Optimizing VMs across Multiple Hosts with
Transparent and Consistent Tracking of Unused Memory

Soichiro Tauchi
Kyushu Institute of Technology
tauchi@ksl.ci.kyutech.ac.jp

Abstract—Recently, Infrastructure-as-a-Service (IaaS) clouds
provide virtual machines (VMs) with a large amount of mem-
ory. To make the migration of such large-memory VMs flexible,
split migration has been proposed. It divides the memory
of a VM into smaller pieces and transfers them to multiple
destination hosts. After the migration, the VM runs across
multiple hosts and its memory data is exchanged between hosts
by remote paging. There is often unused memory in a large-
memory VM, but data of even unused memory is transferred
via the network. This paper proposes FCtrans to achieve
efficient split migration and remote paging by considering
unused memory. FCtrans avoids transferring data of unused
memory to destination hosts on split migration. Similarly,
it does not perform remote paging for unused memory and
immediately continues the execution of the VM. To enable
this, FCtrans keeps track of the memory usage of a VM
after starting split migration. In addition, it transparently and
consistently reclaims memory released after used by the guest
operating system using VM introspection and deals with it as
unused. We have implemented FCtrans in KVM and conducted
experiments using a VM with 352 GB of memory on the
StarBED testbed. It is shown that split migration became up
to 29x faster and the memory access performance of a VM
across multiple hosts improved by up to 85%.

1. Introduction

Recently, Infrastructure-as-a-Service (IaaS) clouds pro-
vide virtual machines (VMs) with a large amount of mem-
ory, e.g., instances with 24 TB of memory in Amazon
EC2 [1]. Such large-memory VMs are used for in-memory
databases [2], [3] and big data analysis [4], [5]. Like regular-
sized VMs, they should be migrated without stopping the
execution on host maintenance. VM migration transfers the
state of a VM such as memory to a destination host and
continues its execution. As such, the destination host has to
have sufficient memory to accommodate the entire memory
of a VM. For large-memory VMs, it is not cost-efficient or
flexible even for cloud providers to always preserve hosts
with a large amount of available memory.

Split migration [6], [7] enables migrating a large-
memory VM to the main host and sub-hosts by dividing
its memory. After split migration, the migrated VM runs

Kenichi Kourai
Kyushu Institute of Technology
kourai@csn.kyutech.ac.jp

Lukman Ab. Rahim
Universiti Teknologi Petronas
lukmanrahim @ utp.edu.my

across multiple hosts and is called a split-memory VM. It
exchanges memory data between two hosts by performing
remote paging. A remote page-in transfers data from a sub-
host to the main host, while a remote page-out transfers it
from the main host to the sub-host. When a VM has a large
amount of memory, there are often unused memory regions
in the VM. However, split migration transfers data even in
unused memory regions to the destination hosts. This results
in a long migration time. Similarly, remote paging transfers
data between hosts even for unused memory. This degrades
the performance of a split-memory VM. Various techniques
have been proposed to avoid transferring data for unused
memory [8]-[11], but they focus only on the traditional
one-to-one migration. In addition, they are inefficient or not
transparent to VMs.

This paper proposes FCtrans to archive efficient split
migration and remote paging by considering unused mem-
ory. Upon split migration, FCtrans avoids transferring data
in unused memory regions to reduce the migration time. It
transfers used memory to the main host as much as possible
to suppress remote paging after the migration. When a split-
memory VM starts to access unused memory existing in
sub-hosts, FCtrans does not transfer the data by a remote
page-in. Instead, it performs a local page-in and allocates
memory reserved in the main host to the VM. This enables
the execution of the split-memory VM to be immediately
continued. In addition, FCtrans does not perform remote
page-outs as long as the reserved memory remains in the
main host. As a result, the performance of the split-memory
VM is improved.

