Prevention of a DoS Attack with Copy-on-write in the Overlay Filesystem

Hirofumi Satou
Kyushu Institute of Technology
satou@ksl.ci.kyutech.ac.jp

Abstract—Recently, containers are widely used for lightweight
virtualization. A container usually uses a disk image that stacks
a thin writable layer on top of a read-only image layer. For this
layering, a filesystem called OverlayFs is often used. To modify
a file in the read-only lower layer, OverlayFS first copies the
entire file to the upper layer and then writes requested data to
it. This copy-on-write suspends a container for a long time and
consumes the disk space of the upper layer when the size of
the target file is large. If large files are intentionally modified
by attackers, a potential denial-of-service (DoS) attack can
be mounted. This paper proposes a new filesystem, called
TranslayFS, based on OverlayFS to prevent this type of DoS
attack. TranslayFS creates only a special file called a sparse
file in the upper layer when a container modifies a file in
the lower layer for the first time. Using this file, it holds only
modified file data in the upper layer without copying the entire
file. It returns the modified part of the file from the upper
layer and the unmodified part from the lower layer. We have
implemented TranslayFS in the Linux kernel and confirmed
that TranslayFS could dramatically reduce the latency in the
first write to a file, so that the DoS attack was not possible.

Index Terms—DoS attack, containers, disk image, filesystem,
copy-on-write

1. Introduction

Recently, containers like Docker [1] are widely used for
lightweight virtualization. The disk image of a container
is usually created by stacking a thin writable layer on top
of a read-only image layer. An image layer provides the
base system for container execution, while a writable layer
stores files created by a container. To enable this layering, a
filesystem called the Overlay filesystem (OverlayFS) [2] is
often used. In OverlayFS, an image layer is called a lower
layer, while a writable layer is called an upper layer. When
a container reads a file, OverlayFS returns the data of a file
in the upper layer if the requested file exists; otherwise, it
returns the data of a file in the lower layer. In contrast, it
always writes data to files in the writable upper layer.

OverlayFS uses the copy-on-write mechanism for the
first write to a file. When a container modifies a file whose
real entity exists in the lower layer, OverlayFS first copies
the entire file to the upper layer using the copy-up operation.

Kenichi Kourai
Kyushu Institute of Technology
kourai@csn.kyutech.ac.jp

This is because it cannot overwrite the file in the read-
only lower layer. Then, it writes requested data to the file
created in the upper layer. If the size of a modified file
is large, this copy-up operation increases the delay of a
write operation when a container modifies the file for the
first time. Since the container is suspended until the write
operation is completed, e.g., 51 seconds for a 10-GB file
in our experiment, this can largely affect the performance
of the container. If this mechanism is maliciously used by
attackers, a potential denial-of-service (DoS) attack can be
mounted. Attackers could suspend a service in a container
for a long time by letting it modify part of a large file. They
could also make the upper layer out of space by copying
large files if the size of the upper layer is limited by quota.

To prevent this type of DoS attack, this paper proposes a
new filesystem called TranslayFS, which is based on Over-
layFS. Unlike OverlayFS, TranslayFS holds only modified
file data in the upper layer. It does not copy the entire
file to the upper layer when a container modifies a file
existing in the lower layer for the first time. Therefore,
it can eliminate the root cause of the DoS attack, i.e.,
time- and space-consuming copy-up of the entire file. To
efficiently manage only modified file data in the upper layer,
TranslayFS uses a special file called a sparse file. This file
enables scattered file data to be stored in the upper layer
without a large modification to OverlayFS. When a container
reads a modified file, TranslayFS returns file data in the
upper layer if that data exists; otherwise, it returns file data
in the lower layer.

We have implemented TranslayFS in Linux kernel 4.4.
In Linux, a sparse file consists of 4-KB data blocks including
real data and holes including no data. Therefore, TranslayFS
copies only an unmodified part of a block from the lower to
upper layer on the first modification to the block. It detects
whether a file block is a hole or not to determine which
layer it needs to access. We conducted several experiments
to examine the performance of TranslayFS, compared with
OverlayFS. It was shown that TranslayFS could complete
the first one-byte write to a 10-GB file in the lower layer
only in 339 us. Instead, it could suffer from the delay by
copying an unmodified part of a block for each write, but
this delay was only 89 us even for one-byte write. As a
result, TranslayFS could prevent the DoS attack with copy-
on-write.

