
Transparent IDS Offloading for Split-memory Virtual Machines

Kouki Yamato
Kyushu Institute of Technology

yamato@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ksl.ci.kyutech.ac.jp

Tarek Saadawi
City University of New York

saadawi@ccny.cuny.edu

Abstract—To enable virtual machines (VMs) with a large
amount of memory to be flexibly migrated, split migration has
been proposed. It divides a large-memory VM into small pieces
and transfers them to multiple hosts. After the migration,
the VM runs across those hosts and exchanges memory data
between hosts using remote paging. For such a split-memory
VM, however, it becomes difficult to securely run intrusion
detection systems (IDS) outside the VM using a technique
called IDS offloading. This paper proposes VMemTrans to
support transparent IDS offloading for split-memory VMs. In
VMemTrans, offloaded IDS can monitor a split-memory VM
as if that memory were not distributed. To achieve this, VMem-
Trans enables IDS running in one host to transparently access
VM’s remote memory. To consider a trade-off, it provides two
methods for obtaining memory data from remote hosts: self
paging and proxy paging. We have implemented VMemTrans
in KVM and compared the execution performance between
the two methods.

Index Terms—Intrusion detection systems, IDS offloading, vir-
tual machines, VM introspection, VM migration

1. Introduction

Since efficient processing of big data requires a large
amount of memory, large-memory virtual machines (VMs)
are being used recently. As an extreme example, Ama-
zon EC2 provides High Memory instances with 24 TB of
memory. Such large-memory VMs are used for fast in-
memory databases [1], [2] and efficient big data analysis [3],
[4]. One advantage of using VMs is service continuity on
host maintenance by using VM migration. VM migration
transfers the state of a VM including its memory to another
host. For large-memory VMs, however, it becomes more
difficult to find destination hosts with sufficient memory for
VM migration. Since hosts with a large amount of memory
are expensive, on-premise and private clouds may not be
able to afford to prepare large hosts as the destination of
occasional VM migration. Even in public clouds, it would
not be cost-effective to always preserve many large hosts in
preparation to large-scale maintenance of data centers.

To address this issue, a migration method called split
migration has been proposed [5]. It divides a large-memory
VM into small pieces and transfers them to multiple smaller

hosts, i.e., one main host and several sub-hosts. After the
migration, the migrated VM runs across those hosts by per-
forming remote paging. VM’s remote memory in a sub-host
is paged in to the main host when necessary, while unlikely
accessed local memory in the main host is paged out to
the sub-host. However, it becomes difficult to monitor such
split-memory VMs using IDS offloading with VM introspec-
tion [6]. IDS offloading runs IDS outside target VMs and
securely monitors them. It has been well studied for normal
VMs [6]–[9], but it cannot be applied to split-memory VMs
as it is. Offloaded IDS needs to be modified so as to handle
remote memory specially, but this is troublesome for the
developers.

This paper proposes VMemTrans to support IDS offload-
ing for split-memory VMs. VMemTrans offloads IDS to the
main host and enables IDS to transparently access VM’s
remote memory existing in sub-hosts. Using VMemTrans,
offloaded IDS can monitor a split-memory VM as if that
memory were not distributed across multiple hosts. To ob-
tain data in VM’s remote memory, VMemTrans provides
two methods: self paging and proxy paging. When using
self paging, the VMemTrans runtime itself obtains necessary
memory data from sub-hosts. For proxy paging, it lets a
VM itself perform remote paging to do that. To offload
legacy IDS from split-memory VMs without modification,
we integrated VMemTrans with Transcall [10]. Transcall
provides the shadow proc filesystem so that offloaded IDS
can obtain the internal state of the target VM through the
standard interface of the proc filesystem.

