
Fine-grained Autoscaling with In-VM Containers and VM Introspection

Kohei Ueki
Kyushu Institute of Technology
u kohei@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ksl.ci.kyutech.ac.jp

Abstract—Clouds often provides a mechanism called autoscal-
ing to deal with load increases of services running in virtual
machines (VMs). When a VM is overloaded, scale-out is
performed and automatically increases the number of VMs.
However, when multiple services run in one VM, the entire VM
is always scaled out even if only one service is over-utilized.
In this case, only an over-utilized service should be scaled out,
but it is not easy for clouds to accurately monitor the resource
usage of services inside VMs. This paper proposes Ciel, which
runs each service in a container created inside a VM for
separation of services and enables fine-grained autoscaling of
VMs. Using VM introspection, Ciel accurately monitors the
resource usage of each in-VM container from the outside of
a VM in a non-intrusive manner. If it detects an overloaded
in-VM container, it creates a new VM of minimum size and
boots only the container that needs to be scaled out in the
VM. This can minimize both the cost of the VM and the time
taken for scale-out. We have implemented Ciel using Xen and
Docker and showed the effectiveness.

Index Terms—virtual machines, containers, autoscaling, scale
out, resource monitoring

1. Introduction

Recently, cloud services such as Amazon AWS and
Microsoft Azure are widely used. Infrastructure-as-a-Service
(IaaS) clouds provide virtual machines (VMs) to users.
The users can construct their own systems from scratch as
needed. Most of the IaaS clouds provide several types of
VMs of pre-defined sizes. In general, the cost of a VM is
proportional to its size, e.g., the number of virtual CPUs,
the amount of memory, the size of virtual disks. In IaaS
clouds, scale-out is performed to deal with the load increase
of services running in a VM. This method creates a new VM
running the same services and suppresses the load increase
of each VM by distributing the load to multiple VMs.
IaaS clouds often provide a mechanism called autoscaling,
which automatically performs the scale-out of VMs. This
mechanism monitors the load of VMs and scales out a VM
when it detects the load increase of it.

When multiple services run in one VM, traditional au-
toscaling performs scale-out of the entire VM even if only
one service is over-utilized. As a result, the cloud creates

a larger VM than necessary, which is more costly for the
user. In addition, it takes a longer time to complete scale-
out because unnecessary services also need to be started. In
such a case, the cloud should scale out only an over-utilized
service in a new VM. However, it is not easy for the cloud to
accurately know which resources are used by each service
from the outside of the VM. Processes and files used by
each service are internal information in each VM and are
tangled. Therefore, the cloud has to infer the resource usage
of each service, but such inference is not accurate.

This paper proposes Ciel for fine-grained autoscaling of
VMs using in-VM containers. Ciel runs each service in a
container created inside a VM for separation of services.
This in-VM container enables clouds to easily identify the
resources used by each service. Then, it accurately monitors
the resource usage of each service inside a VM from the
outside of the VM. This is achieved in a non-intrusive
manner using a technique called VM introspection (VMI) [1].
If Ciel detects an overloaded container in a VM, it creates a
new VM of minimum size only for the container and boots
only the container that needs to be scaled out in the VM.
This can minimize the cost of the new VM, compared with
that for a VM providing not only necessary services but also
unnecessary ones. Also, the time taken for scale-out can be
reduced by not starting unnecessary services.

We have implemented Ciel in Xen 4.6 [2] and Docker
17.05 [3]. Since Docker uses Linux cgroups for resource
management, Ciel analyzes the hierarchy of cgroups in
the kernel memory of a VM from the outside of the VM
to monitor the resource usage of each container. For ex-
ample, it can obtain CPU utilization, the amount of con-
sumed memory, and the consumed bandwidths of disks and
networks. To transparently translate virtual addresses used
in the guest operating system into physical ones for this
analysis, we have ported the LLView framework [4]. The
modified LLView transforms a program so that references
to the kernel memory are automatically redirected to the
memory of a VM. Using Ciel, we measured the time taken
for scale-out and the resource consumption and showed the
effectiveness.

The organization of this paper is as follows. Section 2
describes traditional autoscaling of VMs and its issues.
Section 3 proposes Ciel for fine-grained autoscaling of VMs
with in-VM containers and Section 4 explains its implemen-
tation. Section 5 shows our experimental results using Ciel.



VM 1

service 1 service 2

VM 2

service 1 service 2

autoscaler

monitor scale-out

resources resources

load balancer

requests

Figure 1: The traditional autoscaling of VMs.

Section 6 describes related work and Section 7 concludes
this paper.

2. Autoscaling of VMs

In IaaS clouds, horizontal scaling such as scale-out and
scale-in is used to flexibly deal with the load changes of
VMs. For scale-out, the user creates new VMs to distribute
the loads of existing VMs when some of the VMs are
overloaded. For example, consider that the CPU utilization
of a web server running in a VM exceeds 90%. The user
creates a new VM running the same web server with the
same contents and could reduce the CPU utilization of each
VM to about 45%. Such scale-out is also useful on high
memory pressure and excessive disk and network access
in existing VMs. For scale-in, in contrast, the user stops
several VMs to reduce the cost for the VMs when VMs
are underloaded. For example, when the CPU utilization of
a web server is 30% each in two VMs, one VM can be
stopped. The CPU utilization of the other VM would be
still about 60% even after that.