To identify unused memory regions in a VM, FCtrans
keeps track of the memory usage of a VM by detecting
the first access to unused memory with traps. To reduce
this overhead, it starts this tracking at the beginning of split
migration. In addition, FCtrans deals with memory released
after used by the guest operating system (OS) as unused
again. To transparently enable this without modifying the
guest OS, it obtains information on the memory usage of the
guest OS using VM introspection (VMI) [12]. VMI allows
FCtrans to analyze kernel data structures in the memory of
a VM from the outside of the VM. FCtrans consistently
reclaims free memory in the guest OS without stopping the
VM and deallocates that memory from the VM. Then, it
merges information on the memory usage of both the VM

and the guest OS.

We have implemented FCtrans in QEMU-KVM support-
ing split migration and remote paging. To show the perfor-
mance improvement by FCtrans, we compared FCtrans with
the original split migration and remote paging. We used a
VM with up to 352 GB of memory in the NICT testbed
named StarBED [13]. Consequently, FCtrans could reduce
the migration time by up to 97% and increase the memory
access performance of a split-memory VM by up to 85%.
The reclamation of free memory in the guest OS was up
to 62% faster than the traditional method using memory
ballooning [14].

The organization of this paper is as follows. Section 2
describes split migration and remote paging and their issues.
Section 3 proposes FCtrans for avoiding the transfers of data
for unused memory. Section 4 explains the implementation
of FCtrans and Section 5 shows our experimental results.
Section 6 describes related work and Section 7 concludes
this paper.

2. VMs across Multiple Hosts

2.1. Split Migration

VM migration moves a VM running in one host to
another host. Using this technique, any hosts running VMs
can be maintained without service disruption. VM migration
is also used to consolidate VMs into a small number of hosts
for power saving and deconsolidate VMs from overloaded
hosts for load balancing. It transfers the memory of a target
VM to a new VM created at the destination host. Then, it
retransfers the memory modified during the transfers and
stops the VM if the amount of memory to be retransferred
becomes small enough. In the final phase, it transfers the
rest of the modified memory and the state of the VM core
such as virtual CPUs and virtual devices. Finally, it resumes
the execution of the VM at the destination host.

VM migration requires a larger amount of available
memory than the memory size of a migrated VM at the
destination host. Recently, the memory size of a VM is
increasing for in-memory databases and big data analysis
[1]. As aresult, it is becoming difficult to find an appropriate
destination host for such a large-memory VM. Even in
public clouds, it would not be cost-effective or flexible to
always preserve many hosts with a large amount of memory
in preparation for large-scale maintenance. Private clouds
may not be able to prepare large hosts as the destination
of occasional VM migration. Such hosts are expensive for
small or medium-sized private clouds and require a mea-
surable amount of power. If there is no appropriate host, a
VM cannot be migrated and the users cannot use services
provided by the VM during host maintenance.

For flexible migration of large-memory VMs without
large hosts, split migration has been proposed [6], [7]. As
illustrated in Fig. 1, it divides the memory of a VM into
small pieces and transfers them to multiple smaller hosts.
One of the destination hosts is called the main host and

main host
L

source host

ILES

[T

migration remote remote

VM’s memory \ page-out page-in
Uy [t
sub-host

Figure 1: Split migration.

runs the VM core, while the others are called sub-hosts.
Split migration transfers the state of the VM core and likely
accessed memory to the main host and the rest of the
memory to the sub-hosts. Such memory access prediction
is performed using the least recently used (LRU) algorithm
on the basis of the memory access history of the VM.

After split migration, the migrated VM runs across mul-
tiple hosts. This VM is called a split-memory VM. Since the
memory of the VM is distributed, a split-memory VM runs
by performing remote paging between the main host and
one of the sub-hosts. When the VM core at the main host
requires the memory existing in a sub-host, that memory is
moved from the sub-host to the main host, which is called
a remote page-in. In exchange, the most unlikely accessed
memory is moved from the main host to that sub-host,
which is called a remote page-out. Since likely accessed
memory has been transferred to the main host in advance
at the migration time, the frequency of remote paging is
suppressed after split migration.