We have implemented VMemTrans in KVM [11] sup-
porting split migration and remote paging. VMemTrans en-
ables offloaded IDS to share the memory of a split-memory
VM by mapping a memory file. To handle VM’s distributed
memory, VMemTrans uses a special file called a sparse file
as a memory file. When offloaded IDS accesses memory
pages that do not exist in the main host and a page fault
occurs, the VMemTrans runtime traps that fault using the
userfaultfd mechanism in Linux. When using self paging,
it directly adds memory data obtained from a sub-host to
the memory mapping. For proxy paging, it instead sends
a control command to QEMU-KVM [12] running a VM.
Our experimental results showed that VMemTrans enabled
existing chkrootkit [13] to be offloaded from a split-memory
VM. The performance of offloaded chkrootkit was better for
self paging, while the impact of pages-ins by offloaded IDS

was smaller for proxy paging.
The organization of this paper is as follows. Section 6

mentions related work and Section 2 describes split-memory
VMs and IDS offloading. Section 3 proposes VMemTrans to
support IDS offloading for split-memory VMs and Section 4
explains its implementation. Section 5 reports the results of
our experiments. Section 7 concludes this paper.

2. Background

To enable large-memory VMs to be migrated flexibly, a
migration method called split migration has been proposed
[5]. It divides the memory of a large-memory VM into
small pieces and transfers them to multiple smaller hosts,
i.e., one main host and several sub-hosts. Then, it transfers
the memory likely to be accessed after the migration to the
main host. In contrast, it transfers unlikely accessed memory
to one of the sub-hosts. Such access prediction of VM’s
memory is performed using the least recently used (LRU)
algorithm on the basis of the memory access history of the
VM at the source host. Since split migration transfers the
VM core such as virtual CPUs and devices to the main
host, memory splitting is done in this way to improve the
performance of a migrated VM.

After split migration, the migrated VM runs across mul-
tiple hosts. This VM is called a split-memory VM. Since
the memory of the VM is distributed, a split-memory VM
runs by performing remote paging between the main host
and one of the sub-hosts. When the VM requires remote
memory existing in a sub-host, that memory is paged in from
the sub-host to the main host via the network. In exchange,
the least likely accessed local memory is paged out from the
main host to that sub-host. Such memory is also selected on
the basis of LRU. Since likely accessed memory has been
transferred to the main host in advance at the migration time,
the frequency of remote paging is suppressed just after split
migration.

However, a split-memory VM raises one new issue
on using a technique called IDS offloading [6]–[9]. This
technique enables IDS to securely run outside its target
VMs. Even if attackers intrude into a target VM, they
cannot disable offloaded IDS. The enabling technology for
monitoring the system inside a VM from the outside is VM
introspection [6]. Specifically, memory introspection ana-
lyzes the memory of a VM to obtain the internal state of the
target system. For example, IDS can obtain the process list
and detect malicious processes. Disk introspection analyzes
the filesystem used in a virtual disk to access files and
directories. IDS can find hidden files and examine the file
contents. Network introspection analyzes captured packets
to detect attacks from the outside of a VM.

Since the memory of a split-memory VM is distributed
across multiple hosts unlike a normal VM running in one
host, memory introspection cannot be applied in a traditional
form. If IDS is offloaded to the main host, it cannot directly
access remote memory existing in sub-hosts as local mem-
ory. Even if it is offloaded to one of the sub-hosts, it cannot
seamlessly access the memory in the main host or the other

main host

IDS

obtain

sub-host

VMemTrans

runtime

VM

remote

memory

local

memory

Figure 1: IDS offloading for split-memory VMs.

sub-hosts. Remote paging is automatically performed only
when a split-memory VM itself accesses remote memory,
but it does not work when offloaded IDS accesses VM’s
remote memory. Consequently, it is necessary that IDS itself
obtains remote memory. This is a troublesome task for the
developers of offloaded IDS.

3. VMemTrans

This paper proposes VMemTrans to support IDS offload-
ing for split-memory VMs. VMemTrans offloads IDS to the
main host and provides a runtime system to offloaded IDS,
as illustrated in Fig. 1. The VMemTrans runtime enables
IDS to transparently access remote memory existing in
sub-hosts. When IDS accesses VM’s remote memory, the
runtime automatically detects that access on behalf of the
IDS. Then, it obtains data of accessed remote memory from
the corresponding sub-host and prepares it to that IDS.
Using the VMemTrans runtime, IDS can monitor a split-
memory VM as if the target were a normal VM, that is, its
memory is not distributed.

