
VM Migration for Secure Out-of-band Remote Management
with Nested Virtualization

Tomoya Unoki
Kyushu Institute of Technology

unoki@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ksl.ci.kyutech.ac.jp

Abstract—Infrastructure-as-a-Service clouds provide out-of-
band remote management of the systems in virtual machines
(VMs). This management method enables users to manage
their systems even on several types of failures inside VMs.
In this method, users access virtual devices of their VMs, but
virtual devices are not sufficiently protected against untrusted
cloud operators. For secure out-of-band remote management,
previous work securely runs shadow devices outside an un-
trusted virtualized system using nested virtualization. However,
the states of shadow devices are lost during VM migration. In
this paper, we propose USShadow for continuing secure out-
of-band remote management after VM migration. USShadow
enables the migration manager inside the virtualized system
to transparently and securely save and restore the states of
shadow devices outside it. We have implemented USShadow,
which supports Xen and KVM as virtualized systems. Then, we
confirmed that USShadow could continue virtual serial console
and that the migration overhead was negligible.

1. Introduction

In Infrastructure-as-a-Service (IaaS) clouds, users can
use the necessary number of virtual machines (VMs) to
construct large systems. To manage their systems in VMs
provided by clouds, users access VMs from remote hosts by
running remote management servers such as SSH inside tar-
get VMs. In addition to such a direct management method,
clouds provide another method called out-of-band remote
management. This method enables users to indirectly access
VMs via their virtual devices located outside target VMs.
One advantage of this method is that users can continue
to manage the systems in VMs even on failures of their
virtual networks and remote management servers. On the
other hand, virtual devices are not sufficiently protected in
current clouds. They are easily accessible to cloud operators,
who perform daily cloud management. Unfortunately, cloud
operators may be untrusted and even malicious [1]–[4].

To prevent the leakage of inputs and outputs of remote
management from virtual devices, a system called VSBy-
pass [5] has been proposed. VSBypass runs the entire virtu-
alized system including VMs and their virtual devices in an
outer VM using nested virtualization [6]. It intercepts access
to virtual devices used for out-of-band remote management

and forwards it to shadow devices running outside the virtu-
alized system. Since all the inputs and outputs are securely
handled in shadow devices, VSBypass can achieve secure
out-of-band remote management against cloud operators,
who are confined in the virtualized system. However, users
cannot continue this secure out-of-band remote management
with shadow devices after their VMs are migrated to other
hosts. Since shadow devices run outside the virtualized
system, the migration manager running inside it cannot save
or restore their states. As a result, the states are lost during
VM migration and cannot be restored until the migrated VM
is rebooted.

This paper proposes USShadow for continuing secure
out-of-band remote management with shadow devices after
VM migration. USShadow enables the migration manager
to transparently and securely transfer the states of shadow
devices as well as the traditional ones of a VM. To avoid
any modifications to the migration manager, USShadow runs
pseudo devices in the virtualized system, each of which
corresponds to a shadow device. The migration manager can
transparently save and restore the state of a shadow device as
that of a pseudo device. A pseudo device securely and effi-
ciently communicates with the corresponding shadow device
by completely bypassing the virtualized system. To prevent
information leakage from the saved states, USShadow pro-
vides end-to-end encryption between shadow devices, which
means that shadow devices themselves encrypt and decrypt
their states.

We have implemented USShadow on top of VSBypass,
which was developed on the basis of Xen 4.8. Currently,
USShadow supports Xen and KVM as virtualized systems
for running users’ VMs. As shadow devices, it supports a
virtual serial device used for virtual serial console. Using
USShadow, we confirmed that secure out-of-band remote
management could be continued after VM migration. In
addition, our experimental results show that the increases
in migration time and downtime were negligible.

The organization of this paper is as follows. Section 2
describes VSBypass and an issue in VM migration using it.
Section 3 proposes USShadow, which enables out-of-band
remote management with shadow devices after VM migra-
tion. Section 4 explains its implementation and Section 5
shows the performance of USShadow. Section 6 describes
related work and Section 7 concludes this paper.
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Figure 1: The system architecture of VSBypass.