2.2. Unnecessary Network Transfers

As such, the memory of a VM is transferred via the
network when necessary, but there are often unused regions
in the memory. For example, most of the memory is unused
just after the guest OS boots in a VM. Even used memory
regions become unused again if the guest OS releases them
after the termination of applications. In fact, it is reported
that only 10% of the memory is used on average for VMs
running web applications in clouds [15]. It is also revealed
that VMs used for scientific computing have a large amount
of unused memory [16]. Similarly, only about 50% of the
memory is used in the clusters of Google and Alibaba [17].

Split migration transfers even unnecessary data con-
tained in the unused memory of a VM to the destination
hosts. Therefore, it takes time to migrate a VM in proportion
to its memory size. After split migration, remote paging
transfers the memory data from a sub-host for a remote
page-in even when a split-memory VM starts to access
unused memory at that sub-host. Then, it selects unused
memory at the main host if any on the basis of LRU and
transfers it to the sub-host for a remote page-out. Such
unnecessary remote paging degrades the performance of the

used main host

memory

0=~ |y

migration { 1O remote \ no remote
page-out page-in

L

sub-host

source host

(LTI

VM’s memory

Figure 2: The optimization of network transfers in FCtrans.

split-memory VM. When the VM accesses the memory at a
sub-host, its virtual CPU is suspended until a remote page-
in completes. Although remote page-outs can be done asyn-
chronously after the virtual CPU is resumed, they largely
affect the performance of the VM and the network.

For the traditional one-to-one migration, various tech-
niques have been proposed to avoid transferring data of
unused memory [8]-[11]. However, they are inefficient or
not transparent to VMs. One category of the techniques
obtains information on unused memory at the VM level.
QEMU [18] scans the entire memory of a VM to identify
unused memory, which is filled by zero, but this overhead
offsets the improvement of migration performance by fast
networks such as 10 GbE. Another technique [8] suffers
from the overhead of always detecting modified memory
since a VM boot. In addition, it cannot detect that memory
regions are no longer used. The other category obtains
information on unused memory at the guest-OS level [9]-
[11]. Using information of the guest OS is more efficient,
but it needs to modify the guest OS. This should be avoided
in clouds.

3. FCtrans

This paper proposes FCtrans, which optimizes network
transfers in split migration and remote paging.

3.1. Optimization of Network Transfers

FCtrans achieves efficient split migration and remote
paging by considering unused memory in VMs. It transpar-
ently keeps track of the memory usage of a VM without
modifying its guest OS. Then, it avoids transferring the
data of unused memory to destination hosts during split
migration, as illustrated in Fig. 2. Unlike the original split
migration, it transfers used memory to the destination main
host as much as possible. As a result, it can suppress remote
paging after the migration. In addition, no destination hosts
allocate physical memory for unused memory to flexibly
handle it later.

Even when remote paging is required after split migra-
tion, FCtrans does not perform unnecessary network trans-
fers for unused memory. When a VM starts to access unused

memory at a sub-host, FCtrans performs a local page-in
without a network transfer, instead of a remote page-in. In
other words, it just allocates memory reserved in the main
host to the VM. As a result, the VM does not need to wait
for the completion of a remote page-in and then is resumed
immediately. FCtrans performs a remote page-in only for
used memory. In addition, as long as there is a sufficient
amount of available memory at the main host, FCtrans does
not perform remote page-outs. It performs remote page-outs
as traditional only if this condition is not met. This can
reduce the overhead caused by remote page-outs.

3.2. Transparent and Consistent Memory Tracking

To keep track of the memory usage of a VM, FCtrans
detects both changes from unused to used memory and
from used to unused memory. When a VM starts to use
an unused memory region, that access has to be detected
immediately. If this detection is delayed, FCtrans would
apply the optimization of avoiding network transfers to
already used memory in split migration and remote paging.
This results in losing the data of used memory. Therefore,
FCtrans immediately detects the change from unused to used
memory by using traps. Upon VM creation, it configures all
the memory regions as unused. When the VM accesses a
memory region for the first time, FCtrans handles a caused
trap and updates that region as used in the memory usage
of the VM.