To consider a trade-off, VMemTrans provides offloaded
IDS with two methods for accessing VM’s remote memory
resident in sub-hosts. One is self paging, in which the
VMemTrans runtime itself directly obtains memory data
from sub-hosts. When the VMemTrans runtime detects ac-
cess to VM’s remote memory by IDS, it enables the IDS
to access that memory data on its own responsibility. This
method is non-intrusive to the monitored VM in that it
obtains memory data without causing remote paging to the
split-memory VM. Therefore, it does not affect the memory
access performance of the VM. In contrast, the VMemTrans
runtime cannot keep all the obtained memory data due to a
limited amount of free memory in the main host. In addition,
obtained memory data can become stale after a while. As a
result, the VMemTrans runtime has to keep only a minimum
amount of memory data. This can affect the performance of
offloaded IDS.

The other method is proxy paging, which makes a split-
memory VM itself indirectly obtain VM’s remote memory
resident in sub-hosts by performing remote paging. If the
VMemTrans runtime detects access to VM’s remote memory
by IDS, it requests remote paging to the VM. The requested
memory data is paged in from a sub-host to the main host
and can be finally accessed by the IDS. This method enables
IDS to always monitor up-to-date memory data. In addition,
it is likely that memory data that IDS frequently accesses is

kept in the main host. In contrast, this method can degrade
the performance of offloaded IDS due to the communication
overhead between the VMemTrans runtime and the VM and
the overhead of page-outs performed in exchange for page-
ins. Furthermore, it is intrusive to the monitored VM and
can affect the memory access performance of the VM.

Using VMemTrans, legacy IDS can be offloaded from
split-memory VMs in cooperation with Transcall [10]. Tran-
scall provides an execution environment for legacy IDS to
introspect a VM without any modification. It consists of
the system call emulator and the shadow filesystem. The
system call emulator traps the system calls issued by IDS
and obtains necessary information on the operating system
from the memory of a VM. The shadow filesystem provides
the same filesystem view as that in a VM. To achieve
this, Transcall generates the shadow proc filesystem, which
provides system information in a VM as pseudo files, as
done by the proc filesystem inside the VM. VMemTrans
allows transparent analysis of the memory of split-memory
VMs.

4. Implementation

We have implemented VMemTrans in KVM [11]. In
KVM, the QEMU-KVM process provides memory to a VM.
We used QEMU-KVM extended for split migration and
remote paging.

4.1. Introspection of Local and Remote Memory

To achieve memory introspection of a split-memory VM
from the outside, VMemTrans stores VM’s memory in a
file called a memory file. VMemTrans maps the memory
file to both QEMU-KVM and offloaded IDS. To make
memory updates by a VM accessible to IDS, the shared
mapping is used. Through the mapped memory, IDS can
introspect VM’s memory. Also, QEMU-KVM can use the
mapped memory like internally allocated memory, which
is traditionally used. To support remote memory of a split-
memory VM, VMemTrans uses a special file called a sparse
file, instead of a normal “dense” file, as a memory file. A
sparse file can contain data only in a part of file blocks.
The other empty blocks are called holes. This memory file
contains only data of local memory existing in the main
host, while it does not contain that for remote memory in
sub-hosts. VMemTrans creates a memory file on the tmpfs
filesystem. Since all the file data is maintained only in
the page cache, the overhead of a memory-mapped file is
negligible.

To detect access to remote memory by offloaded IDS,
VMemTrans uses the userfaultfd mechanism in Linux.
This mechanism enables user-level processes to handle page
faults for registered memory regions. It is also used for the
implementation of remote paging. First, the VMemTrans
runtime registers the memory region to which the memory
file is mapped to the userfaultfd mechanism. When IDS
accesses a memory region corresponding to a hole in the
memory file, a page fault occurs because that region means

main host

IDS

sub-host

VMemTrans

runtime

VM

copy memory

server

remote

memory

local

memory

Figure 2: The procedure of self paging.

remote memory. At this time, an event is notified to the
VMemTrans runtime and the thread of the IDS is suspended.
The VMemTrans runtime translates the faulting address
into VM’s physical address. Then, it prepares memory data
for the IDS using self paging or proxy paging. Finally, it
resumes the suspended thread of the IDS.