To automatically perform scale-out and scale-in, most
of the clouds provide a mechanism called autoscaling. In
this mechanism, the autoscaler always monitors the loads
of VMs and performs scale-out when it detects that a VM
is overloaded, as illustrated in Fig. 1. Then, the load balancer
dispatches requests to the VMs including ones newly created
for scale-out. In contrast, it performs scale-in when it detects
that the average load of VMs is low enough. Since the fee of
newly created VMs is charged to the users, the cost increases
by scale-out and decreases by scale-in. The detection of the
load change is based on the resource usage of a VM. The
examples of the indicators are the CPU utilization of a VM,
the amounts of consumed memory and disk access, and the
number of connected clients. The condition for autoscaling
can be configured by users.

However, the traditional autoscaling is not suitable for
a VM that runs multiple services. In clouds, one VM often
runs only one service, but multiple services can be con-
solidated into one VM. For an under-utilized service, it is
wasteful even to use one VM of minimum size provided by

clouds. Service consolidation can use the resources of a VM
more efficiently and reduce the cost. When one VM runs
multiple services, the entire VM is scaled out even if the
loads of only one or several services increase. This means
that the autoscaler creates a larger VM than necessary and
therefore increases user’s cost for the VM. In this case, it
is unnecessary to scale out the other services in the VM. In
addition to the cost issue, it takes a longer time to complete
scale-out. When the newly created VM is booted, it has to
start all the services including ones that do not need to be
scaled out. The situation gets worse if resource conflicts
occur especially for CPUs and disks between necessary and
unnecessary services.

When the autoscaler scales out a VM running multiple
services, it is desirable to create a minimum VM that in-
cludes only necessary services. However, this is troublesome
for the user because the user has to prepare various types
of VMs including all the possible combinations of services
in advance. For example, if three services run in a VM,
seven types of VMs are needed. In addition, it is often
not easy for the autoscaler to accurately identify which
services in a VM are over-utilized from the outside of the
VM. Since the autoscaler can monitor only the resource
usage of the entire VM, it is difficult to know how many
amounts of resources are used by each service. Some of
the clouds let the user to install agent software such as
the Amazon CloudWatch agent [5] in a VM to monitor the
loads of the internal services. Such an intrusive approach
should be avoided because it could introduce several issues,
e.g., vulnerabilities and instability. Therefore, the traditional
autoscaler infers the resource usage on the basis of requests
sent to each service, but this is not accurate.

3. Ciel

This paper proposes Ciel, which enables fine-grained
autoscaling of VMs using containers in a VM, which is
called in-VM containers. A container is a virtual execution
environment provided by the operating system. In-VM con-
tainers are widely used [6], but Ciel uses them to achieve
separation of services for resource monitoring. As shown
in Fig. 2, it creates a container per service in a VM and
runs only one service in one container. The in-VM container
separates processes and resources, e.g., CPUs, memory, files,
and networks, used by each service. This self-contained
nature of an in-VM container makes it easier to accurately
monitor the resource usage per service. Also, Ciel can scale
out only necessary services in a VM by selectively booting
in-VM containers in a newly created VM. The idea of
separation of services was inspired by microservices running
containers, but Ciel focuses on “legacy” services running in
VMs.

To monitor the resource usage of in-VM containers from
the outside of a VM, Ciel uses VM introspection (VMI) [1].
VMI is a technique for obtaining the internal states of a VM
in a non-intrusive manner without agent software installed
in the VM. This is often used for security monitoring of
VMs, but Ciel uses it for resource monitoring of in-VM



container A container B

VM

service 1 service 2

operating system

memory
virtual

disk

resources resources

VMI VMI

Figure 2: Separation of services with in-VM containers.

containers. For example, Ciel obtains the CPU utilization
of each container, the amount of memory allocated to each
container, and the bandwidths of virtual disk and network
consumed by each container. To obtain that information,
Ciel analyzes the memory of the guest operating system in a
VM using the knowledge of its data structures. At this time,
it transparently translates virtual addresses of obtained data
into physical ones. In addition, Ciel obtains information on
containers, e.g., their names and IDs, from the configuration
files in a VM. For this purpose, it analyzes the filesystem
used in the virtual disk of the VM.

Ciel performs resource monitoring at both the VM and
in-VM container levels. Usually, it monitors the load of
an entire VM like the traditional clouds. If it detects an
overloaded VM, it inspects the load of each container in-
side the VM using VMI. One reason of using such two-
level monitoring is that the monitoring overhead of in-VM
containers is higher than that of a VM. Since VMI needs to
analyze the memory of a VM, it is more time-consuming
to continue monitoring the resource usage of all the in-VM
containers. The other and fundamental reason is that a VM is
often overloaded even when the load of any in-VM container
is not high. For example, consider that two containers run
in a VM. If each in-VM container consumes 45% of the
CPU time, the CPU utilization of the VM reaches 90%.
Therefore, Ciel identifies one in-VM container that causes
the overload of a VM if possible. Otherwise, it selects one
or a few in-VM containers for which scale-out is the most
effective by considering the changes in resource usage.

Figure 3 illustrates fine-grained autoscaling of VMs
in Ciel. Unlike the traditional autoscaling, the autoscaler
monitors the resource usage of each container in VMs as
well from the outside of the VMs using VMI. When it
detects an overloaded in-VM container, it creates a new VM
of minimum size only for that container. For example, that
VM could equip with a smaller number of virtual CPUs,
a smaller amount of memory, and a smaller virtual disk
than those of the original VM running multiple containers.
Since in-VM containers can be easily added and removed,
the minimization of a VM is easier than in the traditional
system that directly runs services without containers. The
new VM selectively boots only a container that needs to be

container A

VM 1

container B container A

VM 2

autoscaler

monitor scale-out

load balancer

requests

Figure 3: Fine-grained autoscaling of VMs in Ciel.

scaled out and the container starts a necessary service. The
other containers running in the original VM are not booted.
After the scale-out, the load balancer dispatches requests
to multiple in-VM containers and reduces the load of each
in-VM container.