Since FCtrans needs information on unused memory
only during and after split migration, it starts to track unused
memory just after starting split migration. This can suppress
performance degradation until split migration is applied to
a VM. As a result, FCtrans cannot know the memory usage
until split migration. To address this dilemma, it obtains the
memory usage at once just before starting split migration
using the method described later. After split migration, it
continues this tracking of unused memory. If a split-memory
VM runs at one host again after merge migration [19],
FCtrans stops tracking the memory usage.

On the other hand, it is difficult to detect that a memory
region is changed from used to unused in a VM. This is
because FCtrans cannot know that the memory region is no
longer used. For example, even if a VM does not access a
memory region for a long time, it is not guaranteed that the
VM does not use that region in the future. This means that
FCtrans cannot change any memory regions back to unused
ones once memory regions become used. In contrast, the
guest OS in the VM knows whether the memory region is
in use or not. It manages memory regions that are used once
but released as free memory. From the viewpoint of a VM,
such free memory is still in use.

Therefore, FCtrans periodically merges information on
the memory usage of both a VM and its guest OS, as illus-
trated in Fig. 3. This cannot immediately detect the change
from used to unused memory, but it is tolerable to detect
that with some delay. Even if FCtrans transfers already
unused memory without correctly applying the optimization
of network transfers, that does not cause a consistency issue

VM

free
memory

guest OS’s memory

(LT

VM’s memory

Figure 3: The integration of the memory usage of a VM and
the guest OS.

reclaim

although it can degrade performance. To obtain information
on the memory usage of the guest OS without modifying
the guest OS, FCtrans uses VM introspection (VMI) [12].
VMI is a technique for analyzing the data structure of the
guest OS in the memory from the outside of a VM. If a
memory region becomes free, FCtrans reclaims that region.
Specifically, it deallocates physical memory from the VM
and changes that memory region back to unused.

FCltrans consistently performs this reclamation of free
memory without stopping the guest OS. Since VMI is
asynchronously applied to a running VM, a memory re-
gion of the guest OS might become in use at the time of
reclamation even if it is free at the time of check. To deal
with this race condition, FCtrans speculatively deallocates
physical memory in a memory region from the VM when
the region is free. At the same time, it atomically saves the
contents of that region in preparation for the failure of this
speculation. Next, it checks the region again using VMI. If
the region is still free, FCtrans completes the reclamation of
that free memory. Otherwise, it rolls back the speculatively
performed memory deallocation because the memory might
be reused and modified during the reclamation process.
FCtrans allocates a new memory to the VM and restores the
contents from the saved data. Since FCtrans defers access
after the memory deallocation if any, such access is correctly
reflected in the memory region after the rollback.

FCltrans also uses this reclamation mechanism to obtain
the latest memory usage at once when it starts split migra-
tion. Since it does not know the memory usage until then, it
first assumes that all the memory regions of a VM are used.
Then, it reclaims free memory in the guest OS and knows
unused memory regions.

4. Implementation

We have implemented FCtrans in QEMU-KVM 2.11.2
supporting split migration and remote paging. Our target of
the guest OS is Linux 4.14, but FCtrans can easily support
other versions of Linux.

4.1. Detection of Used Memory

To detect access to unused memory by using page faults,
FCtrans uses the userfaultfd mechanism provided by the host

[il |

first access

(revans] [TTTTTH memory

A

QEMU-KVM

y Page fault

userfaultfd | Linux

Figure 4: The detection of used memory with userfaultfd.

Linux OS, as illustrated in Fig. 4. It first registers all the
memory regions assigned to a VM in QEMU-KVM to user-
faultfd. Since FCtrans does not allocate physical memory
pages to the regions at the boot time of a VM, a page fault
occurs when the VM accesses an unused page for the first
time. At this time, that fault is notified to QEMU-KVM
by userfaultfd. Before split migration, FCtrans allocates a
physical page filled by zero to that faulting page using
the system call for userfaultfd. For a split-memory VM,
it performs a local page-in if the accessed page is unused
and allocates the memory reserved in the main host to that
region. To reduce the overhead of this detection of used
memory, FCtrans allocates 256 contiguous physical pages,
called a memory chunk, including the faulting page at once
in the current implementation. After that, no page fault
occurs for those pages.