The organization of this paper is as follows. Section 2

container image

writable layer

image layer | (library) (‘application)

Figure 1: A container image with two layers.

describes a DoS attack with copy-on-write in OverlayFS.
Section 3 proposes TranslayFS to prevent this type of DoS
attack and Section 4 explains its implementation. Section 5
shows the experimental results, compared with OverlayFS.
Section 6 describes related work and Section 7 concludes
this paper.

2. DoS Attack with Copy-on-write

The disk image of a container in Docker is created by
stacking a thin writable layer on top of a read-only image
layer, as illustrated in Fig. 1. An image layer contains the
base system such as libraries and applications commonly
used by multiple containers. Since it cannot be modified
by containers, a thin writable image is prepared for each
container. It contains data and log files created and applica-
tions installed at runtime by a container. It can also contain
custom libraries and applications that are not contained in
the base image. A different writable layer can be further
stacked on top of the existing stack of a writable layer and
an image layer.

To enable this layering in a container image, a filesystem
called OverlayFS is often used as a storage driver in Docker.
It can combine two filesystems into one. Docker can use
various storage drivers such as AUFS [3], ZFS [4], Btrfs [5],
and devicemapper [6]. Among them, OverlayFS has many
advantages and is preferred in Docker. Since it is simpler,
the performance is better. It is supported by default in all the
Linux distributions without any configuration and therefore
is easy to use. In OverlayFS, a read-only image layer is
called a lower layer, while a writable layer is called an upper
layer.

OverlayFS handles a read request to a file from a con-
tainer in a different manner, according to which layer an
actually accessed file is located in, as illustrated in Fig. 2.
When a read request is for a file whose real entity exists
in either the lower layer (file 1) or the upper layer (file 2),
OverlayFS returns file data in that layer to the container. As
such, the container can read files in the base system from
the lower layer and those created at runtime from the upper
layer. For a file existing in both layers (file 3), it returns file
data in the upper layer. In this case, the file in the lower
layer is hidden from the container. After a container creates
a new file with the same name, it can read that file.

On the other hand, OverlayFS handles a write request
to a file differently, as illustrated in Fig. 3. When a write
request is for a file existing only in the upper layer (file 4)

read

OverlayFS A A A

[file1] [file2] [file3]

| |
upper layer
lower layer file 1

Figure 2: Read operations in OverlayFS.

write
OverlayFS
[file4]| [file5] [file6]
S
upper layer | [file4] [file5] !
copy-up
lower layer file 6

Figure 3: Write operations in OverlayFS.

or both layers (file 5), OverlayFS modifies the file in the
upper layer. For a file existing only in the lower layer (file
6), it uses the copy-on-write mechanism. Specifically, it first
copies the file to the upper layer because it cannot modify
the file in the read-only lower layer. This operation is called
copy-up. Then, OverlayFS modifies the copied file in the
upper layer. After that, the entity of the file exists in both
layers like file 5.

As such, OverlayFS suffers from the delay due to this
copy-up operation whenever a container modifies a file
existing only in the lower layer for the first time. Since
it always copies the entire file regardless of the size of
modified data, this delay increases as the file size becomes
larger. For example, a database file may become several
giga-bytes. Worse, OverlayFS synchronously writes back the
copied file to a disk. While OverlayFS copies a file from
the lower to upper layer, the container that requests the file
write is suspended until the copy-up operation completes.
In addition, the copied file in the upper layer consumes the
disk space assigned to the upper layer although its data is
almost the same as the original one in the lower layer in
general.

If attackers can intentionally cause this copy-on-write
to files in a container, a DoS attack is possible against the
container. Attackers could suspend a service in a container
for a long time by letting it modify part of a large file.
They can cause the copy-up operation once for each file
existing only in the lower layer. If a container is configured
for auto-scaling in a cloud, attackers can send many requests
to the container so that the container is automatically scaled
out. After that, they could cause copy-on-write again in the
newly created containers to suspend the services. If the size

write read
TranslayFS A A
| file |
I I
upper layer il |_:|
lower layer | | file |

Figure 4: Read and write operations to a file in the lower
layer in TranslayFS.

of the upper layer is limited by quota, a container could not
write any data after many files are copied from the lower
layer.

