
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

EXTENDED CONFERENCE PAPER

Flexible Service Consolidation with
Nested Virtualization and Library Operating Systems

Kenichi Kourai* | Kouta Sannomiya

1Department of Creative Informatics,
Kyushu Institute of Technology, Fukuoka,
Japan

Correspondence
*Kenichi Kourai, 680-4 Kawazu, Iizuka,
Fukuoka 820–8502, Japan. Email:
kourai@ksl.ci.kyutech.ac.jp

Summary

In Infrastructure-as-a-Service clouds, users can reduce costs by scale-in or -down
when running services are under-utilized. Since these optimizations of instance
deployment require at least one minimum instance even for running an under-utilized
service, cost reduction is limited. For further optimization, multiple services can
be consolidated into one instance. However, services have to be stopped temporar-
ily at the consolidation time and isolation between services becomes weaker after
the consolidation. To solve these problems, this paper proposes FlexCapsule, which
enables seamless and secure service consolidation in existing IaaS clouds. FlexCap-
sule runs each service in a lightweight virtual machine (VM) called an app VM,
using a library operating system. An app VM runs inside an instance using a tech-
nique called nested virtualization. FlexCapsule can optimize instance deployment
with negligible downtime by flexibly migrating app VMs. Thanks to strong isolation
provided by app VMs, it can guarantee security between consolidated services. In
addition, FlexCapsule provides multi-process support using app VMs such as process
fork and process pools. We have implemented FlexCapsule in Xen using both fully
virtualized OSv and para-virtualized MiniOS. Then we confirmed its effectiveness
using several applications.

KEYWORDS:
IaaS clouds, service consolidation, nested virtualization, library operating system, process pool, virtual
private network

1 INTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds provide users with instances, which are usually virtual machines (VMs), and users run
their services in instances. Since users can change instance deployment flexibly in IaaS clouds, they can respond to load changes
rapidly. For example, users can use minimum instance deployment at start up and increase the number or the resource amount of
instances when their services become over-utilized. In contrast, they can decrease the number or the resource amount to reduce
costs when their services become under-utilized. Thus it is necessary to optimize instance deployment so that used instances
are always sufficient but minimum.

However, it is not easy to perform such optimization in current IaaS clouds. If users adjust the number of instances by scale-out
and -in, they need at least one instance even for an under-utilized service and cannot further reduce costs. As an optimization for
one instance, users can adjust the amount of resources assigned to an instance by scale-up and -down. Unfortunately, most of the

2 Kourai ET AL

existing clouds achieve this optimization by switching instance types offline because they do often not provide the function for
dynamically changing resource allocation to an instance. Therefore, users need at least one minimum instance even for a mostly
idle service. Although the cost of each instance may be low, the total cost could become high if users run many under-utilized
services.

For further optimization, users can consolidate services running in multiple instances into one instance. When there are several
under-utilized services, the user can run them in one instance and reduce costs. Later, when some of the services become over-
utilized, the user can de-consolidate them to other instances. However, this service consolidation and de-consolidation cause
service downtime when users move services between instances. This problem can be solved by using process migration1, but
a security issue arises due to consolidating services. Since multiple services run in the same instance, isolation among them
becomes weaker than traditional instance-level isolation.

In this paper, we propose FlexCapsule, which achieves seamless and secure service consolidation for optimizing instance
deployment. FlexCapsule runs each service in a lightweight virtual machine (VM) called an app VM, using a library operating
system (LibOS)2,3,4. To enable an app VM to flexibly run with appropriate resources in existing IaaS clouds, FlexCapsule
runs an app VM inside an instance using nested virtualization5,6. Since it constructs a virtual private network (VPN) for all
app VMs across multiple instances, app VMs can be seamlessly migrated between instances. Thus FlexCapsule can optimize
instance deployment without disrupting services enclosed in app VMs. In addition, it can guarantee security between services
consolidated into one instance using strong isolation provided by app VMs.

We have implemented FlexCapsule in Xen 4.2.47. FlexCapsule provides two types of LibOSes running in app VMs. One is
based on OSv 0.214, while the other is based on MiniOS in Xen. We have added migration support to these LibOSes because
these LibOSes use para-virtualization techniques to reduce virtualization overhead. As a helper of the LibOS, FlexCapsule
provides an OS server running inside each instance. For example, when the fork function in the LibOS is invoked, the OS server
clones the entire app VM. When the listen function is invoked, the OS server registers a rule for port forwarding to the app
VM. Combining these mechanisms, the OS server enables app VMs to create process pools. According to our experiments, it
was shown that FlexCapsule could optimize instance deployment according to performance requirements of services. Migration
performance of app VMs was better than the normal VM running Linux, thanks to smaller memory footprints.

This paper is an extended version of our previous conference paper8. In this paper, we have developed the FlexCapsule OS
based on MiniOS in addition to the OSv-based one. Whereas OSv is a fully virtualized LibOS with para-virtual device drivers,
MiniOS is a completely para-virtualized LibOS. Therefore, MiniOS can further reduce the overhead and run in smaller memory
footprint. Using the MiniOS-based FlexCapsule OS, we conducted several experiments and compared the results with those in
the OSv-based one.

This paper is organized as follows. Section 2 describes issues in optimizing instance deployment in existing IaaS clouds and
related work. Section 3 proposes FlexCapsule for enabling seamless and secure service consolidation using app VMs. Section 4
describes its implementation and Section 5 shows experimental results. Section 6 concludes this paper.

2 BACKGROUND

2.1 Optimizing Instance Deployment
In IaaS clouds, the optimization of instance deployment is performed according to resource utilizations of instances, as illustrated
in Fig. 1. The most popular optimization is scale-out and -in, which adjust the number of instances. When a service becomes
over-utilized, the user can increase the number of instances by scale-out and distribute the load to more instances. In contrast,
when a service becomes under-utilized, the user can decrease the number of instances by scale-in to reduce costs. However, if
only one instance is deployed for an under-utilized service, the user cannot further reduce the number of instances. For example,
consider intra servers that are rarely accessed during weekends and personal servers that are sometimes accessed. When there
is almost no request to such a server, the system load becomes almost zero, but one instance is required if the server cannot be
stopped. Thus the effectiveness of this optimization is limited when services are almost not running.

The optimization for one instance is scale-up and -down, which adjust the amount of resources assigned to each instance.
When a service becomes over-utilized, the user can increase the number of virtual CPUs (vCPUs), the performance of vCPUs,
and/or the amount of memory of the instance by scale-up. In contrast, when a service becomes under-utilized, the user can
decrease the amount of such resources by scale-down to reduce costs. However, most of the existing clouds like Amazon EC2
achieve scale-up and -down by switching instance types offline. Since the user has to choose one from several instance types,

Kourai ET AL 3

service

service

instance

service service

service
service

scale-out

de-

consolidation

scale-up

service

scale-in

consolidation

scale-

down

high costlow cost

service

instance

instance

FIGURE 1 Various optimizations of instance deployment.

cost reduction is limited by the cost of the minimum instance type. In addition, when the user switches his current instance to
a new one, he has to stop services, move their data to the new instance, and restart these services in the new instance. This
duration becomes downtime, for which services cannot be provided.