As such, Ciel can minimize the cost for a VM that is
newly created for scale-out by running in-VM containers
only for over-utilized services. In general, that cost is pro-
portional to the amount of resources assigned to a VM in
clouds. If the cloud provides various types of pre-defined
VMs, Ciel can select a best-fit one so that the amount of any
resources does not become insufficient in the near future.
If the cloud allows the user to freely adjust the amount
of resources assigned to a VM, Ciel can prepare a custom
VM. In addition, Ciel can minimize the time taken for scale-
out because the new VM does not boot in-VM containers
for unnecessary services. At the time of starting services,
resource conflicts can be avoided between necessary and
unnecessary services.

Readers may think that it is enough to use only contain-
ers without VMs. Recently, many clouds natively provide
containers instead of VMs [7]. However, there are at least
three reasons to use not only containers but also VMs. First,
security of VMs is higher than that of containers because a
container does not virtualize the operating system. Vulnera-
bilities of the operating system can affect all the containers
in one host. Second, resource isolation of VMs is stricter
than that of containers. For example, the resource usage
of the operating system shared between containers cannot
be separated exactly. Third, container migration is currently
pre-mature [8], compared with VM migration. Therefore, it
is difficult to dynamically perform load balancing between
hosts. From these reasons, Ciel is useful for users who want
to run more robust services using VMs.

4. Implementation

Figure 4 illustrates the system architecture of each host
in Ciel. Ciel runs VMs using Xen [2] and in-VM containers
using Docker [3]. In Xen, the virtual disks of VMs are
located in the management VM called Dom0. It is possible
to use KVM [9] as virtualization software and LXD [10] as
container software, for example. Ciel supports Linux as the



container A container B

VM

service 1 service 2

Linux

Dom0

autoscaler

virtual disk

Docker engine

Xen hypervisor

Figure 4: The system architecture of Ciel.

guest operating system running in each VM. The autoscaler
runs in Dom0 and communicates with the autoscalers in the
other hosts.

Ciel runs a private Docker registry and a load balancer
called the Linux virtual server (LVS) [11] in VMs. The
private registry is used to provide container images in each
of which one service is installed. LVS is used to dispatch
requests to multiple in-VM containers that provide the same
service. Ciel uses the direct server return (DSR) mode of
LVS, which returns a response directly from the in-VM
container to which a request is forwarded.

4.1. Monitoring of In-VM Containers

Since Docker controls the resources of containers using
control groups (cgroups) in Linux, Ciel analyzes the hierar-
chy of cgroups in the memory of the guest operating system
and obtains the resource usage of each container using VMI.
Part of the hierarchy is shown in Fig. 5. First, Ciel searches
for the cgroup subsystems corresponding to the monitored
resources. A cgroup subsystem represents one type of re-
sources. For example, cgroups provide the CPU accounting
(cpuacct) subsystem, the memory subsystem, the block I/O
(blkio) subsystem, and the devices subsystem. Next, Ciel
searches for the docker group that stores information on
Docker containers.

Cgroups manages each Docker container using a UUID,
which is a 128-bit number. However, Ciel cannot identify a
service running in a container only from a UUID. UUIDs
cannot include any information on services and are different
even for containers running the same service. The name of
a container is more useful, but it cannot be obtained from
the guest operating system using VMI. It is managed by
the Docker engine running on top of the operating system.
To map the UUID of a container to the name of it, Ciel
analyzes the configuration file of a container, which is stored
in the virtual disk of a VM, using VMI for storage. It first
creates the device maps corresponding to the partitions of
the virtual disk using the losetup and kpartx commands.
Then, it mounts the partitions in a read-only manner to
prevent disk corruption. Next, it parses the configuration file
named config.v2.json, which is written in a JSON format.
This file includes the UUID and name of a container.

cgroup

cpuacct memory blkio devices

docker docker docker docker

<UUID> <UUID> <UUID> <UUID>

usage stat io_service_bytes tasks

… … … …

… … … …

Figure 5: The hierarchy of cgroups.

For each container, Ciel obtains information specific to
each subsystem. For the CPU accounting subsystem, Ciel
obtains the consumed CPU time from statistical information
on CPU usage. In a VM, this information is stored in the
cpuacct.usage pseudo file provided by the cgroup filesys-
tem. To obtain the same information from the outside of the
VM, Ciel first finds the cpuacct data structure associated
with the state of this subsystem in the kernel memory. Then,
it accumulates the consumed CPU time for all the CPUs. It
obtains the total CPU time every second and calculates the
CPU utilization from the increase in CPU time.

For the memory subsystem, Ciel obtains statistical in-
formation on memory usage. In a VM, this information is
stored in the memory.stat pseudo file. This file contains
the resident set size (RSS) and the size of the page cache
used by each container. RSS is the total size of anonymous
memory and the swap cache. Anonymous memory is the
memory used by processes running in a container. The swap
cache is the memory that is cached in the memory of the
guest operating system after page-out. The page cache is
the memory that is allocated in the operating system when
processes read and write files. To obtain this information
using VMI, Ciel first finds the mem cgroup structure from
the state of this subsystem. Then, it accumulates the numbers
of pages used for RSS and the page cache, respectively, for
all the CPUs.

For the block I/O subsystem, Ciel obtains the amount
of disk access from statistical information on disk us-
age. In an VM, this information is stored in the
blkio.throttle.io service bytes pseudo file. To obtain this
information with VMI, Ciel first finds the blkcg structure
from the state of this subsystem. Then, it accumulates the
amount of block I/O for all the CPUs and adds the amounts
of block reads and writes for all the block devices. It obtains
the total amount of block I/O every second and calculates the
consumed disk bandwidth from the increase in disk access.