2. Secure Out-of-band Remote Management

For secure out-of-band remote management, VSBy-
pass [5] runs special devices called shadow devices outside
the virtualized system including VMs and their virtual de-
vices. It uses shadow devices for out-of-band remote man-
agement, instead of virtual devices. Remote users can access
their VMs via shadow devices in a similar manner to the
traditional system, while information leakage is prevented
because cloud operators confined in the virtualized system
cannot access shadow devices. To enable VMs inside the
virtualized system to perform I/O using shadow devices out-
side it, VSBypass provides a mechanism called transparent
passthrough. This mechanism intercepts I/O issued to virtual
devices by VMs and transparently forwards it to shadow
devices.

VSBypass assumes that the entire virtualized system is
untrusted and that only the outside world is trusted. To
implement such a system, it uses nested virtualization [6]
and runs the virtualized system in a VM. Fig. 1 shows the
system architecture of VSBypass. The virtualized system is
run in an outer VM called the cloud VM. It runs multiple
VMs of users, called user VMs, and their virtual devices.
VSBypass runs one shadow device per virtual device outside
the cloud VM. The cloud VM and shadow devices run on
top of the hypervisor called the cloud hypervisor. When a
user VM issues an I/O instruction to a virtual device, the
cloud hypervisor intercepts that instruction. It emulates the
instruction by accessing the shadow device corresponding to
the target virtual device. For an input instruction, it returns
an input value sent from a remote user to the shadow device
as the result of the instruction execution. For an output one,
it writes the specified output value to the shadow device and
then the output is sent to a remote user.

However, secure out-of-band remote management with
shadow devices stops functioning after VM migration. This
is because the migration manager cannot transfer the states
of shadow devices. The migration manager runs inside the
virtualized system, whereas shadow devices run outside it.
Since the migration manager can access only the inside of
the virtualized system, it cannot save the states of shadow
devices. Therefore, the states cannot be restored at the
destination host although the traditional ones of the VM
are restored. Due to this inconsistency between the states,
neither the migrated VM nor a remote user can access
shadow devices correctly.
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Figure 2: VM migration in USShadow.

In this paper, we assume that cloud operators who per-
form daily management may be untrusted. They have full
control over the entire virtualized system. In contrast, we
assume that cloud providers are trusted. They maintain the
trusted computing base, e.g., hardware, the cloud hypervisor,
and shadow devices, outside the virtualized system. This
maintenance is done by a few trusted system adminis-
trators. We assume that these administrators are rewarded
adequately and do not perform malicious activities. A few
trusted administrators and many untrusted operators form
an administrative hierarchy, which is adopted in many sys-
tems. For example, Oracle Database provides two types of
privileges: SYSDBA for full administration and SYSOPER
for basic operations [7]. IBM Domino restricts privileges to
eight types of administrators [8].

3. USShadow

USShadow enables secure out-of-band remote manage-
ment with shadow devices after VM migration. Unlike VS-
Bypass, the migration manager inside the virtualized system
can transfer the states of shadow devices outside it. Fig. 2
shows the overview of VM migration in USShadow. At
the source host, the migration manager saves the states of
shadow devices outside the virtualized system via special
devices called pseudo devices inside the virtualized system.
Then, it transfers the saved states to the migration manager
at the destination host. After that, USShadow stops the
shadow devices. At the destination host, USShadow creates
new shadow devices at the starting time of VM migration.
When the migration manager receives the states of the
shadow devices, it restores the states of the new shadow
devices using them.

Pseudo devices are used to transparently save and restore
the states of shadow devices without any modifications to
the migration managers. USShadow additionally runs them
inside the virtualized system. When the migration manager
attempts to save the state of a pseudo device like a normal
virtual device, the pseudo device communicates with the
corresponding shadow device and obtains its state. Similarly,
when the migration manager attempts to restore the state
of a pseudo device, the pseudo device restores the state of
the corresponding shadow device. As such, the migration
manager can handle the state of a shadow device as that of
a pseudo device.