VMware vCloud Air Virtual Private Cloud OnDemand9 supports seamless and flexible scale-up and -down of instances.
Users can dynamically increase or decrease the amount of resources assigned to their instances, according to service demands.
Unlike most of exiting IaaS clouds, they do not need to create a new instance of appropriate type and move services to it for
scale-up and -down. Since users can pay only for assigned resources, not for instances, the cost can be reduced for under-utilized
services. This is one implementation of the Resource-as-a-Service cloud10. However, the number of vCPUs cannot be decreased
less than one.

For further optimization, users can consolidate multiple services running in multiple instances into one instance. This is called
service consolidation. For example, consider a multi-tier application that consists of multiple services such as a Web server, an
application server, and a database. When these services are running across multiple instances and all of them are under-utilized,
the user can run these services in one instance to reduce costs. Later, when the instance becomes over-utilized, the user can
de-consolidate these services to multiple instances again to perform load balancing. For further cost reduction, even different
users could consolidate their services into one instance. However, a security issue arises due to this service consolidation. Since
multiple services run in the same instance, isolation among them becomes weaker than when using one instance per service. In
addition, consolidation and de-consolidation also cause downtime when the user moves services between instances.

To reduce downtime during service consolidation and de-consolidation and scale-up and -down, process migration1 can be
used. Process migration enables application processes to be moved between hosts without disrupting services. For example,
Zap11 provides a thin virtualization layer between processes and the OS and runs a group of processes in a container called a
pod. Using pods, Zap enables most of the process state to be maintained on process migration. However, isolation between pods
is not strong enough because a pod is protected only by namespaces provided by the OS. Picocenter12 runs one service in a
Linux container and runs containers inside instances. Instead of process migration, it swaps out idle containers to cloud storage
and swaps in them when the services in the containers are used. Since swapped-out containers cannot provide services at all,
this mechanism is applicable only to mostly idle services. In addition, isolation between containers is not strong like pods.

2.2 Nested Virtualization
Nested virtualization5 enables VMs and the hypervisor to run inside an outer VM. For Intel x86-based systems, nested virtu-
alization has been developed without hardware support6. It virtualizes the CPU instruction set for virtualization by trapping
and emulating those instructions. It also virtualizes MMU by using multi-dimensional paging. Nested virtualization is used for
various purposes in clouds. For example, xCloud13 and Xen-Blanket14 allow users to use their own hypervisor and implement
cross-platform live migration in public clouds. HVX15 provides a thin virtualization layer using nested virtualization and enables
users to run unmodified VMs in almost any existing IaaS clouds. Inception16 takes one step further and enables users to build
nested IaaS clouds on top of public clouds.

4 Kourai ET AL

Nested virtualization causes larger overhead than traditional single-level virtualization. However, it is reported that the over-
head is 6–8% for common workloads6. Special-purpose cloud hypervisors as used in CloudVisor17 and TinyChecker18 can
improve the performance of nested virtualization more. Hardware support for nested virtualization has been also added. For
example, Intel VMCS Shadowing19 can eliminate VM exits due to VMREAD and VMWRITE instructions for accessing VMCS.
The ARMv8.3 architecture20 supports nested virtualization and its extension called NEVE has been proposed for coalescing
and deferring traps21.

2.3 LibOS
A LibOS2 enables each application to link most of the functions of the OS as a library and to perform its own resource manage-
ment. Developers can customize a LibOS, considering characteristics of each application, and optimize application performance.
There are many LibOSes running in VMs on top of the hypervisor. MiniOS in Xen7 is a minimal OS and runs only one appli-
cation in the kernel address space. Libra22, GUK23, and OSv 4 run the Java VM with the LibOS to optimize the execution of
Java applications. Libra provides the LibOS with only functions that affect the performance of the Java VM and uses file sys-
tems and networks provided externally in Xen. GUK extends MiniOS and improves the memory management of MiniOS. It
also adds support for SMP, memory ballooning, and VM suspension and resumption. OSv can run not only Java applications but
also many existing C applications. MirageOS3 specializes the LibOS to OCaml applications and generates a unikernel directly
running on the hypervisor.

Although a LibOS can run only one application, there are several studies on multi-process support. Xok/ExOS24 can run
the existing Unix applications without modifications using the nano kernel called Exokernel2 and the LibOS. ExOS provides
mechanisms for multi-process such as process fork and inter-process communication using shared memory. Graphene25 supports
multi-process for applications with the Linux-compatible LibOS. It provides an abstraction called a picoprocess26, which runs
on top of the host OS. Its applications can perform inter-process communication using RPC via the LibOS. In addition, Graphene
achieves process fork and non-live migration by application checkpointing. KylinX27 is based on MiniOS and achieves the fork
function by VM fork28. Like normal OS processes, the memory of a VM running the LibOS is shared between parent and child
VMs in a copy-on-write manner. KylinX also support shared libraries.

3 FLEXCAPSULE

This paper proposes FlexCapsule, which enables seamless and secure service consolidation for optimizing instance deployment
in IaaS clouds. FlexCapsule runs each service in a lightweight VM called an app VM inside an existing instance. Using VM
migration, FlexCapsule can move services between instances with negligible downtime at the optimization time of instance
deployment. Thanks to strong isolation between app VMs, FlexCapsule can guarantee security between services consolidated
into one instance.

3.1 System Architecture
Fig. 2 illustrates the system architecture of FlexCapsule. Using nested virtualization6, FlexCapsule runs the hypervisor inside
each instance, which is usually a VM, and runs app VMs on top of the hypervisor. Since the hypervisor is smaller and simpler
than the OS, it is less vulnerable and more secure than the OS. Each app VM runs only one application process and a LibOS,
which is linked to the application to provide functions of the OS without any overhead of protection mechanisms. FlexCapsule
also runs an OS server in each instance and provides functions that cannot be achieved only by the LibOS inside app VMs.

Since FlexCapsule assumes that public IP addresses are assigned only to instances, it assigns private IP addresses to app VMs.
This reduces the cost for using public IP addresses in clouds. To provide services of app VMs to the outside, FlexCapsule uses
network address port translation (NAPT). Thanks to NAPT, different app VMs can use the same public IP address. The public IP
address that each app VM uses is determined at creation time and does not change. Also, it constructs a network with the same
segment across multiple instances using a site-to-site virtual private network (VPN). This VPN enables app VMs to continue to
use the same public and private IP addresses even after they are migrated to other instances. Each packet is first delivered to the
instance with the specified public IP address. Then it is automatically forwarded to an appropriate instance running the target
app VM by the VPN.

