seconds using the benchmark with 60%
SET and 40% GET operations.

Fig. 14 shows the changes in throughput after VM
migration. The throughput after merge migration was 12.7
Kops/s and almost the same as that after traditional migra-
tion of a normal VM. Since the size of working-set memory
exceeded the physical memory size of the main host in this
experiment, the throughput before merge migration was only
2.8 Kops/s. This performance degradation can be mitigated
by using InfiniBand RDMA [8], [10], [11] instead of TCP/IP
used in IPmigrate, but it is difficult to make the overhead
of remote paging negligible. Merge migration could resolve
this performance issue successfully by migrating a VM to
one host.

6. Related Work

Post-copy VM migration [16] transfers only the VM
core indispensable for running a VM to the destination
host and then restarts the VM quickly. This is considered
one type of split migration in that the VM core and the
memory exist in different hosts. After that, the memory left
in the source host are transferred on demand like remote
paging or in the background. This background transfer is
one type of merge migration and corresponds to the case
that the memory transfer is completed earlier from the main
host. Unlike merge migration, remote paging does not need
to be considered so specially during this migration. Page-
ins during the migration are a simple on-demand transfer

because the VM core is moved to the destination host at
first. Paged-in pages are not transferred in the background
transfer. Page-outs are not performed during the migration.

Scatter-Gather live migration [17] uses multiple inter-
mediate hosts between the source and destination hosts. It
pushes the memory of a VM to intermediate hosts as fast
as possible and the destination host obtains the memory
from these hosts. This migration also performs both the on-
demand and background transfers. The first half is similar
to split migration, while the background transfer in the
latter half is similar to merge migration. Like post-copy VM
migration, this migration does not need to specially consider
remote paging caused during the migration.

MemX [9] runs a VM using the memory of multiple
hosts from the boot time like a split-memory VM. The
guest operating system in a VM explicitly provides a block
device to access the memory of the MemX servers in the
other hosts. The migration of this VM is considered subst
migration for the main host in that the memory of the MemX
servers are not transferred. Since the guest operating system
itself performs remote paging, the memory of the VM can
be transferred without excess or deficiency even if remote
paging occurs during the migration. MemX also provides
the other modes transparent to the operating system, but
VM migration is not supported in those modes.

MemX supports page migration, which transfers the
memory of the MemX server to another server. This is
similar to subst migration for a sub-host. However, remote
paging during page migration is not considered or the
migration performance is not evaluated. In addition, it is
proposed to run the MemX sever in another VM and migrate
the MemX server with the memory of the target VM. It is
pointed out that this method can increase the overhead of
remote paging.

vMotion provides two different migration methods in
terms of swap space [18]. Unshared-swap vMotion uses
different swap spaces between the source and destination
hosts. After it transfers the memory of a VM accommodated
in physical memory and restarts the VM at the destination
host, it transfers memory data stored in the swap space of
the source host to the destination host with the VM running.
This is similar to merge migration if we consider the swap
space in the source host as a sub-host. It corresponds to the
case that subst migration for the main host is first completed
and then that for the sub-host is performed. However, the
memory transfers from the source host and the swap space
cannot be done in parallel.

Shared-swap vMotion uses one swap space shared be-
tween the source and destination hosts. It transfers only the
memory of a VM accommodated in physical memory to
the destination host. The memory data in the swap space is
not transferred. If we consider the shared swap space as a
sub-host, this is similar to subst migration for the main host.
Agile live migration [19] is similar to shared-swap vMotion,
but it performs page-outs of the memory of a VM to the
shared swap space as much as possible before the migration.
This can reduce the amount of memory to be transferred
during the migration. For this purpose, it keeps track of the

working-set memory of a VM and pages out the memory
that is not needed by the VM. Since these migration methods
do not consider memory paged-out during the migration,
such memory can exist in both physical memory and the
swap space at the destination host.

Jettison [20] performs partial migration of desktop VMs
to reduce power consumption of desktop PCs. To rapidly
consolidate inactive desktop VMs, it transfers only the VM
core and the working-set memory of a desktop VM to
the server. When the desktop VM becomes active, partial
migration is performed again so that the VM can locally
access the rest of the memory in the desktop PC. The former
is one type of split migration, while the latter is one type
of merge migration.

S-memV [6], [7] is the first system for enabling split
migration. The first paper [6] proposes the concept of not
only split migration but also merge migration and subst
migration. Split migration has been implemented and eval-
uated thoroughly in the following paper [7], but merge
migration and subst migration are first implemented in this
paper. We clarified several technical challenges to imple-
ment these migration methods and achieved correct and
efficient migration. In addition, this paper generalizes the
original concept of merge migration so that only several
hosts running part of a split-memory VM are consolidated
into one host. Also, it generalizes the original concept of
split migration so that a VM fragment in one host can be
further divided into multiple hosts. As more complicated
partial migration, this paper proposes split/merge migration.
These extended concepts have not been yet implemented,
but our implementation of basic merge migration and subst
migration can be extended easily.