In addition, FCtrans records these allocated pages as
used. To manage whether each memory page of a VM
is used or unused, FCtrans uses a bitmap called a usage
bitmap. This bitmap consists of as many bits as the number
of pages assigned to a VM. FCtrans initializes all the bits
to zero, which means unused. When it detects first access
to a page, it sets the corresponding bit to one.

4.2. Consistent Reclamation of Free Memory

To deal with free memory in the guest OS as unused
memory in a VM, FCtrans periodically finds free memory
using VMI and reclaims it. Linux manages physical memory
using the buddy system and allocates physical pages in a
power of two. FCtrans obtains information on the memory
usage of the guest OS from the page structure. The page
structure manages each physical page and contains infor-
mation on whether the page is free or not. If the page is
the head of a free memory region, the page structure also
contains the number of pages included in that region. Linux
manages an array of page structures, whose length is equal
to the number of physical pages. FCtrans traverses this array
from page frame number O and finds the head page of a free
memory region. Then, it changes the pages included in that
region back to unused.

To transparently obtain such information from a VM,
we have developed a VMI framework embedded in QEMU-
KVM. The framework enables writing code for VMI using
the Linux header files. For example, FCtrans can check

Algorithm 1 Consistent reclamation of free memory.

Input: page
1: if (page is allocated but free) then

2: acquire a lock

3: if (page exists in the main host) then
4: save and deallocate page

5: if (page is free) then

6 clear the usage bitmap

7 else

8: roll back page deallocation

9: end if

10: else if (page exists in a sub-host) then
11: if (page is free) then

12: clear the usage bitmap

13: send a release request

14: end if

15: end if

16: release a lock

17: end if

whether a page is free or not by applying the Page-
Buddy macro to the page structure. It can obtain the
number of pages included in a free memory region using
the page_order macro. Then, this framework generates
intermediate representation from the code and transforms
that using LLVM so that the code accesses the memory
of a VM when necessary. Specifically, it inserts code that
translates virtual addresses of OS data into physical ones
before all the load instructions.

FCtrans consistently reclaims free memory in the run-
ning guest OS using VMI. Algorithm 1 is the pseudo code
for consistent reclamation of free memory. If FCtrans detects
that a page is allocated to a VM but free in the guest OS, it
acquires a lock for the memory chunk including that page
(lines 1-2). Since remote paging and memory allocation
are done in a chunk granularity, this lock guarantees that
the target page is not paged in from a sub-host, not paged
out to a sub-host, or not newly allocated. This lock is fine-
grained, so that remote paging and memory allocation can
be done for the other memory chunks in parallel to memory
reclamation of the target page.

If the target page exists in the main host, FCtrans spec-
ulatively deallocates that page from the VM (lines 3—4). At
the same time, it saves the data of the page in preparation for
the conflict of memory reclamation. These two operations
are atomically done by using the userfaultfd feature ex-
tended for remote page-outs. After the speculative memory
deallocation, FCtrans can detect any access to that page
because a page fault occurs. Since a page fault is handled
in QEMU-KVM using userfaultfd, FCtrans defers that fault
handling until memory reclamation completes by the chunk
lock acquired at the beginning. This guarantees that the
being reclaimed page is not modified after the speculative
memory deallocation. Fig. 5 shows how a running VM is
synchronized with VMI by this access protection.

After the memory deallocation, FCtrans re-checks

access protection

memory memory
access access delayed
VM eeeeeeeee., 8CCESS
; A

QEMU-KVM T T T
check memory check
free memory deallocation free memory

Figure 5: Synchronization of a running VM with VMI.

whether the page is still free or not. Since the guest OS
is running, free memory can be reused during memory
reclamation. If the page is still free, FCtrans sets the cor-
responding bit to zero in the usage bitmap and completes
the reclamation of that page (lines 5-6). Otherwise, it aborts
the reclamation of that page and rolls back the speculative
memory deallocation (lines 7-8). Specifically, it allocates a
physical page again and writes the saved data to that page
using userfaultfd. The memory data is consistently restored
because the saved data contains all the modifications to the
page before the memory deallocation. Pending modification
after the memory deallocation is applied after the rollback
because the page fault caused by that is handled after the
chunk lock is released (line 16).