Kourai ET AL 5

OS

server

service

LibOS

app VM

service

LibOS

app VM

service

LibOS

app VM

OS

server

hypervisor hypervisor

VPN

instance instance

FIGURE 2 The system architecture of FlexCapsule.

app

VM

app

VM

instance 1

app

VM

instance 1

app

VM

instance 2

131.206.0.1 131.206.0.2

131.206.0.1

131.206.0.2

(a) Consolidation

app

VM

instance

131.206.0.1

new instance

131.206.0.2

app

VM

new instance

131.206.0.1

(b) Scale-up

app

VM

instance

app

VM

instance

new instance

131.206.0.1 131.206.0.2

131.206.0.1

app

VM

new instance

app

VM

131.206.0.2

(c) Scale-out

FIGURE 3 The optimization of instance deployment using the migration of app VMs.

3.2 Optimization Using App VMs
When performing service consolidation, FlexCapsule migrates under-utilized app VMs to one instance, as illustrated in Fig. 3(a).
As a result, if the source instances have no app VM, FlexCapsule stops them and re-assigns their public IP addresses to the
destination instance, e.g., using Elastic IP addresses in Amazon EC2. Thus migrated app VMs can be reached using the same
IP addresses as before service consolidation. In contrast, when performing service de-consolidation, FlexCapsule deploys new
instances and migrates over-utilized app VMs to those instances. Before the migration, FlexCapsule re-assigns one of the public
IP addresses assigned to the source instance to the destination ones.

To scale a service up and down, FlexCapsule deploys a new instance of appropriate type and migrates app VMs in the original
instance to the new one (Fig. 3(b)). Then it stops the original instance and re-assigns that public IP address to the new one. For
scaling a service out, on the other hand, FlexCapsule deploys new instances, clones app VMs inside the original instances, and
migrates them to the new ones (Fig. 3(c)). At this time, FlexCapsule assigns new private IP addresses to the cloned app VMs
but allows them to continue to use the original public IP addresses using NAPT. When scaling a service in, FlexCapsule simply
stops several instances.

3.3 FlexCapsule OS
The FlexCapsule OS is a LibOS running in an app VM. It can reduce the memory footprint of an app VM because only necessary
functions in the FlexCapsule OS are linked to each application at compile time. Therefore running an app VM per service does

6 Kourai ET AL

not require extra memory so much, compared with using a general-purpose OS. The small memory footprint of an app VM
enables more rapid VM migration by transferring only a smaller amount of memory. Similarly, cloning app VMs becomes faster.

The FlexCapsule OS reduces the overhead of extra virtualization due to app VMs by using para-virtualization. Para-
virtualization is a technique that does not emulate real hardware completely to simplify hardware virtualization. Since full
virtualization emulates real hardware as it is, the combination with nested virtualization poses larger overhead. Therefore, using
para-virtualization can improve the performance of app VMs. In compensation for this performance gain, however, OSes with
para-virtualization need to support VM migration by themselves. This is because such OSes are more tightly coupled with the
hypervisor and virtual hardware. Specifically, the FlexCapsule OS enables itself to be suspended and resumed.

3.4 FlexCapsule Server
The FlexCapsule server is an OS server running in each instance. It provides functions related to process management and multi-
process, which cannot be supported only by the FlexCapsule OS. For process management, users can obtain the list of running
app VMs using the ps-like command and terminate specified app VMs using the kill-like command. For multi-process support,
the FlexCapsule server is used for cooperation between app VMs. For example, when a service in an app VM invokes the fork
function, the FlexCapsule server clones the entire app VM by VM fork28. At this time, the FlexCapsule OS communicates with
the FlexCapsule server and then the FlexCapsule server creates a child app VM from the parent app VM. The public IP address
that the child app VM uses is the same as that used by the parent app VM. It returns an identifier of the child VM to the parent
VM and zero to the child VM, as in the original process fork.

The FlexCapsule server also manages NAPT rules to forward packets to app VMs. Since an app VM communicates with the
outside using NAPT, the FlexCapsule server registers a NAPT rule when a service invokes the listen function. For example,
consider a Web server listening to TCP port 80 in an app VM. The FlexCapsule server registers a NAPT rule that translates a
pair of the public IP address used by the app VM and port 80 into a pair of the private IP address of the app VM and port 80.
For load balancing, the FlexCapsule server supports process pooling, which is a technique for preparing multiple processes that
wait for the same port using fork. The FlexCapsule server configures NAPT rules so that packets are delivered to one of the app
VMs in a process pool.

4 IMPLEMENTATION

We have implemented FlexCapsule in Xen 4.2.47. A VM called DomU is an instance provided by a cloud and runs user’s
virtualized system including VMs and the hypervisor using nested virtualization. In the user’s virtualized system based on Xen
4.2.4, DomU is used as an app VM and the FlexCapsule server runs in a privileged VM called Dom0. To share information
between Dom0 and VMs, the database called XenStore runs in Dom0.

4.1 Two Types of FlexCapsule OSes
We have implemented two types of FlexCapsule OSes based on OSv 0.214 and MiniOS in Xen. The reason why we selected these
two is that these LibOSes have different characteristics. The system architectures of the two LibOSes are illustrated in Fig. 4.
OSv is an OS optimized for virtualized systems. It is fully virtualized and is called an HVM guest. When using Intel’s hardware
virtualization extensions, CPUs and memory are virtualized using VT-x and Extended Page Tables (EPT), respectively. To
reduce the overhead of device emulation, OSv provides para-virtual (PV) device drivers to use PV devices. A PV driver running
in the OS is called a frontend driver in Xen and communicates with a backend driver running in Dom0. For this communication,
these two drivers establish event channels and shared memory at initialization time. OSv can run many existing C applications
with no or slight modification. In addition, It can run custom applications more efficiently.

On the other hand, MiniOS is an OS used for separating components in Dom0 into independent VMs. It is para-virtualized
to minimize the virtualization overhead and is called a PV guest. CPUs and memory are virtualized without using hardware
extensions. MiniOS directly deals with physical memory called machine memory assigned to a VM. Its page tables are configured
to translate virtual addresses into machine memory frame numbers (MFNs). In addition, MiniOS manages pseudo-physical
memory as virtualized physical memory in a VM. To translate pseudo-physical memory frame numbers (PFNs) into MFNs,
it maintains the P2M table. The reverse translation is performed using the global M2P table. Like OSv, MiniOS also uses PV

Kourai ET AL 7

hypervisor

app VM

backend

drivers

Dom0

OSv

frontend

drivers

service

(a) OSv-based

hypervisor

app VM

backend
drivers

Dom0

MiniOS

frontend
drivers

service

page
tables

P2M
table

(b) MiniOS-based

FIGURE 4 Two different FlexCapsule OSes.

hypervisor

app VM

XenStore

backend

drivers

frontend

drivers

FlexCapsule OS
suspend

request suspend

suspend hypercall

shutdown

handler

FlexCapsule

server

FIGURE 5 Suspending PV devices.

drivers. It provides not only the C runtime but also the OCaml runtime and the GHC runtime for Haskell. However, it cannot
run the existing applications easily.