7. Conclusion

This paper proposed flexible and efficient partial migra-
tion of split-memory VMs. The partial migration is classified
into four types: subst, merge, split, and split/merge migra-
tion. We have implemented a system named IPmigrate for
the first two migration methods. Subst migration substitutes
one of the hosts running a split-memory VM and merge
migration consolidates VM fragments in multiple hosts into
one host. Even if a split-memory VM causes remote paging
between hosts during partial migration, IPmigrate preserves
consistency by memory retransfers and invalidation and
then transfers the memory of the VM without excess and
deficiency. From our experiments, we showed the efficiency
of partial migration in IPmigrate.

One of our future work is to improve the implementation
of merge migration. In the current implementation, sub-hosts
have to wait for the completion of the migration for the main
host. It is desirable to finish the migration of a sub-host soon
after the sub-host completes the memory transfer. Another
direction is to implement various types of partial migration,
e.g., merge migration only for several hosts and split/merge
migration. We believe that all types of partial migration can
be implemented by extending subst migration and merge
migration for all the hosts.

Acknowledgements

The research results have been achieved by the “Re-
silient Edge Cloud Designed Network (19304),” the Com-
missioned Research of National Institute of Information and
Communications Technology (NICT), Japan.

References

[1] Amazon Web Services, Inc. Amazon EC2 High Memory Instances.
https://aws.amazon.com/ec2/instance-types/high-memory/, 2019.

[2] SAP SE. What is SAP HANA? An Unrivaled Data Platform for the
Digital Age. https://www.sap.com/products/hana.html.

[3] Microsoft Corporation. SQL Server 2017 on Windows and Linux.
https://www.microsoft.com/en-us/sql-server/sql-server-2017.

[4] Apache Software Foundation. Apache Spark – Lightning-Fast Cluster
Computing. http://spark.apache.org/.

[5] Facebook, Inc. Presto: Distributed SQL Query Engine for Big Data.
https://prestodb.io/.

[6] M. Suetake, H. Kizu, and K. Kourai. Split Migration of Large
Memory Virtual Machines. In Proc. ACM SIGOPS Asia-Pacific
Workshop of Systems, 2016.

[7] M. Suetake, T. Kashiwagi, H. Kizu, and K. Kourai. S-memV: Split
Migration of Large-memory Virtual Machines in IaaS Clouds. In
Proc. IEEE Int. Conf. Cloud Computing, pages 285–293, 2018.

[8] S. Liang, R. Noronha, and D. Panda. Swapping to Remote Memory
over InfiniBand: An Approach using a High Performance Network
Block Device. In Proc. IEEE Cluster Computing, 2005.

[9] U. Deshpande, B. Wang, S. Haque, M. Hines, and K. Gopalan.
MemX: Virtualization of Cluster-Wide Memory. In Proc. Int. Conf.
Parallel Processing, pages 663–672, 2010.

[10] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. Shin. Efficient
Memory Disaggregation with Infiniswap. In Proc. USENIX Symp.
Networked Systems Design and Implementation, 2017.

[11] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker. Can Far Memory Improve
Job Throughput? In Proc. European Conf. Computer Systems, 2020.

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
Linux Virtual Machine Monitor. In Proc. Ottawa Linux Symp., pages
225–230, 2007.

[13] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt,
J. Chang, A. Chaugule, N. Deng, J. Shahid, G. Thelen, K. Yurt-
sever, Y. Zhao, and P. Ranganathan. Software-Defined Far Memory
in Warehouse-Scale Computers. In Proc. Int. Conf. Architectural
Support for Programming Languages and Operating Systems, pages
317–330, 2019.

[14] B. Fitzpatrick. memcached – A Distributed Memory Object Caching
System. http://memcached.org/.

[15] B. Aker. memaslap – Load Testing and Benchmarking a Server.
http://docs.libmemcached.org/bin/memaslap.html.

[16] M. R. Hines and K. Gopalan. Post-Copy Based Live Virtual Machine
Migration Using Adaptive Pre-Paging and Dynamic Self-Ballooning.
In Proc. Int. Conf. Virtual Execution Environments, pages 51–60,
2009.

[17] U. Deshpande, Y. You, D. Chan, N. Bila, and K. Gopalan. Fast Server
Deprovisioning through Scatter-Gather Live Migration of Virtual
Machines. In Proc. Int. Conf. Cloud Computing, pages 376–383,
2014.

[18] I. Banerjee, P. Moltmann, K. Tati, and R. Venkatasubramanian.
VMware ESX Memory Resource Management: Swap. VMware
Technical J., 3(1), 2014.

[19] U. Deshpande, D. Chan, T. Guh, J. Edouard, K. Gopalan, and N. Bila.
Agile Live Migration of Virtual Machines. In Proc. IEEE Int. Parallel
and Distributed Processing Symp., 2016.

[20] N. Bila, E. Lara, K. Joshi, H. Lagar-Cavilla, M. Hiltunen, and
M. Satyanarayanan. Jettison: Efficient Idle Desktop Consolidation
with Partial VM Migration. In Proc. ACM European Conf. Computer
Systems, pages 211–224, 2012.