On the other hand, Ciel obtains the amount of network
access from statistical information recorded in the network
device of a container, instead of a subsystem of cgroups.
Unlike the usage of the other resources, network usage
is stored in the net/dev pseudo file provided by the proc
filesystem inside a VM. To identify the network device used
by a container, Ciel first obtains the task struct structure for
one process in a container from the devices subsystem. In a
VM, the list of the processes running in a container is stored
in the tasks pseudo file of the cgroup filesystem. Then, Ciel



#include <linux/cgroup.h>

void get_cpuacct(void)
{
struct cgroup *cg, *child;
struct cpuacct *ca;

list_for_each_entry(child, &cg->self.children,
self.sibling) {

:
for_each_present_cpu(i)
total += cpuacct_cpuusage_read(ca, i);
:

}
}

Figure 6: Code for obtaining CPU usage.

finds the network device for eth0 used by the process and
accumulates the amounts of transmitted and received data,
respectively, for all the CPUs. From the increase in network
access, it calculates the consumed network bandwidth every
second.

4.2. Transparent VMI

To perform resource monitoring using VMI, we have
ported the LLView framework [4]. The original LLView is
used for a GPU program to obtain system information stored
in main memory. Unlike it, the ported LLView enables
the autoscaler outside a VM to obtain the internal states
of the guest operating system inside a VM. Using this
framework, we could easily develop the function of resource
monitoring in the autoscaler. Specifically, we included the
Linux header files as they are and then used kernel data
structures, inline functions, and macros. Also, we reused the
source code of cgroups and the proc filesystem in the Linux
kernel as much as possible. Fig. 6 shows an example code
for obtaining CPU usage. Since LLView cannot transform
assembly code, we needed to replace assembly functions
with their C versions.

LLView compiles the source code of resource moni-
toring and generates the intermediate code using LLVM.
Then, it transforms the load instructions in the code so
that the code accesses the memory of a VM if the target
address is of the guest operating system. For this code
transformation, LLView uses the Pass framework in LLVM.
Whenever LLView finds the load instruction, it inserts the
invocation of the function for address translation before
that instruction. This function translates the specified virtual
address of kernel data into a physical one to access the
memory of a VM. It first reads the CR3 register of one
virtual CPU of the VM and obtains the physical address
of the page directory. Then, it walks the page tables in the
memory of the VM and obtains the corresponding physical
address. Using the obtained physical address, it maps the
memory pages that contain data to be accessed by invoking
a hypercall of Xen.

container

VM

disk

image

config

VM template

container

image

VMI

virtual

disk

config

customize

copy

boot

script

Figure 7: Cloning a VM from a VM template.

4.3. Resource Monitoring of VMs

To monitor the resource usage of the entire VM, Ciel
uses the libvirt API [12]. For CPUs, it obtains the total
CPU time consumed by all the virtual CPUs of a VM
using the virDomainGetInfo function every second. From
the increase in CPU time, it calculates the CPU utilization.
For memory, it obtains the amount of memory actually used
by a VM using the same function. This memory size is
different from the maximum one configured to the VM in
advance. Since a VM increases and decreases its memory
size using the ballooning mechanism [13], the size of the
used memory is useful to examine memory pressure inside
a VM. For disks, Ciel obtains the amounts of read and
written data using the virDomainBlockStats function and
calculates the bandwidth every second. Similarly, it obtains
the amount of transmitted and received data using the virDo-
mainInterfaceStats function and calculates the bandwidth.

4.4. VM Cloning for Scale-out

When Ciel scales out a service, it clones a VM from
a VM template, as illustrated in Fig. 7. A VM template
consists of a configuration file of a VM and an image file for
a virtual disk. Ciel first copies and parses the configuration
file, which is described in the XML format. Then, it modifies
a UUID, a MAC address, and the name of a VM. This is
necessary because the same identifiers cannot be allowed
for different VMs. In addition, Ciel modifies the number of
virtual CPUs and the amount of memory assigned to a VM
so that the size of a VM becomes minimum for a scaled-
out service. Also, it modifies the name of an image file for
a virtual disk so that the name becomes unique. Finally, it
registers the modified configuration file to the libvirt system
used in KVM.

Next, Ciel creates a virtual disk of the VM by copying
an image file in the VM template to a file with the name
specified in the new configuration file. That image file
contains only the minimum system for Docker to run only
necessary containers. For example, a lightweight operating
system such as Barge [14] can be used. To reduce the size
of an image file, the file is created as a sparse file. A sparse
file is a special file that contains only blocks in which data
is written. Its actual size is much less than the size of the



AUFS OverlayFS ZFS devicemapper
re

la
tiv

e 
sc

or
e

0.0

0.2

0.5

0.8

1.0

1.2

Dhrystone Whetstone execl file copy
1024

file copy
256

file copy
4096

pipe context
switch

process
creation

shell 1 shell 8 system
call

average

Figure 8: The performance of an in-VM container.

entire virtual disk. When Ciel creates a new virtual disk, it
copies only blocks with actual data in an image file. This
can also reduce the time taken to create a virtual disk.

Before Ciel boots the cloned VM, it embeds a shell script
for booting necessary in-VM containers into the virtual disk
of the VM using VMI. It mounts the virtual disk in a
writable manner and writes a script file to the disk. This
does not corrupt the virtual disk because the VM is still
not running. The script is automatically executed at the boot
time of the VM. It first sets up the network for Docker using
the IP address dynamically allocated with DHCP. Then, it
pulls necessary container images from the private Docker
registry. In the private registry, container images for the
services provided by the original VM services are registered
in advance. Then, the script creates containers using the
pulled images and boots them with IP addresses dynamically
allocated by Ciel. At the same time, Ciel registers the IP
addresses of the newly created containers to LVS. When
LVS receives a request, it selects one of the registered
containers and forwards the request.