4.2. Self Paging

For self paging, the VMemTrans runtime directly obtains
necessary data of remote memory from sub-hosts. When it
traps access to remote memory, it sends a page-ref request
to the memory server in an appropriate sub-host and receives
the data of the specified page, as illustrated in Fig. 2.
The memory server is used for split migration and remote
paging. Unlike the page-in request used for remote paging,
the page-ref request does not remove the data from the
sub-host. To avoid frequent page faults, the VMemTrans
runtime sends multiple requests for all the pages contained
in the same memory chunk at a time, as performed in remote
paging.

The VMemTrans runtime temporarily adds the received
memory data to the mapped memory. When the data is
added to the faulting page, the suspended thread of the
IDS is automatically resumed. However, if the memory file
were actually modified and the change were propagated to
VM’s memory, the integrity could not be guaranteed because
that data exists in both the main host and the sub-host. To
prevent this situation, the VMemTrans runtime maps the
memory file in a private copy-on-write mapping. Updates
to the mapped memory in the runtime are visible only to
the IDS, not to the VM. In contrast, updates in the VM are
still visible to the IDS.

The VMemTrans runtime manages the temporarily
added memory pages on its own responsibility. Since it
does not page out unlikely accessed pages when it receives
memory data from sub-hosts, it has to minimize the amount
of maintained memory data to avoid memory pressure.
Therefore, the runtime uses a queue to manage memory
data received from sub-hosts. If it receives new memory data
from a sub-host when the queue is full, the runtime removes
the oldest entry from the queue and removes the mapping
of all the pages in the corresponding memory chunk. Then,
it adds a new entry to the queue and adds all the pages in
the corresponding memory chunk to the mapping.

main host

IDS

command

sub-host

VMemTrans

runtime

VM

page-in

remote

memory

QEMU-KVM
memory
server

local

memory

Figure 3: The procedure of proxy paging.

4.3. Proxy Paging

For proxy paging, VMemTrans makes QEMU-KVM in-
directly obtain necessary data of remote memory from sub-
hosts by using remote paging, as illustrated in Fig. 3. As a
result, offloaded IDS can also access the pages that are paged
in to the main host, which are shared with the VM. When
IDS accesses remote memory and a page fault occurs, that
fault is trapped by the runtime using userfaultfd. Then, the
runtime sends a remote-paging command to QEMU-KVM
using the QEMU monitor protocol (QMP). After QEMU-
KVM pages in a memory chunk including the requested
page, the runtime receives a notification for completing re-
mote paging. Unlike self paging, the suspended thread of the
IDS is not resumed automatically because the runtime does
not add the page to the mapped memory using userfaultfd.
To explicitly make the IDS continue, the runtime wakes up
the suspended IDS using userfaultfd.

When QEMU-KVM receives the command, it can per-
form remote paging in two methods: direct and fault. There
is a trade-off between these two methods. Using the direct
method, the command handler in QEMU-KVM directly
executes the function for remote paging. The function pages
in multiple pages including the requested page at once.
Unlike normal remote paging, the command handler has to
synchronously perform page-ins of all the pages and the
following page-outs. This is because it is not easy to return
the result before remote paging of one memory chunk is not
completed.

On the other hand, the fault method causes a page fault
by accessing the requested page again in QEMU-KVM. This
is almost the same as a page fault caused by a VM itself.
An advantage of this method is that the command handler
can continue immediately after the faulting page is paged in.
The command handler does not need to wait for the other
pages in the same chunk to be paged in and the following
page-outs. However, this method suffers from the overhead
of an extra page fault in QEMU-KVM.

For page-outs, QEMU-KVM selects the least likely
accessed memory chunk on the basis of LRU and sends
memory data in the chunk to the sub-host to which the page-
ins are performed. At this time, it removes the mapping of
the corresponding pages. In addition, it also removes the
data from the memory file using the fallocate system call

and makes the file blocks holes. As a result, page faults
occur again when IDS accesses the removed pages later.

5. Experiments

We conducted several experiments to show the effective-
ness of VMemTrans. For the main host and a sub-host, we
used two PCs with an Intel Xeon E3-1225 v5 processor, 8
GB of memory, 1 TB of HDD, and a Gigabit Ethernet. We
ran modified Linux 4.11 and QEMU-KVM 2.4.1 modified
for split migration, remote paging, and VMemTrans. These
two PCs were connected with a Gigabit switch. For a VM,
we assigned one virtual CPU and 2 GB of memory and
divided the memory into 1 GB each. We ran Linux 3.13 in
the VM because Transcall supported this version of Linux
kernel.