3. TranslayFS

To prevent this type of DoS attack with copy-on-write
in OverlayFS, this paper proposes a new filesystem called
TranslayFS. This file system is based on OverlayFS but
eliminates time- and space-consuming copy-on-write. When
a container writes data to a file whose real entity exists only
in the lower layer, TranslayFS stores only the written data in
the upper layer, as illustrated in Fig. 4. Unlike OverlayFs, it
does not copy the entire file from the lower to upper layer by
the copy-up operation to modify a file in the read-only lower
layer. When a container modifies a previously modified part
of the file again, TranslayFS modifies the data stored in the
upper layer.

Using this lightweight write operation without copy-on-
write, TranslayFS can decrease the delay caused by the
copy-up operation. It can complete the write operation in the
time proportional only to the size of written data even when
a container modifies a large file existing in the lower layer.
This can prevent attackers from suspending a container for a
long time by a simple write to part of a large file. Attackers
cannot amplify their small write request to the copy of a
large file to mount a DoS attack. In addition, TranslayFS
can save the disk space assigned to the upper layer because
the upper layer holds only a modified part of a file. Attackers
would have to write as much data as the size of the upper
layer to make the upper layer out of space.

After a container modifies a file existing in the lower
layer, TranslayFS handles read requests to that file by ac-
cessing both layers, as illustrated in Fig. 4. Since the upper
layer holds only a modified part, TranslayFS merges file data
in both layers and returns it to the container. Specifically,
it returns file data held in the upper layer if a read request
is to a modified part; otherwise, it returns file data held
in the lower layer. This mechanism is largely different
from OverlayFS. OverlayFS merges the upper and lower
filesystems in a file granularity. It accesses either layer for
each file and returns its file data.

TranslayFS manages a modified part of a file in a simple
manner. To store only a modified part, the upper layer

hole |data| hole| data | hole

Figure 5: A sparse file with holes in the upper layer.

needs a database in general. This increases the complexity
of TranslayFS, compared with OverlayFS, which simply
modifies the file copied to the upper layer. Such complexity
leads to less reliability. For a simpler way, TranslayFS uses
a special file called a sparse file to store a modified part.
A sparse file can hold real data only in part of a file, as
illustrated in Fig. 5. Upon the first write, TranslayFS creates
a sparse file in the upper layer and writes only modified data
at the corresponding offset of that file. The part that contains
no real data in a sparse file is called a hole, where disk space
is not allocated. Using a sparse file, TranslayFS can quickly
create a file in the upper layer because that file consists of
one big hole at first. In addition, it can manage multiple
modified data as only one file.

4. Implementation

We have implemented TranslayFS in Linux kernel 4.4.
In this section, we first describe the implementation details
of OverlayFS, which is used as the basis of TranslayFS.
Then, we describe the implementation of TranslayFS.

4.1. Detailed Behavior of OverlayFS

Upon opening a file, OverlayFS determines which file
is accessed in the upper or lower layer. When a container
opens a file in a read-only mode, OverlayFS first checks
the upper layer and opens a file in that layer if that file
exists; otherwise, it opens a file in the lower layer. When a
container opens a file in a writable mode, OverlayFS also
opens a file in the upper layer if that file exists in that layer.
If the file does not exist, however, OverlayFS first copies
a file in the lower layer to the upper layer by the copy-
up operation and opens the copied file. If there is not the
directory where the copied file is stored in the upper layer,
OverlayFS first creates that directory and, if necessary, its
parent directories. Even if a container does not modify that
file, the entire file is copied by simply opening the file in a
writable mode.

After a container opens a file in either the upper or lower
layer, it always accesses the opened file. Upon file reads and
writes, a container bypasses OverlayFS and directly accesses
either the upper or lower filesystem. Therefore, no overhead
is imposed by file reads or writes.

4.2. File Open in TranslayFS

Unlike OverlayFS, TranslayFS does not copy a file from
the lower to upper layer at the time of file open even when a
file existing in the lower layer is opened in a writable mode.
This increases the performance of file open dramatically.
No file is created in the upper layer unless a container
actually writes data to the opened file by the write operation.