Ciel can prepare VM templates in which typical combi-
nations of containers have been installed in advance and
clones a VM from an appropriate one. This can reduce
the installation time of containers after the boot of a VM
although it increases the size of an image file and the time
taken to copy the file. This is a trade-off that should be
considered by users. Also, Ciel can pool VMs that become
unnecessary by scale-in and reuse them by simply booting
them. This can reduce the time taken to clone a VM from
a VM template as well. In either case, Ciel modifies the
configuration of already installed containers in a virtual disk
using VMI. It mounts the virtual disk and parses two con-
figuration files, config.v2.json and hostconfig.json, used
by Docker. Then, it sets the restart policies so that only
necessary containers are automatically booted and the others
are not. In addition, it replaces the IP address of each
container with a newly allocated one.

5. Experiments

To show the effectiveness of fine-grained autoscaling of
VMs in Ciel, we conducted several experiments. We used
a PC with an Intel Xeon E3-1225 v5 processor, 12 GB of
memory, 1 TB of HDD, and Gigabit Ethernet. We ran Xen
4.6.5 as virtualized software and Linux 4.4 in Dom0. For
each VM, we assigned one virtual CPU, 1 GB of memory,

and 50 GB of a virtual disk. We ran Linux 4.4 and Docker
17.05.0 in VMs.

5.1. Performance of an in-VM Container

To examine the overhead of running containers in a
VM, we ran the UnixBench 5.1.3 benchmark in an in-
VM container. As storage drivers of Docker, we used
AUFS, OverlayFS, ZFS, and devicemapper in Linux. AUFS
and OverlayFS are two different implementations of the
union filesystem [15] and OverlayFS is simpler. Using these
filesystems, Docker stacks a filesystem for a custom con-
tainer image on top of a filesystem for a base image. ZFS
is a filesystem that supports snapshots and clones. Docker
creates a read-only snapshot for a base image and uses a
writable clone for a custom image. Unlike the other drivers,
devicemapper uses block devices and operates at the block
level. Docker creates a device for a base image using thin
provisioning and uses its snapshot for a custom image. For
comparison, we measured the performance in a VM without
a container. We ran UnixBench 10 times and calculated the
average.

Figure 8 shows the results of UnixBench. The score of
an in-VM container is normalized for that of only a VM.
It was shown that the performance of an in-VM container
degraded by 9-35% on average. The overhead was small
for integer arithmetic (Dhrystone), program execution (execl
and shell), and process creation. In contrast, that was not
small for system calls, floating-point arithmetic (Whetstone),
pipe, and context switching. In particular, the performance
degradation of system calls was 40%. This is due to the
extra virtualization overhead of a container in addition to
that of a VM.

The performance of file copies largely depended on
storage drivers. In particular, the overhead was large in
ZFS and AUFS. Using ZFS degraded the performance by
75%. This is probably because ZFS follows block pointers
more on block reads and needs more I/O for file operations.
Using AUFS also degraded the performance by 30%. In
addition, it caused performance degradation of 15% even
for the concurrent execution of a shell script. When we used
OverlayFS and devicemapper, the performance degradation
of file copies was 10% on average. Since OverlayFS is
more flexible than devicemapper, we used OverlayFS in the
following experiments.



WildFly
Apache
Nginx

C
PU

 u
til

iz
at

io
n 

(%
)

0

5

10

15

20

25

30

35

elapsed time (sec)
0 10 20 30 40 50 60 70

(a) CPU

WildFly
Apache
Nginx

co
ns

um
ed

 m
em

or
y 

(M
B)

0

50

100

150

200

250

300

350

elapsed time (sec)
0 10 20 30 40 50 60 70

(b) Memory

WildFly
Nginx
Apache

co
ns

um
ed

 b
an

dw
id

th
 (K

B/
s)

0

100

200

300

400

500

elapsed time (sec)
0 10 20 30 40 50 60 70

(c) Disk

WildFly
Nginx
Apache

co
ns

um
ed

 b
an

dw
id

th
 (M

B/
s)

0

1

2

3

4

elapsed time (sec)
0 10 20 30 40 50 60 70

(d) Network

Figure 9: The resource usage monitored with VMI.

As such, in-VM containers introduce extra overhead,
but they are widely used commercially [6]. Therefore, we
believe that it is acceptable to use in-VM containers for
fine-grained autoscaling of VMs.

5.2. Resource Usage of in-VM Containers

To confirm that Ciel could monitor the resource usage of
each in-VM container using VMI, we ran three containers
for the Apache web server, the Nginx web server, and
the WildFly application server in a VM. Then, we sent
requests to the three servers at constant rates using the wrk2
benchmark [16] just after the three in-VM containers were
booted. Ciel monitored the CPU utilization, the amount of
consumed memory, and the consumed disk and network
bandwidths of the in-VM containers from the outside of
the VM every second. The overhead of VMI was negligible
for this monitoring frequency.

Figure 9 shows the monitored resource usage when we
started the benchmark at 20 seconds. Ciel could monitor the
resource usage of each in-VM container separately. This
result was consistent with the resource usage monitored
inside the VM. As in Fig. 9(a), Ciel could detect that the
WildFly container consumed a larger amount of CPU time.
Without VMI, we could detect only that the CPU utilization
of this VM was 100% and the VM was overloaded. For
memory, Ciel could also monitor the usage of each in-
VM container and detect that only the WildFly container
consumed much more memory, as shown in Fig. 9(b). The
amount of consumed memory slightly increased when the

TABLE 1: Five methods for preparing a new VM for scale-
out.

method #services container image pull
clone A (Ciel) 1 ✓
clone B (Ciel) 1 ✓ ✓
clone C (traditional) 3
reuse A (Ciel) 1 ✓
reuse B (traditional) 3

servers started request processing. After that, it gradually
increased in the Apache and WildFly containers.