4.2 Migration of App VMs
To migrate an app VM, the FlexCapsule server first transfers the memory contents of an app VM running in the source instance to
the destination instance. Since the memory of the app VM continues to be modified during the memory transfer, the FlexCapsule
server re-transfers modified memory contents. If the source and destination instances are in the same host, this memory transfer
can be optimized29. It repeats the re-transfers until the amount of memory to be re-transferred is small enough and finally
suspends the app VM. At this time, it saves the states of CPUs and virtual devices and transfers them. In the destination instance,
it restores these states and resumes the app VM.

Since the FlexCapsule OS uses para-virtualization techniques, it needs migration support at the OS level to migrate an app VM.
When suspending an app VM at the final stage of VM migration, the FlexCapsule server writes a request for power management
to the control/shutdown node in XenStore, as illustrated in Fig. 5. To monitor the node, the FlexCapsule OS starts a dedicated
thread at boot time and registers the shutdown handler as a callback function. When the node value is changed, XenStore sends
an event to the corresponding app VM using an event channel and the FlexCapsule OS invokes the registered shutdown handler.

The shutdown handler first suspends PV devices such as block and network devices. Event channels are established between
the frontend and backend drivers, but they are not reused after VM migration. Therefore, the shutdown handler destroys all the
event channels. Next, it invokes the suspend hypercall and then the hypervisor stops the app VM. In the destination instance,
the hypercall returns when the app VM is restarted. Then the shutdown handler resumes PV devices and the frontend drivers
re-establish new event channels with the backend drivers in Dom0.

In addition, the MiniOS-based FlexCapsule OS maintains bindings to the hypervisor after VM migration. Since MiniOS is a
para-virtualized OS, it is more tightly coupled with the hypervisor than OSv. For example, MiniOS maintains a grant table for
managing memory sharing between VMs. Since shared memory between an app VM and the other VMs is destroyed after VM
migration, the FlexCapsule OS removes entries in the grant table on VM suspension and recreates them on VM resumption.

8 Kourai ET AL

L3 list

L2 list L2 list

L1 list L1 list L1 list L1 list

FIGURE 6 The P2M table with a tree structure.

Also, MiniOS manages the P2M table with a three-level tree structure, as shown in Fig. 6. The L1 lists construct a contiguous
array and is restored by the FlexCapsule server when a VM is resumed. However, the L2 and L3 lists become invalid in the
destination instance because they maintain links using MFNs in the source instance. Therefore the FlexCapsule OS temporarily
replaces MFNs in the L2 and L3 lists to virtual addresses on VM suspension. Upon VM resumption, it replaces the virtual
addresses to newly assigned MFNs using information in the L1 lists.

When the MiniOS-based FlexCapsule OS issues a hypercall for suspending the app VM, it passes the start_info structure
to the hypervisor. This data structure contains information on restarting the app VM such as a wallclock and the shared_info
structure including the state of vCPUs. The OSv-based FlexCapsule OS does not need to pass this data structure.

In the current implementation, the state of the FlexCapsule server does not need to be transferred together with an app VM.
For example, the NAPT rules for the app VM continue to be applied in the source instance, as explained in Section 4.4.

4.3 Fork of App VMs
When a service invokes the fork function, the FlexCapsule OS sends a fork request to the FlexCapsule server via XenStore.
The FlexCapsule server suspends a parent app VM and creates a child app VM. It configures a newly allocated IP address for
the child app VM and registers new NAPT rules based on those for the parent app VM. Then it copies the states of the parent
app VM to the child app VM. In addition, the FlexCapsule server makes the parent and child app VMs share the disk of the
parent app VM in a copy-on-write manner. Finally, it starts to run the child app VM, whereas it resumes the parent app VM by
canceling the VM suspension.

Our VM fork is similar to SnowFlock28 and KylinX27, but there are two differences. First, FlexCapsule supports cloning of
VMs for not only para-virtualization but also full virtualization. In full virtualization, VM states to be copied are different from
those in para-virtualization. Second, FlexCapsule eagerly copies the entire memory of a VM at fork time although SnowFlock
and KylinX copy it on demand. This is because the cost for constructing EPT for copy-on-write was similar to that for memory
copies in our experiment.

4.3.1 Duplicating VM States
The FlexCapsule server issues a newly created hypercall to duplicate VM states. First, the hypercall copies the memory contents
of the parent app VM to the child app VM. For each page of the parent app VM, it allocates a new page for the child app VM and
registers the mapping from its MFN to the corresponding PFN. For PV guests, the FlexCapsule server needs special cares for
the page tables and the P2M table, as illustrated in Fig. 7. When the hypercall copies pages used for page table entries (PTEs),
it replaces MFNs stored in them. It first canonicalizes an MFN for the parent app VM into the corresponding PFN using the
M2P table and then uncanonicalizes the PFN into an MFN used for the child app VM using the P2M table. After all the PTEs
are modified, the hypercall sets the page type to the L1 to L4 page table.

For the P2M table, the hypercall replaces MFNs similarly. Since the P2M table has a tree structure as in Fig. 6, the hypercall
first finds the L1 lists by traversing the tree from the root. Then it replaces MFNs in the L1 lists using the M2P table. The M2P
table is constructed by the hypervisor when the memory of the child app VM is allocated. The L2 and L3 lists also contain
MFNs for the parent app VM, but they are reconstructed by the MiniOS-based FlexCapsule OS on resuming an app VM, as
described in Section 4.2.

Next, the hypercall copies the states of the parent app VM to the child app VM. For HVM guests, it copies CPU states such
as PAE, the TSS in the virtual 8086 mode, the identity-map page directory, and the location of ACPI control blocks. Also, it
copies information on the ring buffers used for memory events, console, XenStore, and I/O requests to the child app VM. Then

Kourai ET AL 9

hypervisor

parent

app VM

page

tables

P2M

table

page

tables

P2M

table

child

app VM

copy & modify

memory copy

FIGURE 7 Memory duplication for a PV guest.

parent

app VM

base

disk

child

app VM

CoW

disk

CoW

disk

NBDNBD

FIGURE 8 Dynamic copy-on-write sharing of a disk.

it saves the HVM context in the parent app VM and loads it to the child app VM. For PV guests, the hypercall copies the vCPU
context of the parent app VM to the child app VM. At that time, it replaces the MFNs used for the start_info, GDT frames, and
the page table base pointer for the child app VM. In addition, it copies the shared_info structure. For both HVM and PV guests,
the hypercall copies the time stamp counter.