In addition, TranslayFS does not determine which file is
accessed in the upper or lower layer at the time of file open.
Instead, it manages files in both the upper and lower layer if
any. When a file exists in either layer, TranslayFS opens only
one file like OverlayFS. It opens two files when files exist
in both layers. This file open is done in the same manner
regardless of opening a file in a read-only or writable mode.

As such, TranslayFS needs to open a file in the read-
only lower layer even when a container opens a file in
a writable mode. This does not happen in OverlayFS
because OverlayFS opens a file copied to the writable
upper layer. However, TranslayFS cannot open that file
in a writable mode because the lower filesystem allows
only read-only access. Therefore, it removes the flag for a
writable mode from the ones specified for file open before
opening the file in the lower layer. Specifically, it removes
the O_WRONLY, O_RDWR, O_APPEND, O_TRUNC,
and O_CREAT flags. The first three flags are used to specify
various writable modes. O_TRUNC is used to truncate the
file size to zero. O_CREAT is used to create a new file if
the file does not exist.

4.3. File Write in TranslayFS

When a container writes data to a file existing only in the
lower layer for the first time, TranslayFS creates a sparse
file in the upper layer. That file has completely the same
attributes as the file in the lower layer. To create a sparse
file that contains no real data, TranslayFS first creates a file
whose size is zero and then extends its size to the same size
as the file in the lower layer. Then, it opens the created file
and manages that file with the already opened file in the
lower layer.

TranslayFS manages modified data of the file in the
lower layer by the 4-KB block, as illustrated in Fig. 6. This
is because the minimum size of a hole in a sparse file is 4
KB in Linux. Upon a file write, TranslayFS calculates the
first and last block numbers from the specified file offset
and written size. For each block, it checks whether a block
is a hole or not, as described in Section 4.5. For a non-hole
block, it writes data to the sparse file in the same manner
as a normal file. A non-hole block means that the block has
been already modified in the past.

For a hole, on the other hand, TranslayFS simply writes
data to the sparse file if a container modifies the entire block
like block 1 in Fig. 6. However, TranslayFS needs a partial
copy-up operation if a container modifies only part of a
block like block 2 and 3. It copies an unmodified part from a
block in the lower layer to the sparse file. When a container
modifies the middle part like block 3, TranslayFS needs
two copy-up operations. This partial copy-up operation is
performed only to the first and last blocks per file write at
most. The other intermediate blocks are never copied from
the lower layer. In addition, the partial copy-up operation
copies less than 4095-byte data at a time unlike OverlayFS,
which copies the entire file. Therefore, it does not suspend
a container for a long time.

write
TranslayFS
| file |
I I I
Y A4 Y
upper layer | | | | T T 1] hole
copy
lower layer | | ‘ | ‘ ‘ | |
block 1 block 2 block 3 block 4

Figure 6: Write operations in TranslayFS.

read

TranslayFS A A A A
| file |

I I I I

[[[|

upper layer | | | T T 11] hole
lower layer | | | | |
block 1 block2 block 3 block 4

Figure 7: Read operations in TranslayFS.

As such, TranslayFS manages both layers when a con-
tainer modifies a file. When a container writes data to a file
whose real entity is a normal file existing in the upper layer,
TranslayFS manages only the upper layer. In any case, it
finally redirects the write operation to the upper filesystem.
In OverlayFS, in contrast, a container can directly write data
to a file in the upper layer after it has opened that file.
Therefore, TranslayFS suffers from the slight overhead of
this redirection to the upper filesystem.

4.4. File Read in TranslayFS

When a container reads data from a file whose real entity
is a sparse file existing in the upper layer, TranslayFS reads
data from both layers by the block. First, it calculates the
first and last block numbers from the specified file offset
and read size. For each block, it checks whether a file block
of the sparse file is a hole or not. For a non-hole block like
block 1-3 in Fig. 7, it reads data from the file block in the
upper layer. For a hole like block 4, it reads data from the
file block in the lower layer. Since each block of the sparse
file contains complete data, TranslayFS does not need to
merge data of blocks in both layers. It accesses only one
block in either layer unlike a file write.