5.1. Execution Test of Offloaded IDS

To test the behavior of IDS offloaded from a split-
memory VM, we offloaded chkrootkit [13] to the main host
using VMemTrans and Transcall. Chkrootkit examines the
system state and several files to detect rootkits that are
installed in the system. Offloaded chkrootkit accesses the
shadow proc filesystem for obtaining the system state and
the shadow filesystem for inspecting filesystems. Compared
with traditional IDS offloading for a normal VM, we could
obtain the same result for a split-memory VM.

5.2. Performance of VMemTrans

We measured the time needed for constructing the
shadow proc filesystem for a split-memory VM. To obtain
memory data from a sub-host, we compared the performance
between self paging and proxy paging. For proxy paging,
we also compared the performance between the direct and
fault methods. In this experiment, we changed the size of a
memory chunk from 4 KB to 2 MB, which is one to 512
pages.

Fig. 4(a) shows the average construction time and in-
cludes the magnification of only the data for the chunk size
that is equal to or larger than 128 KB. For self paging,
the construction time almost did not depend on the chunk
size. For proxy paging, in contrast, the time was largely
decreasing as the chunk size was increasing. When we
compared the construction time between self paging and
proxy paging, it was shown that self paging was always
faster than proxy paging. Even for the chunk size of 2
MB, self paging was 58% faster. As the chunk size became
smaller, proxy paging took a longer time. It was 64 times
slower when the chunk size was 4 KB. This is because more
page faults occurred, as shown in Fig. 4(b).

For proxy paging, the construction time in the fault
method was shorter than that in the direct one between
chunk sizes of 32 KB and 256 KB. At maximum, the fault
method was 87% faster. This is because the fault method did
not need to wait for page-ins of all the pages contained in

4 16 64 256 1024
chunk size (KB)

0

5

10

15

20

c
o
n
s
tr

u
c
ti
o
n
 t
im

e
 (

s
e
c
)

proxy paging (direct)

proxy paging (fault)

self paging

256 1024
0

1

2

(a) Construction time

4 16 64 256 1024
chunk size (KB)

0

100

200

300

400

500

#
 o

f
p

a
g

e
 f

a
u

lt
s

proxy paging (fault)

self paging

proxy paging (direct)

(b) Page faults

Figure 4: The performance of constructing the shadow proc
filesystem.

a memory chunk and page-outs. The execution of Transcall
could continue more quickly after a page fault. For the chunk
size of more than 256 KB, the construction time was also
similar between the two methods. This reason is probably
that the overhead of paging in and out large memory chunks
was a dominant factor.

For the fault method, the number of page faults was
larger, as shown in Fig. 4(b). Note that this data does
not include extra page faults intentionally caused by the
VMemTrans runtime. This is because page faults could
occur for multiple pages in one memory chunk. Since the
execution of Transcall continued immediately after only the
faulting page was paged in, Transcall could access the rest
of the pages in the same memory chunk while QEMU-KVM
was still paging in those pages. In contrast, the direct method
caused only one page fault for the same memory chunk.

Next, we compared the construction time for a split-
memory VM using VMemTrans with that for a normal
VM using traditional IDS offloading. When the chunk size
was 1 MB, the traditional IDS offloading was faster than
any methods in VMemTrans. The construction time in the
traditional IDS offloading was 35% shorter. Note that the
execution time of chkrootkit itself was 8.1 seconds and
therefore this difference of the construction time was almost
negligible.

5.3. Impact of Page-ins by Offloaded IDS

We examined the impact of pages-ins caused by of-
floaded IDS on the memory access performance of a split-
memory VM. First, we constructed the shadow proc filesys-
tem for offloaded IDS. When we used self paging, this con-
struction did not cause any remote paging in QEMU-KVM
because the VMemTrans runtime itself obtained memory
data. For proxy paging, in contrast, it caused many page-
ins for the VM. Then, we measured the execution time of
the ps command, which accessed the proc filesystem, inside
the VM. In this experiment, we used the fault method for
proxy paging because this method and the direct method
resulted in almost the same memory layout. For paging, we
configured the size of a memory chunk to 1 MB.