If the target page exists in a sub-host, FCtrans re-
checks whether the page is still free without speculative
memory deallocation (line 10-11). Since remote page-ins
are disabled by the chunk lock, it is not necessary to detect
access to the page. When the page is still free, FCtrans sets
the corresponding bit to zero in the usage bitmap (lines 12—
13). In addition, it sends a request for memory release to
the sub-host but does not wait for the completion. When the
sub-host receives that request, it removes the corresponding
entry from the table for memory management and releases
the memory allocated for that page. When the page becomes
in use at the second check, FCtrans does nothing.

4.3. Optimization of Split Migration

When FCtrans starts split migration of a VM, it first
registers all the memory regions of the VM to userfaultfd.
After that, it can detect the change from unused to used
memory pages. Next, it sets all the bits in the usage bitmap
to one, which means a used page. Then, it reclaims free
memory in the guest OS using VMI. As a result, it can
obtain the usage bitmap including the latest memory usage.

FCtrans examines the usage bitmap whenever it attempts
to transfer the data of each page. It transfers the data only if
the corresponding bit is one. If the destination is the main
host, FCtrans transfers memory data with its metadata. If
the destination is a sub-host, FCtrans transfers memory data
to the sub-host and its metadata to the main host. On the
other hand, it transfers neither memory data nor its metadata
if the corresponding bit of the usage bitmap is zero, which
means an unused page. In other words, there are unused
pages nowhere after our optimized split migration. FCtrans

sub-host

main host

reserved

memory page-in H:D

VM’s memory

remote
page-out

Figure 6: The optimization of remote paging using local
page-ins.

determines a destination host per memory chunk on the basis
of memory access history, which is obtained by periodically
checking access bits in the extended page tables (EPT) of
a VM. It transfers recently accessed and currently used
memory to the main host as much as possible.

The destination main host re-constructs the usage bitmap
on the basis of received metadata of used pages. This can
be done without directly transferring the usage bitmap from
the source host. When FCtrans starts split migration, it al-
locates a new usage bitmap at the destination main host and
initializes all the bits to zero. Whenever the destination main
host receives page metadata, FCtrans sets the corresponding
bit to one. As a result, FCtrans can deal with the pages that
are unused at the source host as unused at the destination
hosts as well.

4.4. Optimization of Remote Paging

After split migration, there are three types of pages:
used pages existing in the main host, used pages existing in
sub-hosts, and unused pages existing nowhere. When a VM
accesses the last two types of pages, a page fault occurs. At
this time, FCtrans examines the usage bitmap to distinguish
the two types. If the corresponding bit is one, which means a
used page existing in a sub-host, FCtrans performs a remote
page-in as usual. Otherwise, FCtrans does not perform it
because the page does not exist at any sub-hosts. Instead,
it performs a local page-in and just allocates the memory
reserved in the main host to the VM using userfaultfd, as
illustrated in Fig. 6. Then, it sets the corresponding bit to
one in the usage bitmap. Since FCtrans performs remote
page-ins for a chunk of 256 pages at once, local page-ins
are also performed for the same chunk.

To perform such local page-ins, FCtrans manages the
memory reserved for a VM in the main host. The original
remote paging keeps a fixed amount of physical memory
used for a VM by always performing both remote page-
in and page-out. In contrast, FCtrans often uses a smaller
amount of physical memory than assigned to a VM. If there
is no memory available in the main host, FCtrans repeats
remote page-outs by a memory chunk until it can preserve
a sufficient amount of reserved memory. Since a chunk can
include unused pages, FCtrans cannot always page out a
sufficient number of pages for one chunk.