Finally, the FlexCapsule server duplicates device states only for HVM guests. It saves the device states in qemu-dm for the
parent app VM by sending a QMP command. Xen-specific QEMU called qemu-dm is a device emulator and runs in Dom0.
Then the FlexCapsule server starts qemu-dm for the child app VM with the saved states.

4.3.2 Sharing a Disk
To share the disk of the parent app VM with the child app VM in a copy-on-write manner, the FlexCapsule server creates two
copy-on-write (CoW) disks for these app VMs, respectively, as illustrated in Fig. 8. A CoW disk is a disk that stores only updates
to the base disk, which is a disk used by the parent app VM before fork. In the qcow2 format, writes are performed to a CoW
disk, whereas reads are performed from the disk if disk blocks exist; otherwise, they are done from the base disk.

To enable dynamically changing a disk of a running app VM, the FlexCapsule server indirectly attaches a disk to an app VM
via a network block device (NBD)30. For the child app VM, the FlexCapsule server connects one CoW disk to an unused NBD
device and then attaches the device to the child app VM. For the parent app VM, the FlexCapsule server first disconnects the
base disk from the NBD device already attached. Then it re-connects the other CoW disk to the original NBD device. As such,
the parent app VM can use the CoW disk seamlessly. If the NBD is not used for indirect disk attachment, this is difficult to
achieve because a local disk directly attached to a VM cannot be detached as long as the VM is not stopped.

4.4 Networking
Fig. 9 illustrates networking in FlexCapsule. When a service invokes the listen function to wait for new network connections, the
FlexCapsule OS obtains a listening port number from the specified socket and sends it to the FlexCapsule server via XenStore.
Then the FlexCapsule server adds a new NAPT rule to Linux iptables. The added rule forwards packets sent to the public IP
address and port number used by the app VM to the app VM. We used the libiptc library31 for manipulating netfilter, which
is a packet filtering framework in Linux. When a service invokes the close function for a socket, the FlexCapsule OS sends a
listening port obtained from the socket to the FlexCapsule server via XenStore. Then the FlexCapsule server deletes the NAPT
rule corresponding to the port.

To achieve load balancing with a process pool for app VMs, the FlexCapsule server uses the nth mode of the statistic module
for iptables. The nth mode is used for simple stateful load balancing in a round-robin fashion. When a service invokes the fork

10 Kourai ET AL

instance

app

VM

iptables

instance

app

VM

listen

packets

FlexCapsule

server

rule

OpenVPN

server

OpenVPN

client

FIGURE 9 Networking in FlexCapsule.

function or the FlexCapsule server clones an app VM for scale-out, the FlexCapsule server examines whether the app VM is
listening to network ports. If there are such ports, the FlexCapsule server translates the corresponding NAPT rules into rules for
the nth mode and adds new rules for a child app VM. Using the nth mode, packets are delivered to one of the app VMs included
in the same process pool. Note that all the packets in one connection are delivered to the same app VM.

The FlexCapsule server constructs one VPN that connects all app VMs inside user’s instances using Ethernet bridging of
OpenVPN 2.3.232. One instance runs the OpenVPN server, whereas the others run the OpenVPN clients. Thanks to the VPN,
even after app VMs are migrated to other instances, the NAPT rules in the source instance are still applied. If the source instance
has no app VM and is therefore stopped, the FlexCapsule server transfers the NAPT rules to the destination instance.

5 EXPERIMENTS

We conducted experiments to confirm the effectiveness of FlexCapsule. In our experiments, we used four app VMs running
the OSv-based FlexCapsule OS (OSv VMs). For each app VM, we ran one of the four services: lighttpd 1.4.3533, memcached
1.4.2134, Redis 3.0.135, and Dhrystone 2.136. lighttpd is a single-threaded web server, memcached is a memory object caching
system, Redis is an in-memory database, and Dhrystone is a computing benchmark. For memcached, we used a version cus-
tomized for OSv. For Redis, we used pipelining for sending new requests without waiting for responses. We measured the server
throughput using httperf 0.9.037 for lighttpd, memaslap38 for memcached, and redis-benchmark39 for Redis. For an app VM
running the MiniOS-based FlexCapsule OS (MiniOS VM), we ran only Dhrystone because it was difficult to port the other
existing services.

We used two PCs with an Intel Xeon E3-1290 v2 processor and 8 GB of memory. We ran Xen 4.2.4 for the hypervisor and
Linux 3.13.0 in Dom0. We created several DomUs as instances in a cloud and assigned four vCPUs and 2 GB of memory for
each. Inside these instances, we ran several app VMs, each of which was assigned one vCPU and 4 to 1024 MB of memory.

5.1 Service Consolidation
To show the effectiveness of service consolidation using app VMs, we measured changes in service performance after consoli-
dation and de-consolidation. In this experiment, we used three OSv VMs running lighttpd, memcached, and Redis, respectively.
When consolidating these app VMs, we ran them in one instance with one vCPU. When de-consolidating them, we used three
instances, each of which has one vCPU.

Fig. 10 shows the performance after service consolidation and de-consolidation. In all the services, the performance after de-
consolidation was 1.9 to 2.7 times higher than that after consolidation. This means that service de-consolidation can improve
the service performance even when services run in app VMs. In other words, service consolidation is useful if each app VM
does not use so large amount of resources. When only one of the three app VMs was busy in one instance, it could gain the
performance similar to that after de-consolidation.

5.2 Scale-out
First, we investigated whether app VM-level scale-out was effective. We increased the number of app VMs running in one
instance and measured the total performance of all the app VMs. For OSv VMs, we ran lighttpd and measured the throughput
when we sent requests for 1 KB files. Fig. 11(a) shows the total throughput of app VMs. When we increased the number of app

Kourai ET AL 11

0

50

100

150

200

250

th
ro

ug
hp

ut
 (

re
q/

s)
consolidation
de-consolidation

(a) lighttpd

0.0

0.5

1.0

1.5

2.0

2.5

3.0

th
ro

ug
hp

ut
 (

kT
P

S
)

consolidation
de-consolidation

(b) memcached

P
IN

G
_I

N
LI

N
E

P
IN

G
_B

U
LK

S
E

T

G
E

T

IN
C

R

LP
U

S
H

LP
O

P

S
A

D
D

S
P

O
P

LR
A

N
G

E
_1

00

LR
A

N
G

E
_3

00

LR
A

N
G

E
_5

00

LR
A

N
G

E
_6

00

M
S

E
T

av
er

ag
e0.0

0.5

1.0

1.5

2.0

2.5

th
ro

ug
hp

ut
 (

kT
P

S
) consolidation

de-consolidation

(c) Redis

FIGURE 10 The performance after service consolidation and de-consolidation.

0 1 2 3 4 5
of app VMs

0

50

100

150

200

250

300

to
ta

l t
hr

ou
gh

pu
t (

re
q/

s)

(a) lighttpd on OSv

0 1 2 3 4 5 6
of app VMs

0

100

200

300

400

500

to
ta

l s
co

re
 (

x1
06)

(b) Dhrystone on MiniOS

FIGURE 11 The performance improvement by app VM-level scale-out.