0

20

40

60

80

100

120

140

e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

self paging

proxy paging

(a) ps (page-ins)
0

1

2

3

4

5

6

e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

self paging

proxy paging

(b) chkrootkit (page-outs)

Figure 5: The execution time of commands inside a VM
after paging by offloaded IDS.

Fig. 5(a) shows the average execution time of the ps
command and its standard deviation. The execution time
in proxy paging was 63% shorter than that in self paging.
This is because the memory data used for constructing the
shadow proc filesystem tended to be stored in the main host.
This led to less frequent remote paging during the command
execution. When we used self paging, the variance was very
large. The reason is that the number of page faults depended
only on VM’s memory layout just after split migration in
self paging.

5.4. Impact of Page-outs by Offloaded IDS

We examined the impact of page-outs caused by of-
floaded IDS on the memory access performance of a split-
memory VM. First, we executed chkrootkit inside the
VM and caused necessary page-ins. Next, we executed a
memory-intensive IDS that accessed a large amount of VM’s
memory outside the VM. This execution did not change the
memory layout of the split-memory VM for self paging,
while it caused many page-ins and page-outs for proxy
paging. Then, we measured the execution time of chkrootkit
inside the VM.

Fig. 5(b) shows the execution time of chkrootkit. The
time in self paging was 48% shorter than that in proxy
paging. For proxy paging, the memory data used by chk-
rootkit tended to be paged out by the memory-intensive IDS.
This led to many page-ins when chkrootkit was executed
after that IDS. For self paging, the memory data used by
chkrootkit was kept in the main host even after the memory-
intensive IDS was executed.

6. Related Work

MemX [14] runs a VM using the memory of multiple
hosts. In the MemX-VM mode, the guest operating system
in a VM provides a block device to access remote memory.
Since that device is created inside a VM, offloaded IDS
cannot access it. In the MemX-DD mode, Dom0 in Xen
provides such a block device. IDS offloaded to Dom0 can
access that device, but it is difficult to introspect remote
memory via that device because the device is used as swap

space of the guest operating system. In the MemX-VMM
mode, MemX provides a VM with the memory extension
to access remote memory transparently. It may be possible
that offloaded IDS accesses VM’s remote memory, but that
would need a considerable effort.

vNUMA [15] enables running one large VM with not
only the memory but also CPUs of multiple hosts. The
VM can transparently access the memory of all the hosts
using distributed shared memory (DSM). This is similar to
proxy paging in VMemTrans. According to our experiments,
proxy paging was slower than self paging although there are
several trade-offs. Using DSM cannot allow us to consider
such trade-offs. Unlike a split-memory VM, active memory
is distributed across multiple hosts because all the hosts run
virtual CPUs in vNUMA. Therefore, IDS offloading can
affect the system performance more largely.

RemoteTrans [16] enables IDS to be offloaded to remote
hosts, instead of the host running a target VM. Offloaded
IDS communicates with the hypervisor running the target
VM to obtain memory data. Memory introspection in Re-
moteTrans is similar to self paging in VMemTrans. The Re-
moteTrans runtime running in remote hosts always obtains
necessary memory data from the target VM via the Internet.
Therefore, the overhead of accessing VM’s memory is quite
large.

LibVMI [17] is an open source library for VM intro-
spection and supports Xen and KVM. If LibVMI is used
to a split-memory VM, QEMU-KVM would automatically
perform remote paging when the target memory does not
exist in the main host. This is similar to proxy paging in
VMemTrans. However, the performance of memory intro-
spection is low in LibVMI because memory data have to be
transferred from QEMU-KVM to IDS using inter-process
communication.

KVMonitor [18] is another system for VM introspection
in KVM. It uses a memory file to share VM’s memory with
IDS and maps it to both a target VM and IDS. Therefore, its
memory introspection is much more efficient than LibVMI.
This mechanism of memory sharing is similar to that of
our VMemTrans. However, KVMonitor is not applicable to
split-memory VMs because it cannot handle remote memory
unlike LibVMI. If IDS accesses a memory region corre-
sponding to remote memory, any page faults do not occur
and consequently IDS would read empty memory data from
the memory file.