As such, TranslayFS manages both layers after a con-
tainer modified a file. When a container reads data from a
file existing in either layer, TranslayFS manages only one
layer. In any case, it finally redirects the read operation to
the upper or lower filesystem. Therefore, TranslayFS also

suffers from the slight overhead of this redirection for the
read operation.

4.5. Hole Detection

Linux provides three methods for detecting a hole in a
sparse file. First, the FIBMAP ioctl enables users to translate
a logical block number of a file into the corresponding
physical block number of a disk. If the obtained physical
block number is zero, that block contains no real data, i.e.,
a hole. This ioctl system call requires the root privilege.
Second, the FIEMAP ioctl enables users to obtain a list
of file blocks that contain real data. The blocks that are
not included in the obtained list mean holes. This system
call can obtain information on the entire file efficiently and
does not require the root privilege. Third, the Iseek system
call enables users to search for the next hole using the
SEEK_HOLE option or the next block that contains real
data using the SEEK_DATA option.

TranslayFS uses the first method because it needs to
check whether the block specified by its logical number is
a hole or not. Since TranslayFS runs in the Linux kernel,
it directly invokes the kernel-level bmap function, instead
of issuing the ioctl system call. This function translates
a logical block number into a physical one in the upper
filesystem.

5. Experiments

We conducted several experiments to show that
TranslayFS could prevent the DoS attack with copy-
on-write. In addition, we compared the performance of
TranslayFS with that of OverlayFS. We used a PC with an
Intel Core 17-3770 processor, 8 GB of memory, a SATA3
128 GB HDD. We used Linux 4.4.0 and Docker 1.13.1. We
used the ext4 filesystem as the upper and lower filesystems
in TranslayFS. In these experiments, we used three files of
1 GB, 5 GB, and 10 GB.

5.1. Latency of File Open/Close

We opened a file existing only in the lower layer in
a writable mode and just closed it. Then, we measured the
time needed for these operations. Fig. 8(a) shows the results
for OverlayFS and TranslayFS when we opened three files
with different sizes. Since the latency in TranslayFS was
much shorter, we also show only the results for TranslayFS
in Fig. 8(b). In OverlayFS, the latency was proportional to
the file size and it took 50 seconds for the file of 10 GB.
This is because OverlayFS copied the entire file to the upper
layer. In TranslayFS, in contrast, the latency was only 125—
127 ps and almost did not depend on the file size. This
dramatic performance improvement comes from the fact that
TranslayFS never copies the entire file at any time. These
results show that TranslayFS can prevent the DoS attack
with copy-on-write.

Next, we opened a file existing only in the lower layer
in a read-only mode and just closed it. Fig. 9 shows the time

70 200
Wl overlayfs W translayfs

60r | m translayfs

50t 150
- o 100F
£ 301 £

201 50l

101

0 1 5 10 0 1 5 10

file size (GB) file size (GB)

(a) Comparison (b) TranslayFS only

Figure 8: The latency of file open in a writable mode.

200
Bl overlayfs
l translayfs
1501 E
)
2
o 1001 h
£
50 E
0

1 5 10
file size (GB)

Figure 9: The latency of file open in a read-only mode.

needed for that. The results were similar between OverlayFS
and TranslayFS. This is because both filesystems opened
only a file in the lower layer. This latency was almost
the same as that of the file open in a writable mode in
TranslayFS. Note that the latency in TranslayFS was 11—
12 ps shorter than in OverlayFS. This comes from the
difference in the open operation between OverlayFS and
TranslayFS.

5.2. Latency of File Write

We opened a file existing only in the lower layer, wrote
one-byte data to that file, and closed it. Fig. 10 shows the
time needed for these three file operations. In OverlayFS,
these results were similar to Fig. 8 because file open was
a bottleneck. It took 51 seconds to write only one byte
to a 10-GB file. In TranslayFS, it took only 336-339 us
regardless of the file size. Among the three file operations,
the write operation needed 210-213 ps. This time includes
the allocation of a new data block in the sparse file and the
copy of 4095-byte data from the corresponding file block in
the lower layer as well as the first one-byte write.