VMs, the total throughput also increased until three app VMs. It was doubled by using two app VMs, but the increase was small
in three app VMs. When we consolidated four app VMs, the throughput rather decreased. This is because three app VMs and
one Dom0 inside the instance used up four vCPUs. The throughput slightly increased in five app VMs by using resources more
efficiently.

For MiniOS VMs, we ran Dhrystone and measured its score. Like lighttpd, Dhrystone uses a single thread. Fig. 11(b) shows
the total score, which linearly increased to four app VMs because executing Dhrystone did not need Dom0. The total score
continued to increase for more app VMs although the increase became smaller. This means that one app VM running Dhrystone
could not use up one vCPU.

Second, we investigated whether instance-level scale-out was effective. We increased the number of instances and measured
the throughput of lighttpd. When we ran one OSv VM per instance, the total throughput in two instances became twice. Even
when we fixed the number of app VMs to four in total, using two instances improved the total throughput. This is because each
instance could run two app VMs and one Dom0 using four vCPUs.

5.3 Scale-up
We investigated whether instance-level scale-up improved the performance of an app VM. We ran one OSv VM running lighttpd
in one instance and changed the number of vCPUs assigned to the instance. Fig. 12(a) shows the throughput of lighttpd when
we sent requests for 1 MB files. As the number of vCPUs was increasing, the throughput was improved. For two vCPUs, the
app VM and Dom0 could use one vCPUs for each. The performance was still improved in four vCPUs although the app VM
was assigned only one vCPU. This is because Dom0 used more than one vCPUs.

12 Kourai ET AL

0 1 2 3 4
of vCPUs

0

2

4

6

8

10

th
ro

ug
hp

ut
 (

re
q/

s)

(a) lighttpd on OSv

50 60 70 80 90 100
CPU upper limit (%)

0

5

10

15

20

25

30

sc
or

e
(x

10
6)

(b) Dhrystone on MiniOS

FIGURE 12 The performance improvement by scale-up.

local instance remote instance
0.0

0.2

0.4

0.6

0.8

1.0

1.2

do
w

nt
im

e
(s

ec
)

Linux VM
OSv VM
MiniOS VM

FIGURE 13 The downtime during VM migration between instances.

For a MiniOS VM, we ran Dhrystone and changed the CPU upper limit of an instance. Fig. 12(b) shows that the score was
improved as the limit was relaxed. However, the performance was not proportional to the assigned CPU time. This is probably
due to the vCPU scheduler in the hypervisor.

5.4 Downtime
We measured the downtime during the migration of an app VM between instances. In this experiment, the downtime is the time
until an app VM is restarted in the destination instance after the suspend request is sent to the app VM in the source instance.
We migrated an OSv VM and a MiniOS VM. For comparison, we ran a regular VM running Linux with PV drivers (Linux VM)
in an instance and migrated it. We measured the downtime for the VMs with various memory sizes when we migrated a VM to
another instance at the same host (local instance) and at the different host (remote instance).

Fig. 13 shows the average and standard deviation of the downtime. The downtime did not depend on the memory size of a
VM and was almost the same. Overall, the downtime of the app VMs was sufficiently short. The downtime of the OSv VM was
shorter than that of the Linux VM. One reason is that OSv supports only the smaller number of virtual devices to be suspended.
Another is that suspending the state of PV devices was faster in OSv. Compared with the OSv VM, the downtime of the MiniOS
VM was shorter. This means that complete para-virtualization makes the suspension of a VM faster. When VMs were migrated
to a remote instance, the downtime became only 0.1 seconds longer.

5.5 Migration Time
We measured the migration time between instances when we changed the memory sizes of app VMs. The migration time is the
time needed for the execution of the migration command. Like the experiment in Section 5.4, we migrated the two app VMs
and the Linux VM. Fig. 14(a) shows the results when we migrated a VM to another instance at the same host. The migration
time was proportional to the memory size of a VM. The app VMs had an advantage over the Linux VM because they could run
with the smaller amount of memory. The MiniOS VM needed only 4 MB at minimum, whereas the Linux VM needed 128 MB

Kourai ET AL 13

0 64 128 192 256
VM memory size (MB)

0

10

20

30

40

m
ig

ra
tio

n
tim

e
(s

ec
) Linux VM

OSv VM
MiniOS VM

(a) local instance

0 64 128 192 256
VM memory size (MB)

0

10

20

30

40

m
ig

ra
tio

n
tim

e
(s

ec
)

Linux VM
OSv VM
MiniOS VM

(b) remote instance

FIGURE 14 The migration time between instances.

0 64 128 192 256
VM memory size (MB)

0

10

20

30

40

50

fo
rk

 ti
m

e
(s

ec
)

Xen (OSv)
Xen (MiniOS)
FlexCapsule (OSv)
FlexCapsule (MiniOS)

(a) comparison with Xen

0 256 512 768 1024
VM memory size (MB)

0.0

0.5

1.0

1.5

2.0

2.5

fo
rk

 ti
m

e
(s

ec
)

OSv VM
MiniOS VM

(b) difference in FlexCapsule

FIGURE 15 The fork time of app VMs.

at least. In this case, the app VM could be migrated 4.6 times faster than the Linux VM. On the other hand, the OSv VM needed
64 MB. In this minimal memory size, the migration time was still 1.5 times faster than the Linux VM. However, it was 3 times
slower than that of the MiniOS VM.

Fig. 14(b) show the migration time when we migrated VMs to another instance at a different host. Due to network overhead,
the increase in migration time was more rapid. As a result, the migration of the MiniOS VM was 5.6 times faster than that of
the Linux VM when these VMs were assigned the minimum amount of memory.

5.6 Fork Time
We measured the time needed for the execution of the fork function in an app VM. The fork function in the FlexCapsule OS
communicates with the FlexCapsule server and performs VM fork. For comparison, we measured the fork time when we naively
achieved VM fork using Xen’s standard save and restore commands. Fig. 15(a) shows the comparison of the fork time in an OSv

VM and a MiniOS VM. Our VM fork was much faster than that using Xen’s commands. With VM fork using Xen’s commands,
the fork time increased significantly as the memory size of an app VM was increasing. For app VMs with 256 MB of memory,
our VM fork was 26 and 45 times faster for OSv and MiniOS, respectively. Compared with the fork function in Linux, our VM
fork needed much more time. In a Linux VM, it took only 5.4 ms because process fork is much faster than VM fork.

Fig. 15(b) compares the fork time in our VM fork in detail. The fork time did almost not depend on the memory size of an
app VM. This means that even eager memory copies from a parent VM to a child app VM was very efficient. The fork of the
OSv VM was much slower than that of the MiniOS VM. One reason is that it took a long time to restore the state of qemu-dm in
OSv. Another is the difference of the overhead of nested virtualization: 0.8 seconds for OSv and 0.2 seconds for MiniOS. This
is due to the difference between HVM and PV guests and that of the implementation complexity.