For disk usage in Fig. 9(c), each server accessed a
disk only at 20 seconds. This is because the servers read
files from disks to process requests and thereafter used the
page cache in memory. In particular, the WildFly container
consumed a much larger bandwidth. For network usage,
Fig. 9(d) shows the total amount of transmitted and received
data. The amount of transmitted data was much larger
than that of received data. The bandwidths consumed by
the Apache and Nginx containers were constant, while the
consumption of the WildFly container increased gradually.

5.3. Scale-out Time

We examined the time taken to scale out only one of
the three services used in Section 5.2. We ran the three
containers in a VM and scaled out only the Apache web
server. In this experiment, we used five methods for prepar-
ing a new VM for scale-out, as shown in Table 1. The first
three methods clone a VM to create a new VM. The first
method (clone A) is to clone a VM from a VM template
including the Apache container. This method can just boot
the container to run Apache after the boot of a VM. The
second one (clone B) is to clone a VM from a template that
does not include the Apache container. In this method, the
VM pulls the image of the Apache container from the private
registry and creates a new container before the boot of it.
The third one (clone C) is a traditional method for cloning a
VM from a template that runs three services without in-VM
containers. This template is the same as that used for the
original VM to be scaled out.

The remaining two methods reuse a VM to prepare a
new VM. The fourth method (reuse A) is to reuse a pooled
VM including the Apache container. Without copying a large
image file for a virtual disk, Ciel can just boot the VM
and the container immediately. The last one (reuse B) is
a traditional method, which reuses a pooled VM that runs
three services without in-VM containers. This VM is the
same as the original one. When the VM is booted, it starts
all the three services. We did not use a method for reusing
a VM including neither any containers nor services because
reused VMs should run services before.

Figure 10 shows the clone time and the boot time of a
new VM. Compared with the traditional method (clone C
and reuse B), Ciel could reduce the boot time significantly.
The boot time includes starting a VM, booting the operating
system, and starting services. Even when Ciel used a VM
that did not include the Apache container (clone B), the



VM clone
boot

sc
al

e-
ou

t t
im

e 
(s

ec
)

0

50

100

150

200

250

300

clone A clone B clone C reuse A reuse B

Figure 10: The time for scaling out one of three services.

boot time was reduced by 91 seconds. This is because
the VM started only one necessary service without two
unnecessary services. In particular, the boot time of WildFly
was very long in the traditional method. When Ciel used a
VM including the Apache container (clone A and reuse A),
the boot time was only 7 seconds. This means that it took
a long time to pull the image of the Apache container and
create a new container from it.

The clone time in Ciel (clone A and B) was 8 seconds
shorter than that in the traditional method (clone C). This
came from the difference of the number of allocated disk
blocks because all the image files in the used templates were
provided as sparse files. In Ciel, the size of the image file
slightly increased when it included the Apache container, but
the clone time did not increase. In the traditional method,
two unnecessary services used more disk blocks. As a result,
when we cloned a VM from a template including the Apache
container (clone A), the time for scale-out was 33% of that
for the traditional method. In contrast, when a pooled VM
was reused, the clone time was zero. In this case, the time
for scale-out in Ciel (reuse A) was only 4% of that for the
traditional method (reuse B).

5.4. Resource Usage during VM Booting

We examined the resource usage of a new VM created
for scale-out while the VM was being booted. As in Sec-
tion 5.3, we ran the three services in a VM and scaled
out only the Apache web server. Ciel cloned a VM from a
VM template including the Apache container (clone A) and
booted it. For comparison, we used the traditional method
(clone C), which cloned a VM from a template including
the three services without containers. We measured the CPU
and memory usage of the new VM after we started to boot
the VM.

Figure 11(a) shows changes in CPU utilization of the
VM. For Ciel, the CPU utilization was less than 63% and
became zero after 8 seconds. This is due to booting only the
Apache container in the VM. For the traditional method, in
contrast, the CPU utilization sometime reached 100% and
kept 52% for a long time to boot the three services. In
particular, it took much time to start the WildFly application
server. The CPU utilization became zero in 180 seconds. If

Ciel
traditional

C
PU

 u
til

iz
at

io
n 

(%
)

0

20

40

60

80

100

120

elapsed time (sec)
0 50 100 150 200 250

(a) CPU

Ciel
traditional

co
ns

um
ed

 m
em

or
y 

(M
B)

0

200

400

600

800

(b) Memory

Figure 11: The resource usage of a new VM during its boot.

we assigned more than one virtual CPUs to the VM, the
boot time could be shorter even in the traditional method
by booting the services in parallel. However, this would
increase the cost for the VM due to extra virtual CPUs.
The two unnecessary services needed CPUs at the boot time
although they do not consume CPU time after that.

Figure 11(b) shows the memory usage of the VM after
the boot. For Ciel, the amount of consumed memory was
reduced by 330 MB, compared with the traditional method.
Like the CPU usage, WildFly consumed much memory. This
means that Ciel needs only a VM with a smaller amount of
memory and can reduce the cost.

5.5. Autoscaling with Ciel

We examined that Ciel could effectively perform au-
toscaling and load balancing when a service is over-utilized.
As in Section 5.2, we ran the three services in a VM. In ad-
dition, we ran a heavyweight web application that pixelated
uploaded images on Apache, which was developed using
the Bottle framework [17]. Then, we sent requests only to
that heavyweight web application using the httperf bench-
mark [18]. The request rate was one request per second for
the first 30 seconds. It was increased one by one every 30
seconds up to three requests per second. We configured the
autoscale policy so that Ciel scaled out Apache when the
CPU utilization of in-VM container exceeded 70%. In this
experiment, Ciel cloned a VM from a VM template that
did not include containers (clone B) to reveal the overhead
of Ciel. We measured the resource usage of the Apache
container in the original VM and that in a new VM created
for scale-out.