Next, we measured the time for the second one-byte
write to the same or a different file block. Fig. 11(a)

70 500
sol B overlayfs | W translayfs
l translayfs 400l 1
50 b
o % 300
g 40 3
@ (0]
£30 1 €200
20 k
100
10F 1
0 1 5 10 0 1 5 10
file size (GB) file size (GB)
(a) Comparison (b) TranslayFS only
Figure 10: The latency of the first write.
400 500
Wl overlayfs Hl overlayfs
H translayfs Wl translayfs
400 b
300
@ @
el 2
o 200+ Y
£ £
100

1 5 10

file size (GB)

1 5 10
file size (GB)

(a) Same block (b) Different block

Figure 11: The latency of the second write.

shows the results for the second write to the same block.
TranslayFS took 4-9 s longer time than OverlayFS. This is
because TranslayFS needed to check whether the accessed
block is a hole or not and redirect file access to the upper
filesystem. Fig. 11(b) shows the results for the second write
to a different block. In this case, TranslayFS took 75-89 us
longer time. Since it had to copy 4095-byte data of a file
block in the lower layer to the upper layer, it suffered from
the copy overhead. However, this overhead is too small to
mount a DoS attack.

Finally, we opened a file existing only in the upper
layer and measured the time for the first one-byte write.
As shown in Fig. 12, TranslayFS took 8-9 us longer time
than OverlayFS. Since this overhead comes from the hole
detection and the access redirection in TranslayFS, it was
similar to the overhead of the second write to the same file
block in Fig. 11(a).

5.3. Throughput of File Writes

We measured the throughput of writing data to a file
existing only in the lower layer using the fio benchmark [7].

400
B overlayfs
l translayfs
3001 E
®
2
o 200F b
£
100 b
0 1 5 10
file size (GB)

Figure 12: The latency of a write to a file only in the upper
layer.

100

B overlayfs

sol W translayfs 1

throughput (MB/s)

5
file size (GB)

Figure 13: The throughput of sequential file writes.

First, we wrote one-byte data to each file block and skipped
the remaining 4095 bytes. We sequentially performed this
access until the last block. Fig. 13 shows the throughput
of the sequential stride writes. TranslayFS always outper-
formed OverlayFS and the performance was improved by
34-38%. One of the reasons is that OverlayFS needed a long
time for the first write. Another reason is that prefetching
data from the file in the lower layer could hide the overhead
of TranslayFS.

Next, we randomly wrote data to each file block. The
size of data written at a time was 1, 41, 410, or 4096 bytes.
The total size of written data was set to 1% of the file
size. Fig. 14 shows the throughput of the random writes
to a 10-GB file. When we wrote one-byte and 41-byte
data at a time, the throughput of TranslayFS degraded by
95% and 39%, respectively. This is because file prefetching
from the lower layer did not work well in random access
and the overhead of TranslayFS was not hidden. However,
TranslayFS outperformed OverlayFS when we wrote more
than 78-byte data at a time. The throughput of OverlayFS
slightly increased, while that of TranslayFS dramatically
increased. When we wrote 410-byte and 4-KB data at a
time, TranslayFS was 4.5 and 12 times higher in throughput,
respectively. This is because TranslayFS copied a smaller

30

251

throughput (MB/s)

Figure 14: The throughput of random file writes.

OverlayFS
TranslayFS

41

410

written data size (B)

600

5001

overlayfs
translayfs

4096

600 600
Bl overlayfs W overlayfs
5001 | M translayfs 500 | M translayfs
2 400} 3 400
=3 =
3 300 3 300
ey <
(o] (o]
3 3
;:: 200 ; 200
100 100
0 1 5 10 0 1 5 10

file size (GB) file size (GB)

(a) Lower layer (b) Upper layer

Figure 15: The throughput of reads from a file in either the
lower or upper layer.

amount of data, especially no data for 4-KB writes, from
the lower layer per write operation.

5.4. Throughput of File Reads

We measured the throughput of reading data from a file
existing in either the lower or upper layer. We sequentially
read 4-KB data from each file block. Fig. 15 shows the
throughput of the sequential reads. TranslayFS suffered from
performance degradation by up to 0.5%, regardless of which
layer a file existed in. This overhead is due to the redirection
of read operations to the lower or upper filesystem in
TranslayFS.