14 Kourai ET AL

Linux VM OSv VM MiniOS VM
0

5

10

15

20

25

30

35

lis
te

n
tim

e
(m

s)

original
FlexCapsule

N/A

FIGURE 16 The listen time.

0 10 20 30 40
elapsed time (sec)

0

50

100

150

th
ro

ug
hp

ut
 (

re
q/

s)

(a) local instance

0 10 20 30 40
elapsed time (sec)

0

100

200

300

400

th
ro

ug
hp

ut
 (

re
q/

s)

(b) remote instance

FIGURE 17 The performance after VM migration.

5.7 Listen Time
We measured the time needed for the execution of the listen function in an app VM. The listen function in the FlexCapsule
OS communicates with the FlexCapsule server and registers a new NAPT rule. Fig. 16 shows the listen time in an OSv VM, a
MiniOS VM, and a Linux VM. The overhead of the registration was 5.6 and 8.3 ms in OSv and MiniOS, respectively. This is not
large for OSv but is too large for MiniOS because the execution time of the listen function was very small in MiniOS. However,
this does not degrade application performance because the listen function is not invoked so frequently.

5.8 Overhead of the VPN
To examine the overhead of the VPN across instances, we migrated an OSv VM to another instance and measured the throughput
change of lighttpd in the app VM. After we migrated the app VM, packets were forwarded to the destination instance by the
VPN server. Fig. 17 shows the changes in throughput. When we migrated the app VM to the instance at the same host, the
throughput was degraded only by 1%. In contrast, the performance degradation was 24% when we migrated the app VM to a
remote instance. This is the overhead of packet forwarding between hosts.

5.9 Service Performance
We ran various services in app VMs and compared its performance with that in a Linux VM. We ran Dhrystone in both an OSv

VM and a MiniOS VM, whereas we ran the other services only in OSv VMs. For memcached, we also used an unoptimized
version, which uses the general-purpose socket API, for example. To examine the maximum performance, we assigned four
vCPUs to each app VM. Fig. 18 shows the performance. For Dhrystone, the performance of the MiniOS VM was the best due
to less overhead and was 31% higher than that of the Linux VM. That of the OSv VM was slightly worse than that of the Linux
VM. For lighttpd, the throughput of the app VM was 9% higher than that of the Linux VM. The performance degradation due to
using NAPT was 3%. For memcached, the performance of the app VM was 4.3 times higher when we used a version customized

Kourai ET AL 15

0

10

20

30

40

sc
or

e
(x

10
6)

Linux VM
OSv VM
MiniOS VM

(a) Dhrystone
0

2

4

6

8

10

12

14

th
ro

ug
hp

ut
 (

re
q/

s)

Linux VM
OSv VM

(b) lighttpd
0

2

4

6

8

10

12

14

th
ro

ug
hp

ut
 (

kT
P

S
)

Linux VM
OSv VM (no opt)
OSv VM

(c) memcached

P
IN

G
_I

N
LI

N
E

P
IN

G
_B

U
LK

S
E

T

G
E

T

IN
C

R

LP
U

S
H

LP
O

P

S
A

D
D

S
P

O
P

LR
A

N
G

E
_1

00

LR
A

N
G

E
_3

00

LR
A

N
G

E
_5

00

LR
A

N
G

E
_6

00

M
S

E
T

av
er

ag
e0

5

10

15

20

25

th
ro

ug
hp

ut
 (

kT
P

S
) Linux VM

OSv VM

(d) Redis

FIGURE 18 The performance of various services in app VMs.

for OSv. Even using the original version, the performance was 2.3 times higher. For Redis, the performance of the app VM was
2.5 times higher on average.

6 CONCLUSION

This paper proposed FlexCapsule, which runs each service in a lightweight VM called an app VM using a LibOS. FlexCapsule
can optimize instance deployment at service granularity. The migration of app VMs enables seamless service consolidation
and de-consolidation and scale-up and -down. Strong isolation among app VMs enables secure service consolidation. We have
implemented FlexCapsule in Xen using OSv and MiniOS. The FlexCapsule OS cooperates with the FlexCapsule server to
support VM migration, networking, process fork, and process pools. Experimental results show that FlexCapsule is effective for
the optimization of instance deployment.

One of our future work is to enable various services to run in app VMs. For example, we need to advance multi-process
support such as inter-process communication. Another direction is performance improvement of app VMs. Since OSv running in
app VMs is fully virtualized except for PV drivers, virtualization overhead is relatively large in nested virtualization. To reduce
that overhead, we need to develop para-virtualized OSv. The network performance of app VMs should be improved because
the emulation of NICs used by user’s virtualized system is heavyweight. This overhead can be mitigated by using network
optimization in Xen-Blanket14.

References

1. Miloȷ́ičić DS, Douglis F, Paindaveine Y, Wheeler R, Zhou S. Process Migration. ACM Comput Surv 2000; 32(3): 241–299.

2. Engler DR, Kaashoek MF, J. O ’Toole J. Exokernel: An Operating System Architecture for Application-level Resource
Management. In: Proceedings of the 15th ACM Symposium on Operating Systems Principles. ; 1995: 251–266.

16 Kourai ET AL

3. Madhavapeddy A, Mortier R, Rotsos C, et al. Unikernels: Library Operating Systems for the Cloud. In: Proceedings of
the 18th International Conference on Architectural Support for Programming Languages and Operating Systems. ; 2013:
461–472.

4. Kivity A, Laor D, Costa G, et al. OSv – Optimizing the Operating System for Virtual Machines. In: Proceedings of the 2014
USENIX Annual Technical Conference. ; 2014: 61–72.

5. Goldberg R. Architecture of Virtual Machines. In: Proceedings of Workshop on Virtual Computer Systems. ; 1973: 74–112.

6. Ben-Yehuda M, Day MD, Dubitzky Z, et al. The Turtles Project: Design and Implementation of Nested Virtualization. In:
Proceedings of the 9th Symposium on Operating Systems Design and Implementation. ; 2010: 423–436.

7. Barham P, Dragovic B, Fraser K, et al. Xen and the Art of Virtualization. In: Proceedings of the 19th ACM Symposium on
Operating Systems Principles. ; 2003: 164–177.

8. Kourai K, Sannomiya K. Seamless and Secure Application Consolidation for Optimizing Instance Deployment in Clouds.
In: Proceedings of the 8th IEEE International Conference on Cloud Computing Technology and Science. ; 2016: 318–325.

9. VMware, Inc. . VMware vCloud Air – Public Cloud Computing from VMware. http://vcloud.vmware.com; Accessed
September 7, 2018.