For secure and efficient communication between pseudo
and shadow devices, USShadow enables shadow devices
to share the memory of pseudo devices. First, a pseudo
device invokes the cloud hypervisor using a mechanism
called an ultracall [4]. This mechanism completely bypasses
the virtualized system and directly transfers the control to
the cloud hypervisor. Therefore, it is not affected by the
overhead of the virtualized system. Also, it does not require
any modifications to the existing virtualized system. After
that, the cloud hypervisor invokes the corresponding shadow
device. Next, the shadow device shares a buffer in the
memory of the pseudo device using the function of the
cloud hypervisor. Since it does not use its own buffer for
the communication, it can prevent the buffer overflow attack.
Using the shared buffer, the shadow and pseudo devices can
efficiently exchange data.

In addition, USShadow provides end-to-end encryption
between shadow devices in the source and destination hosts.
When a shadow device sends and receives its state to and
from a pseudo device, it encrypts and decrypts the state by
itself, respectively. Since shadow devices run outside the
virtualized system, this prevents information leakage from
the states of shadow devices to untrusted cloud operators in
the virtualized system. For example, the state may include a
password typed by a remote user and sensitive information
emitted by a user VM. At the source host, the migration
manager obtains the encrypted states of shadow devices via
pseudo devices and transfers it. At the destination host, when
the migration manager passes the received states to shadow
devices via pseudo device, the shadow devices decrypt the
encrypted states and restore their own states.

4. Implementation

We have implemented USShadow by extending VSBy-
pass, which is based on Xen 4.8.0. USShadow uses the
modified hypervisor as the cloud hypervisor and runs the
cloud management VM and the cloud VM on top of it.
In addition, it creates a proxy VM whenever a user VM
is booted. It runs shadow devices in the cloud management
VM. In the cloud VM, it runs an existing virtualized system
such as Xen and KVM. For Xen, the guest hypervisor, the
guest management VM, and user VMs run in the virtualized
system. In the guest management VM, the migration man-
ager, virtual devices, and pseudo devices run. For KVM, the
guest hypervisor runs inside the Linux kernel of the virtu-
alized system. The migration manager and pseudo devices
run on top of the kernel.

Shadow devices are implemented as virtual devices pro-
vided for proxy VMs. They are embedded into QEMU for
emulating virtual devices of proxy VMs. Proxy VMs are
assigned the minimum amounts of resources and are used
only for providing shadow devices.

4.1. Pseudo Devices

A pseudo device is a kind of virtual device provided for
a user VM. These devices are embedded into QEMU for

emulating virtual devices of user VMs. They can be easily
developed using several templates of virtual devices. They
perform only the registration to QEMU and the forwarding
of save and restore requests to the corresponding shadow
devices. To save the state of a shadow device, a pseudo
device shares a buffer for storing the state with the shadow
device using an ultracall. The detailed mechanism of this
memory sharing is described in Section 4.2. The shadow
device stores its own state to this shared buffer, while the
pseudo device receives it. The size of the state is returned
as the return value of the ultracall. The migration manager
obtains the state by saving that of the pseudo device and
transfers it to the destination host.

At the destination host, the migration manager attempts
to restore the state of a pseudo device using the received
state. At this time, the pseudo device stores the state in a
buffer and shares it with the corresponding shadow device
using an ultracall. Then, the shadow device restores its state
using the data stored in the shared buffer.

4.2. Communication with Shadow Devices

A pseudo device first invokes the cloud hypervisor using
an ultracall. An ultracall is implemented by using the vmcall
instruction, which is also used for invoking a hypercall to the
guest hypervisor. If a pseudo device issues this instruction
in the guest management VM, a VM exit directly occurs
to the cloud hypervisor, not to the guest hypervisor. If
this instruction is used for hypercall invocation, the cloud
hypervisor transfers the control to the guest hypervisor. For
an ultracall, it handles that instruction by itself. This ultracall
takes the virtual address of a buffer for storing the state of
a shadow device and its size as parameters. The buffer is an
anonymous memory page allocated by the mmap system
call and is pinned using the mlock system call to avoid
page-out to swap space.