Figure 12(a) shows changes in CPU utilization. When
the CPU utilization exceeded 70% at 69 seconds in the
original in-VM container, Ciel started scale-out of Apache.
It cloned a VM from the template and started to boot the new
VM at 150 seconds. Then, it pulled the image of the Apache
container, create a new container from that image, and
booted that container at 239 seconds. The CPU utilization
was 5% on average during the first 85 seconds after the boot
of the new container. This was due to the initialization of
our heavyweight web application. After the new container



original
new

C
PU

 u
til

iz
at

io
n 

(%
)

0

25

50

75

100

125

150

elapsed time (sec)
0 100 200 300 400

(a) CPU

original
newco

ns
um

ed
 m

em
or

y 
(M

B)
0

25

50

75

100

125

elapsed time (sec)
0 100 200 300 400

(b) Memory

original
new

ra
te

 (K
B/

s)

0

5

10

15

20

25

30

elapsed time (sec)
0 100 200 300 400

(c) Network (TX)

original
new

ra
te

 (K
B/

s)

0

0.5

1

1.5

2

2.5

elapsed time (sec)
0 100 200 300 400

(d) Network (RX)

Figure 12: The resource usage of in-VM containers on
autoscaling.

became ready, the CPU utilization of the original container
was reduced from 100% to 49% on average. In contrast, that
of the new container increased to 49% on average. As such,
the loads of the two containers were balanced equally.

It should be noted that the CPU utilization of the original
container kept 100% during scale-out. That duration can be
reduced by cloning a VM from a VM template including
the Apache container (clone A) or reusing a pooled VM
(reuse A). The CPU utilization sometimes exceeded 100%,
but this reason is that Ciel could not obtain the consumed
CPU time at exact one-second intervals in some reason.
When the actual interval was more than one second, Ciel
estimated CPU utilization more largely.

Figure 12(b) shows changes in consumed memory. In
the original in-VM container, the memory consumption
gradually increased as the time elapsed. It was not affected
by the load of the service except for the starting time of
request processing. After the container in the newly created
VM was booted at 239 seconds, the amount of consumed
memory largely increased to almost the same as that in the
original container. Even after load balancing was completed,
the memory consumption of the original container did not
decrease. This is because the used web application needed
the almost fixed amount of memory regardless of the number
of requests to be processed per second.

Figure 12(c) and Fig. 12(d) show changes in rates of net-
work transmission and reception, respectively. In the original
in-VM container, these rates increased step by step as the
request rate increased. The reason why the transmission rate

sometimes changed steeply was that it was too sensitive to
calculate the average rate for one second. After the container
started in the new VM, the rates decreased to the half on
average successfully. Since our web application did not send
or receive a large amount of data per second, the amount
of increased network bandwidth did not raise performance
issues. However, the network usage could be a bottleneck if
a service consumes a larger amount of network bandwidth.

6. Related Work

Unlike Ciel for autoscaling of VMs, container orchestra-
tion platforms such as Kubernetes [19] provide autoscaling
of containers. cAdvisor [20] is used for resource monitoring
and is integrated into Kubernetes. It connects to the Docker
engine and obtains the resource usage of all the containers
using the RESTful API. For example, it can obtain CPU
utilization, the amount of consumed memory, and disk and
network usage. On the basis of the resource usage, Kuber-
netes horizontally scales out or vertically scales up a group
of containers called a pod. It is possible to monitor the
resource usage of in-VM containers by running cAdvisor
inside or outside a VM and send it to the autoscaler outside
the VM. However, Ciel does not adopt such an approach
to prevent an overloaded VM from negatively affecting the
performance of cAdvisor or the Docker engine inside it.

FlexCapsule [21] runs a service using a lightweight VM
called an app VM inside a VM to enable flexible optimiza-
tion of VM deployment. For example, it can consolidate
under-utilized services into a small number of VMs by mi-
grating app VMs. In contrast, it can seamlessly move over-
utilized services to newly created VMs using the migration
of app VMs. It runs app VMs inside a VM using nested
virtualization [22] and uses a library operating system in an
app VM to reduce the overhead. However, the overhead of
nested virtualization is still large. Ciel can minimize that
overhead by using containers inside a VM.

Several systems use in-VM containers for other pur-
poses. Picocenter [23] uses a container for each service
inside a VM to efficiently run mostly idle services in clouds.
If a service is not accessed and the corresponding container
becomes inactive, it is swapped out to storage. If a request
is sent to the service later, the container is swapped in from
the storage. Picocenter is similar to Ciel in that it uses
one container for one service. However, it uses a container
to easily save and restore the entire state of a service.
In contrast, Ciel uses a container to exactly monitor the
resource usage of each service and scale out only over-
utilized services.

VCRecovery [8] runs services using containers inside
VMs for low-cost and fast failure recovery. For low-cost
warm-standby, it prepares one container for each VM run-
ning in the primary system, instead of a VM. Then, it runs
multiple containers inside a smaller number of VMs in the
secondary system. For fast cold-standby, it boots in-VM
containers, instead of VMs, in the secondary system on a
system failure. VCRecovery uses one container to run all the
services that originally run in a VM, while Ciel uses one



container for each service. VCRecovery performs container
migration if a VM running containers is overloaded after
failure recovery. This mechanism can be also used in Ciel
to decrease the load of a VM.