10. Ben-Yehuda OA, Ben-Yehuda M, Schuster A, Tsafrir D. The Resource-as-a-service (RaaS) Cloud. In: Proceedings of the
4th USENIX Workshop on Hot Topics in Cloud Computing. ; 2012.

11. Osman S, Subhraveti D, Su G, Nieh J. The Design and Implementation of Zap: A System for Migrating Computing
Environments. In: Proceedings of the 5th Symposium on Operating Systems Design and Implementation. ; 2002: 361–367.

12. Zhang L, Litton J, Cangialosi F, Benson T, Levin D, Mislove A. Picocenter: Supporting Long-lived, Mostly-idle Applica-
tions in Cloud Environments. In: Proceedings of the 11th European Conference on Computer Systems. ; 2016.

13. Williams D, Elnikety E, Eldehiry M, Jamjoom H, Huang H, Weatherspoon H. Unshackle the Cloud!. In: Proceedings of the
3rd USENIX Workshop on Hot Topics in Cloud Computing. ; 2011.

14. Williams D, Jamjoom H, Weatherspoon H. The Xen-Blanket: Virtualize Once, Run Everywhere. In: Proceedings of the 7th
ACM European Conference on Computer Systems. ; 2012: 113–126.

15. Fishman A, Rapoport M, Budilovsky E, Eidus I. HVX: Virtualizing the Cloud. In: Proceedings of the 5th USENIX
Workshop on Hot Topics in Cloud Computing. ; 2013.

16. Liu C, Mao Y. Inception: Towards a Nested Cloud Architecture. In: Proceedings of the 5th USENIX Workshop on Hot
Topics in Cloud Computing. ; 2013.

17. Zhang F, Chen J, Chen H, Zang B. CloudVisor: Retrofitting Protection of Virtual Machines in Multi-tenant Cloud with
Nested Virtualization. In: Proceedings of the 23rd ACM Symposium on Operating Systems Principles. ; 2011: 203–216.

18. Tan C, Xia Y, Chen H, Zang B. TinyChecker: Transparent Protection of VMs against Hypervisor Failures with Nested
Virtualization. In: Proceedings of IEEE/IFIP International Workshop on Dependability of Clouds, Data Centers and Virtual
Machine Technology. ; 2012.

19. Intel Corp. . 4th Generation Intel Core vPro Processors with Intel VMCS Shadowing. 2013.

20. ARM Ltd. . ARM Architecture Reference Manual – ARMv8, for ARMv8-A Architecture Profile. 2017.

21. Lim JT, Dall C, Li S, Nieh J, Zyngier M. NEVE: Nested Virtualization Extensions for ARM. In: Proceedings of the 26th
ACM Symposium on Operating Systems Principles. ; 2017: 201–217.

22. Ammons G, Silva DD, Krieger O, et al. Libra: A Library Operating System for a JVM in a Virtualized Execution
Environment. In: Proceedings of the 3rd International Conference on Virtual Execution Environments. ; 2007: 44–54.

23. Jordan M, Roeck H. Guest VM Microkernel, GUK. https://kenai.com/projects/guestvm; Accessed March 8, 2017.

http://vcloud.vmware.com
https://kenai.com/projects/guestvm

Kourai ET AL 17

24. Kaashoek MF, Engler DR, Ganger GR, et al. Application Performance and Flexibility on Exokernel Systems. In:
Proceedings of the 16th ACM Symposium on Operating Systems Principles. ; 1997: 52–65.

25. Tsai CC, Arora KS, Bandi N, et al. Cooperation and Security Isolation of Library OSes for Multi-process Applications. In:
Proceedings of the 9th European Conference on Computer Systems. ; 2014.

26. Douceur J, Elson J, Howell J, Lorch J. Leveraging Legacy Code to Deploy Desktop Applications on the Web. In: Proceedings
of the 8th USENIX Conference on Operating Systems Design and Implementation. ; 2008: 339–354.

27. Zhang Y, Crowcroft J, Li D, et al. KylinX: A Dynamic Library Operating System for Simplified and Efficient Cloud
Virtualization. In: Proceedings of the 2018 USENIX Annual Technical Conference. ; 2018: 173–185.

28. Lagar-Cavilla HA, Whitney JA, Scannell AM, et al. SnowFlock: Rapid Virtual Machine Cloning for Cloud Computing. In:
Proceedings of the 4th ACM European Conference on Computer Systems. ; 2009: 1–12.

29. Kourai K, Ooba H. VMBeam: Zero-copy Migration of Virtual Machines for Virtual IaaS Clouds. In: Proceedings of the
35th IEEE Symposium on Reliable Distributed Systems. ; 2016: 121–126.

30. Verhelst W. Network Block Device. https://nbd.sourceforge.io/; Accessed September 7, 2018.

31. Balliache L. Querying libiptc HOWTO. http://www.tldp.org/HOWTO/Querying-libiptc-HOWTO/; Accessed September
7, 2018.

32. OpenVPN Technologies, Inc. . OpenVPN – Open Source VPN. https://openvpn.net/; Accessed September 7, 2018.

33. Lighty Team . Lighttpd - fly light. https://www.lighttpd.net/; Accessed September 7, 2018.

34. Fitzpatrick B. memcached – A Distributed Memory Object Caching System. http://memcached.org/; Accessed September
7, 2018.

35. Redis Labs, Inc. . Redis. https://redis.io/; Accessed September 7, 2018.

36. Weicker R. Dhrystone: A Synthetic Systems Programming Benchmark. Communications of the ACM 1984; 27(10): 1013–
1030.

37. Mosberger D, Jin T. httperf – A Tool for Measuring Web Server Performance. tech. rep., Hewlett-Packard Company; 1998.

38. Aker B. memaslap – Load Testing and Benchmarking a Server. http://docs.libmemcached.org/bin/memaslap.html; Accessed
September 7, 2018.

39. Redis Labs, Inc. . How fast is Redis?. https://redis.io/topics/benchmarks; Accessed September 7, 2018.

https://nbd.sourceforge.io/
http://www.tldp.org/HOWTO/Querying-libiptc-HOWTO/
https://openvpn.net/
https://www.lighttpd.net/
http://memcached.org/
https://redis.io/
http://docs.libmemcached.org/bin/memaslap.html
https://redis.io/topics/benchmarks

	Flexible Service Consolidation with Nested Virtualization and Library Operating Systems
	Abstract
	Introduction
	Background
	Optimizing Instance Deployment
	Nested Virtualization
	LibOS

	FlexCapsule
	System Architecture
	Optimization Using App VMs
	FlexCapsule OS
	FlexCapsule Server

	Implementation
	Two Types of FlexCapsule OSes
	Migration of App VMs
	Fork of App VMs
	Duplicating VM States
	Sharing a Disk

	Networking

	Experiments
	Service Consolidation
	Scale-out
	Scale-up
	Downtime
	Migration Time
	Fork Time
	Listen Time
	Overhead of the VPN
	Service Performance

	Conclusion
	References