The cloud hypervisor translates the virtual address of this
buffer so that a shadow device can access the memory of the
pseudo device. First, it obtains the value of the CR3 register
from the virtual CPU with which an ultracall is invoked. In
the CR3 register, the address of the page directory is stored.
Since CPUs are para-virtualized in the guest management
VM, the cloud hypervisor can access the virtual CPU of the
guest management VM via that of the cloud VM. It does
not need to analyze the guest hypervisor to obtain the state
of the virtual CPU in the guest management VM.

Next, the cloud hypervisor walks the page tables pointed
by the page directory. Then, it translates the virtual address
used in the QEMU process that runs the pseudo device into
the physical one used in the cloud VM. Since memory is
also para-virtualized in the guest management VM, the page
tables directly contain physical addresses of the cloud VM.
The cloud hypervisor does not need to walk the extended
page tables (EPT) used for a fully virtualized VM.

The cloud hypervisor sends a special I/O request to the
QEMU process in the cloud management VM and invokes
the target shadow device. To distinguish this request from
normal I/O requests issued by a proxy VM, it uses dedicated



I/O port numbers for the requests to shadow devices. This
I/O request includes a port number, a request type (save or
restore), the translated physical address of the buffer in the
pseudo device, and the buffer size. The type of a shadow
device is determined by the port number.

4.3. Saving and Restoring States

USShadow basically saves and restores the state of a
shadow device using the interface for saving and restoring
that of a virtual device, which is provided by QEMU.
However, the traditional QEMU can save and restore the
state only to and from a file or a network socket. This is
because that interface is used to save the state of a VM to a
disk and to transfer a VM to another host in VM migration.
Therefore, our QEMU provides a new interface for saving
and restoring the state of a shadow device to and from
memory. Using this interface, a shadow device can read and
write its own state from and to a buffer in a pseudo device.

In the current implementation, USShadow saves and
restores the state of a shadow serial device, which is used
by virtual serial console. To save the state, a shadow device
obtains the values of 10 device registers and stores them in
the buffer of a pseudo device. At the same time, it encrypts
the state using AES every 16 bytes. To restore the state at the
destination host, a new shadow device decrypts the data in
the buffer and sets the values to its own device registers. The
encryption key is shared between the two shadow devices
when VM migration is started.

5. Experiments

We conducted several experiments to show the effec-
tiveness of USShadow. For comparison, we used VSBypass,
which did not save or restore the states of shadow devices.
For the source and destination hosts of VM migration, we
used two PCs with an Intel Xeon E3-1226 v3 processor,
8 GB of memory, and Gigabit Ethernet. We assigned two
virtual CPUs and 3 GB of memory to the cloud VM. For
a proxy VM, we assigned two virtual CPUs and 1 GB of
memory. We used Xen 4.4.0 and KVM 2.4.1 as virtualized
systems running in the cloud VM. For a user VM, we
assigned two virtual CPUs and various sizes of memory.
For encryption in shadow devices, we used AES-ECB with
a 128-bit key.

5.1. Remote Management after VM Migration

To examine that secure out-of-band remote management
could be continued after VM migration, we migrated a user
VM while using its virtual serial console. First, we logged
in to the cloud management VM using SSH and connected
to the virtual serial console using the xl console command
in Xen. Then, we logged in to a user VM inside the cloud
VM via this virtual serial console. The access to the virtual
serial console was redirected to the user VM by transparent
passthrough.
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Figure 3: The migration time in USShadow.

Next, we migrated the user VM to the cloud VM at
the destination host. When we used Xen as a virtualized
system, we executed the xl migrate command in the guest
management VM. For KVM, we executed the virsh migrate
command. After the VM migration, we logged in to the
cloud management VM in the destination host using SSH
again. In USShadow, the login session was preserved and
we could continue to access the user VM using the virtual
serial console. However, we could not continue the access
in VSBypass.