Docker enables users to run containers inside a con-
tainer mainly for efficient development. Docker-in-Docker
(DinD) [24] runs another Docker engine in a container
and allows users to manage their own containers. Since
clouds charge only for the parent container, users could
reduce the cost by running multiple services in child con-
tainers. However, the isolation of the parent container from
the host system becomes weaker because the parent con-
tainer needs to be privileged. In contrast, Docker-outside-of-
Docker (DooD) [25] shares the Docker engine in the host
system between parent and child containers. The user in
a container can manage their own containers, but all the
containers are visible to the host system. Clouds would
probably charge for such visible child containers as well.

7. Conclusion

This paper proposed Ciel for enabling fine-grained au-
toscaling of VMs using in-VM containers. Ciel runs each
service using a container in a VM for separation of services.
It analyzes the data of the guest operating system in the
memory of a VM using VMI and exactly monitors the
resource usage of in-VM containers from the outside of
the VM. Then, it performs scale-out of only over-utilized
services with in-VM containers. It can reduce the cost for
a newly created VM for scale-out and minimize the time
taken for scale-out. According to our experiments, it was
shown that Ciel could monitor various resources of in-
VM containers and that the scale-out time was dramatically
reduced.

One of our future work is to develop sophisticated
autoscaling policies considering not only CPU utilization
but also various resources and other metrics, e.g., response
time. It is also important to estimate the necessary amount
of resources for running over-utilized services and create a
new VM of minimum size. Another direction is to support
fine-grained scale-in of VMs. If a service is under-utilized,
we need to reduce the number of VMs and furthermore
consolidate containers running in multiple VMs using con-
tainer migration. In addition, we would like to apply Ciel
to commercial clouds although it is not easy because Ciel
requires VMI for memory and disks outside target VMs.

Acknowledgment

The research results have been achieved by the “Re-
silient Edge Cloud Designed Network (19304),” the Com-
missioned Research of National Institute of Information and
Communications Technology (NICT), Japan.

References

[1] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection
Based Architecture for Intrusion Detection,” in Proc. Network and
Distributed Systems Security Symp., 2003, pp. 191–206.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proc. Symp. Operating Systems Principles, 2003,
pp. 164–177.

[3] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux J., vol. 2014, no. 239, 2014.

[4] Y. Ozaki, S. Kanamoto, H. Yamamoto, and K. Kourai, “Detecting
system failures with gpus and llvm,” in Proc. Asia-Pacific Workshop
on Systems, 2019, pp. 47–53.

[5] Amazon Web Services, Inc., “Amazon CloudWatch,” https://aws.
amazon.com/cloudwatch/.

[6] ——, “Amazon Elastic Container Service,” https://aws.amazon.com/
ecs/.

[7] ——, “Amazon Elastic Kubernetes Service,” https://aws.amazon.com/
eks/.

[8] T. Morikawa and K. Kourai, “Low-cost and Fast Failure Recovery
Using In-VM Containers in Clouds,” in Proc. Int. Conf. Dependable,
Autonomic and Secure Computing, 2019, pp. 572–579.

[9] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
Linux Virtual Machine Monitor,” in Proc. Ottawa Linux Symp., 2007,
pp. 225–230.

[10] Canonical Ltd., “Linux Containers,” https://linuxcontainers.org/.

[11] W. Zhang, “The Linux Virtual Server Project – Linux Server Cluster
for Load Balancing,” http://www.linuxvirtualserver.org/.

[12] Red Hat, Inc., “libvirt: The virtualization API,” https://libvirt.org/.

[13] C. Waldspurger, “Memory Resource Management in VMware ESX
Server,” in Proc. Symp. Operating Systems Design and Implementa-
tion, 2002, pp. 181–194.

[14] A.I., “Yet Another Lightweight Linux Distribution for Docker Con-
tainers,” https://github.com/bargees/barge-os.

[15] J. Pendry and M. McKusick, “Union Mounts in 4.4BSD-Lite,” in
Proc. USENIX 1995 Technical Conf., 1995, pp. 25–33.

[16] G. Tene and M. Barker, “A Constant Throughput, Correct Latency
Recording Variant of wrk,” https://github.com/giltene/wrk2.

[17] M. Hellkamp, “Bottle: Python Web Framework,” https://bottlepy.org/.

[18] D. Mosberger and T. Jin, “httperf – A Tool for Measuring Web Server
Performance,” Hewlett-Packard Company, Tech. Rep., 1998.

[19] Cloud Native Computing Foundation, “Kubernetes: Production-Grade
Container Orchestration,” https://kubernetes.io/.

[20] Google, Inc., “cAdvisor: Analyzes Resource Usage and Performance
Characteristics of Running Containers,” https://github.com/google/
cadvisor.

[21] K. Kourai and K. Sannomiya, “Seamless and Secure Application
Consolidation for Optimizing Instance Deployment in Clouds,” in
Proc. Int. Conf. Cloud Computing Technology and Science, 2016, pp.
318–325.

[22] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour, “The
Turtles Project: Design and Implementation of Nested Virtualization,”
in Proc. Symp. Operating Systems Design and Implementation, 2010,
pp. 423–436.

[23] L. Zhang, J. Litton, F. Cangialosi, T. Benson, D. Levin, and A. Mis-
love, “Picocenter: Supporting Long-lived, Mostly-idle Applications
in Cloud Environments,” in Proc. European Conf. Computer Systems,
2016.

[24] J. Petazzoni, “Docker in Docker,” https://github.com/jpetazzo/dind.

[25] A. Mouat, “Running Docker in Jenkins (in Docker),” https://blog.
container-solutions.com/running-docker-in-jenkins-in-docker.