7. Conclusion

This paper proposed VMemTrans to support IDS of-
floading for split-memory VMs. VMemTrans offloads IDS
to the main host and its runtime enables IDS to transpar-
ently access remote memory existing in sub-hosts. Using
VMemTrans, IDS can monitor a split-memory VM as if
the memory were not distributed. We have implemented
VMemTrans in KVM supporting split migration and remote
paging. Our experimental results showed that VMemTrans
enabled chkrootkit to be offloaded from a split-memory VM
successfully. The performance of chkrootkit was better when

using self paging, while the impact of pages-ins by offloaded
IDS was smaller for proxy paging.

One of our future work is to offload IDS to not only
the main host but also one of the sub-hosts or the other
hosts. To run offloaded IDS in the other hosts, it is neces-
sary to access VM’s memory efficiently from remote hosts.
Another direction is to continue the monitoring by offloaded
IDS after split-memory VMs are migrated. To seamlessly
monitor migrated VMs, it is necessary to virtualize access
to the memory file and switch the file between the source
and destination hosts of VM migration.

Acknowledgment

The research results have been achieved by the “Re-
silient Edge Cloud Designed Network (19304),” the Com-
missioned Research of National Institute of Information and
Communications Technology (NICT), Japan.

References

[1] SAP SE. SAP HANA. https://www.sap.com/products/hana.html.
[2] Microsoft Corporation. SQL Server 2017 on Windows and Linux.
[3] Apache Software Foundation. Apache Spark – Unified Analytics

Engine for Big Data. http://spark.apache.org/.
[4] Facebook, Inc. Presto: Distributed SQL Query Engine for Big Data.

https://prestodb.io/.
[5] M. Suetake, T. Kashiwagi, H. Kizu, and K. Kourai. S-memV: Split

Migration of Large-memory Virtual Machines in IaaS Clouds. In
Proc. Int. Conf. Cloud Computing, pages 285–293, 2018.

[6] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proc. Network and
Distributed Systems Security Symp., pages 191–206, 2003.

[7] X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detection through
VMM-based ”Out-of-the-box” Semantic View Reconstruction. In
Proc. Conf. Computer and Communications Security, pages 128–138,
2007.

[8] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso:
Narrowing the Semantic Gap in Virtual Machine Introspection. In
Proc. Symp. Security and Privacy, pages 297–312, 2011.

[9] Y. Fu and Z. Lin. Space Traveling across VM: Automatically Bridging
the Semantic Gap in Virtual Machine Introspection via Online Kernel
Data Redirection. In Proc. Symp. Security and Privacy, pages 586–
600, 2012.

[10] T. Iida and K. Kourai. Transcall. http://www.ksl.ci.kyutech.ac.jp/oss/
transcall/.

[11] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
Linux Virtual Machine Monitor. In Proc. Ottawa Linux Symp., pages
225–230, 2007.

[12] F. Bellard. QEMU: the FAST! Processor Emulator. https://www.
qemu.org/.

[13] N. Murilo and K. Steding-Jessen. chkrootkit – Locally Checks for
Signs of a Rootkit. http://chkrootkit.org/.

[14] U. Deshpande, B. Wang, S. Haque, M. Hines, and K. Gopalan.
MemX: Virtualization of Cluster-Wide Memory. In Proc. Int. Conf.
Parallel Processing, pages 663–672, 2010.

[15] M. Chapman and G. Heiser. vNUMA: A Virtual Shared-Memory-
Multi Processor. In Proc. USENIX Annual Technical Conf., 2009.

[16] K. Kourai and K. Juda. Secure Offloading of Legacy IDSes Using
Remote VM Introspection in Semi-trusted Clouds. In Proc. Int. Conf.
Cloud Computing, pages 43–50, 2016.

[17] B. Payne. LibVMI: Simplified Virtual Machine Introspection. http:
//libvmi.com/.

[18] K. Kourai and K. Nakamura. Efficient VM Introspection in KVM
and Performance Comparison with Xen. In Proc. Pacific Rim Int.
Symp. Dependable Computing, pages 192–202, 2014.