5.2. Migration Performance

We examined the migration performance of a user VM.
For USShadow, a shadow serial device was run and its state
was transferred to the destination host. In VSBypass, the
state was not transferred. We assigned memory between 256
MB and 2 GB to a user VM. We measured the migration
time and the downtime. We executed VM migration 5 times
for each memory size and calculated the average and the
standard deviation.

Fig. 3(a) and Fig. 3(b) show the migration time when
we used Xen and KVM as virtualized systems, respectively.
Compared with VSBypass, the average increase in migration
time was only 743 ms for Xen and 24 ms for KVM. The
overhead was 1.5% at most. The difference between Xen
and KVM came from the overhead of nested virtualization.
Since the overhead in Xen was much larger than that in
KVM, it took a much longer time to migrate a VM in Xen.

Fig. 4(a) and Fig. 4(b) show the downtime when we
used Xen and KVM as virtualized systems, respectively. For
KVM, the downtime increased only by 6 ms on average,
compared with VSBypass. This is due to handling the state
of the shadow device in USShadow. For Xen, in contrast, the
downtime was reduced by 46 ms on average. This reason is
under investigation, but the performance impact is not large
in any case.

6. Related Work

A shadow device in USShadow is a kind of passthrough
device of VMs. A passthrough device is a virtual device
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Figure 4: The downtime in USShadow.

that can directly access hardware to improve I/O perfor-
mance. Similarly, a shadow device directly accesses virtual
hardware outside the virtualized system using nested virtu-
alization. Since passthrough devices are tightly coupled with
hardware, it is difficult to migrate VMs with such devices.

To migrate VMs with passthrough NICs, the bonding
drivers are used inside VMs [9]. This migration method
bonds passthrough and paravirtual NICs. Since it hot-
unplugs the passthrough NIC before VM migration, it can
easily migrate the VM only with the paravirtual NIC. After
VM migration, the method hot-plugs the passthrough NIC.
The network plugin architecture (NPA) [10] can be also
used for VM migration with passthrough NICs. Before VM
migration, this migration method removes the plugin for a
passthrough NIC and adds that for a paravirtual NIC. Then,
it switches back to the plugin for a passthrough NIC after
VM migration.

Transparent VM migration with passthrough NICs is
enabled using shadow drivers [11]. A shadow driver records
access to a network driver and redirects requests to a new
network driver started at the destination host. CompSC [12]
completely restores the values of the device registers of
NICs after VM migration. Since this is difficult due to
registers with side effects, CompSC records access to NICs
at the source host and replays it at the destination host.
SRVM [13] does not restore the complete states of NICs but
does only the minimum states so that NICs work correctly.
It detects memory regions to which NICs write received
packets and forwards the packets to the destination host.
Since shadow devices in USShadow are virtual devices, their
states can be completely saved and restored.

To enable traditional out-of-band remote management to
be continued after VM migration, D-MORE [14] has been
proposed. It runs virtual devices for a VM in a migratable
VM dedicated for remote management. It co-migrates that
VM together with a user VM and keeps the states of virtual
devices. However, if we apply this mechanism to secure out-
of-band remote management with shadow devices, we would
need a VM dedicated for running shadow devices outside
the virtualized system. It is not secure to allow the migra-
tion manager inside the virtualized system to migrate that
VM outside it with a user VM. In addition, the migration
manager needs to be largely modified for the co-migration.

7. Conclusion

This paper proposed USShadow for continuing secure
out-of-band remote management with shadow devices after
VM migration. USShadow transparently and securely saves
and restores the states of shadow devices via pseudo devices
running inside the virtualized system. We have implemented
USShadow in Xen and confirmed that secure out-of-band
remote management was available after migration. Experi-
mental results show that the migration overhead was small.

One of our future work is to support other virtualized
systems running in the cloud VM. In the current imple-
mentation, USShadow supports Xen and KVM and assumes
QEMU as a device emulator. It is necessary to confirm
that USShadow is applicable to other types of virtualized
systems, e.g., Hyper-V.
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