Next, we measured the throughput of reading data from
a file existing in both layers. To create such a file, we first
wrote only one-byte data to a file existing only in the lower
layer. By this write, OverlayFS created a normal file that had
real data in all the blocks in the upper layer. TranslayFS
created a sparse file with only 4-KB real data and many
holes. Fig. 16 shows the throughput of the sequential reads
of 4-KB data to this file. The performance degradation
in TranslayFS was 0.4-3.8%. This was larger than when

400

300

throughput (MB/s)

200+

100

1 5 10
file size (GB)

Figure 16: The throughput of reads from a file in both layers.

the entity of a file existed in either layer. This is because
TranslayFS needed to first check a hole and then redirect
a read operation to the lower filesystem for most of the
requests.

6. Related Work

OverlayFS is one of the implementations of the union
filesystem. The other implementations are the Translucent
filesystem [8] in SunOS, the union mount filesystem [9]
in 4.4 BSD-Lite, UnionFS [10], AUFS [3], and so on.
The union filesystem performs a per-file copy-up operation,
which copies the entire file to the upper layer, when a file in
the lower layer is modified. OverlayFS performs this copy at
the time of file open in a writable mode, while AUFS does
that at the time of the first write to a file. This behavior of
AUFS is similar to TranslayFS in that a new file is created
in the upper layer by the first write. AUFS is also supported
in Docker, but it is not often used recently because it is not
merged to the Linux mainline kernel.

Mizusawa et al. revealed that the synchronization of the
file cache in the copy-up operation is the root cause of
performance degradation in OverlayFS [11]. To increase the
I/O performance of a container, they propose a method of
decreasing the frequency of this synchronization, e.g., once
per 50 copy-up operations. However, this method would not
be acceptable as a mechanism of the operating system in
terms of fairness. Randomly selected files become reliable
by the cache synchronization, while the others are kept
unreliable. In addition, the cache synchronization still takes
a long time for some of the files. Therefore, this method can-
not prevent the DoS attack with copy-on-write completely.
TranslayFS can decrease the amount of the file cache to be
synchronized by reducing the size of a file created in the
upper layer.

In Linux 5.10, the volatile mount option is added
to OverlayFS. This option completely disables the cache
synchronization on the copy-up operation. It can largely
improve the performance of OverlayFS when a container
modifies a file whose real entity exists in the lower layer.
However, the file copied to the upper layer can be lost on

a system crash because the file cache is not written back
to a disk. In addition, when the cache synchronization is
performed later, it could take a long time when a large file
has to be written back.

There are several copy-on-write filesystems. ZFS is a
filesystem that was developed for Solaris by Sun Microsys-
tems and is currently developed in the ZFS on Linux
project [4]. It provides high reliability and many features. It
first creates a storage pool from physical disks and then
creates a filesystem from the storage pool. Using ZFS,
Docker creates a read-only snapshot from the image layer
in the filesystem and then creates a writable clone from
the snapshot. When a container writes data to the clone,
ZFS performs copy-on-write by the 128-KB block, which is
much larger than the 4-KB block used in TranslayFS. Since
ZFS is licensed under CDDL, which is not compatible with
GPL, it is officially supported only in Ubuntu.

Btrfs [5] is a reliable filesystem developed by Oracle,
Red hat, and so on. It is based on ZFS and provides mecha-
nisms such as copy-on-write and snapshots. Like ZFS, Btrfs
first creates a storage pool and then creates a subvolume,
which is part of the filesystem, from the storage pool. Using
Btrfs, Docker creates a writable snapshot from the image
layer in the subvolume. When a container writes data to
the snapshot, Btrfs performs copy-on-write by the 16-KB
block. However, Btrfs is still not stable and is not supported
in RHEL 8 and later.

Devicemapper [6] is a storage driver developed with the
device mapper mechanism in Linux by Red Hat. Unlike
OverlayFS5, it works at the block level, not at the filesystem
level. It first creates a thin pool that consists of a data device
and a metadata device and then creates a base device from
the thin pool by thin provisioning. Using devicemapper,
Docker creates a writable snapshot from the image layer
in the base device. When a container writes data to the
snapshot, devicemapper performs copy-on-write by the 64-
KB block. Since devicemapper is not a filesystem, it is
relatively difficult for users to manage container images.

Qcow?2 is a file format used for the disk images of
virtual machines (VMs) in QEMU [12]. When a VM writes
data to a read-only base image, QEMU stores the data in
a writable qcow2 file. Like TranslayFS, it incrementally
allocates physical blocks in a virtual disk only for written
data and saves disk space. However, the gemu-nbd tool is
required to mount a disk image because qcow?2 is not a file
format natively supported by the operating system.

Data deduplication is a technique for eliminating du-
plicate copies and saving disk space. File-level data dedu-
plication [13] was proposed earlier, but chunk-level data
deduplication [14] is usually used due to better performance.
The inline method deduplicates data on disk write, while the
post-processing method deduplicates data later. ZFS, Btrfs,
and APFS in macOS support this function to prevent real
data from being duplicated in a disk on a file copy. If
OverlayFS uses these filesystems as the upper and lower
layers, it could reduce the overhead of copying a file in the
lower layer to the upper layer. TranslayFS can be considered
OverlayFS with chunk-level data deduplication.

7. Conclusion

This paper proposed a new filesystem called TranslayFS
to prevent the DoS attack with copy-on-write. TranslayFS
holds only a modified part of a file in the upper layer without
copying the entire file from the lower layer. Upon a file read,
it reads the modified part from the upper layer, while it reads
the unmodified part from the lower layer. This mechanism
can prevent a container from being suspended for a long
time by a small write to a large file. Also, it can prevent
the upper layer from being out of space by the files copied
from the lower layer. We have implemented TranslayFS in
the Linux kernel and conducted several experiments. As a
result, TranslayFS could complete the first one-byte write
only in 339 us although OverlayFS took 51 seconds for a
10-GB file. From this result, it was shown that TranslayFS
could prevent the DoS attack.

One of our future work is to merge TranslayFS and
OverlayFS. TranslayFS can dramatically reduce the over-
head at the first write to a file, but it imposes a slight
overhead to successive file operations. We can eliminate this
overhead by copying all the file blocks at some point to the
upper layer and using OverlayFS after that.

Acknowlegment

This work was partially supported by JST, CREST Grant
Number JPMJCR21M4, Japan.

References

[11 D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux J., vol. 2014, no. 239, 2014.

[2] M. Szeredi, “Overlay Filesystem,” https://www.kernel.org/doc/
Documentation/filesystems/overlayfs.txt.

[3] J.R. Okajima, “Aufs5 — Advanced Multi Layered Unification Filesys-
tem Version 5.x,” https://aufs.sourceforge.net/.

[4] Lawrence Livermore National Laboratory, “ZFS on Linux,” https:
//zfsonlinux.org/.

[5] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-Tree
Filesystem,” ACM Trans. Storage, vol. 9, no. 3, pp. 1-32, 2013.

[6] Red Hat, Inc., “dm-thin: Thin Provisioning,” https://www.kernel.org/
doc/Documentation/device-mapper/thin- provisioning.txt.

[71 J. Axboe, “fio: Flexible I/O Tester,” https://github.com/axboe/fio.

[8] D. Hendricks, “A Filesystem for Software Development,” in Proc.
USENIX Summer 1990 Conf., 1990, pp. 333-340.

[9] J. Pendry and M. K. McKusick, “Union Mounts in 4.4BSD-Lite,” in
Proc. USENIX 1995 Technical Conf., 1995, pp. 25-33.

[10] C.P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P. Quigley, E. Zadok,
and M. N. Zubair, “Versatility and Unix Semantics in Namespace
Unification,” ACM Trans. Storage, vol. 2, no. 1, pp. 1-32, 2006.

[11] N. Mizusawa, J. Kon, Y. Seki, J. Tao, and S. Yamaguchi, “Perfor-
mance Improvement of File Operations on OverlayFS for Containers,”
in Proc. IEEE Int. Conf. Smart Computing, 2018, pp. 297-302.

[12] F. Bellard, “QEMU,” https://www.qemu.org/.

[13] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur, “Single
Instance Storage in Windows 2000,” in Proc. USENIX Windows
System Symp., 2000, pp. 13-24.

[14] C. Policroniades and I. Pratt, “Alternatives for Detecting Redundancy

in Storage Systems Data,” in Proc. USENIX Annual Technical Conf.,
2004, pp. 73-86.