5. Experiments

We conducted several experiments to examine the per-
formance improvement of split migration and remote pag-
ing by FCtrans. For comparison, we used a system that
supported the original split migration and remote paging.
In these experiments, we used three hosts provided by the
NICT integrated testbed named StarBED [13]. These hosts
consisted of one source host, one destination main host, and
one destination sub-host. Each host was equipped with two
Intel Xeon E5-2683 v4 processors, 384 GB of memory, and
10 Gigabit Ethernet. We ran Linux 4.18 modified for remote
page-outs and QEMU-KVM 2.11.2 modified for FCtrans.
We created a VM with 64 virtual CPUs and up to 352
GB of memory. We ran Linux 4.14 in this VM. Upon split
migration, we equally divided the memory of the VM into
two.

5.1. Performance of Memory Reclamation

We first measured the time needed for reclaiming free
memory in the guest OS when a VM ran in one host. This
type of memory reclamation is done at the beginning of split
migration. In this experiment, we used a VM with 352 GB
of memory. We ran a memory benchmark that accessed the
specified amount of memory in this VM and then terminated
it to change the used memory to free memory. We changed
the amount of reclaimed free memory from 8 to 192 GB.

For comparison, we applied memory ballooning [14]
to reclaim the free memory of a VM. Originally, memory
ballooning is used to change the memory size of a VM
with the help of the balloon driver installed in the guest
OS. The balloon driver allocates the specified amount of
memory from the pool of free memory and returns it to
the hypervisor. The returned memory is deallocated from
the VM. In this experiment, we used the virsh setmem
command and first decreased the memory size of the VM
by the size of reclaimed free memory. Then, we increased
that to the original size so that the guest OS could reuse
free memory when necessary.

Fig. 7 shows the time needed for reclaiming a specified
amount of free memory. The reclamation time was basi-
cally proportional to the amount of reclaimed free memory.
Compared with memory ballooning, FCtrans could reduce
the reclamation time by 53-62%. It was still faster than
memory ballooning only for decreasing the memory size of
the VM. It should be noted that the increase in reclamation
time was smaller for more than 128 GB of reclaimed free
memory. This reason is currently under investigation, but
it is promising for large-memory VMs. For memory bal-
looning, the reclamation time becomes a bit longer because
we need additional time for recording the reclaimed free
memory as unused.

In addition, we examined the impact of the memory
reclamation on a target VM. We ran an in-memory database
called memcached [20] in a VM and measured the through-
put using the memaslap benchmark [21]. We assigned 30 GB
of memory to memcached and accessed 4-KB data. Fig. 8(a)

400 T T T

- FCtrans _—
- ballooning _—
300f | @ ballooning (decrease) — R

time (sec)
n
o
o
T

1001

00 50 100 150 200
reclamation size (GB)

Figure 7: The reclamation time of free memory.

(5]
o
o

. . 350 . . e

o FCtrans
- ballooning | 1

n

a

o
T

W
o
o
=
o9
o
83
Ss
353
5@
«Q
.

n
=}
=)
(
L
S)
N
a
o
T
—o
L

throughput (TP
@
o

n
o
o
5
n

throughput (TPS)
S @
o o

o
S
Yo

g
=
<

a
o
T

— . .

0 50 100 150 200
reclamation size (GB)

ba 100%0,09 n
100 200 300 400
elapsed time (sec)

o
o

o

(a) VM performance (b) Changes in throughput

Figure 8: The VM performance during memory reclamation.

shows the average throughput during the memory reclama-
tion. FCtrans could improve the throughput by 3.8-12x,
compared with memory ballooning. Specifically, Fig. 8(b)
shows the changes in throughput when we reclaimed 192
GB of free memory. For memory ballooning, the average
throughput was only 5.2 transactions per second (TPS) dur-
ing decreasing the memory size of the VM although it was
improved to 105 TPS during increasing the memory size. In
contrast, FCtrans always kept 220 TPS on average during
memory reclamation. This throughput is still lower than
during no memory reclamation, but it could be improved
if FCtrans reclaims free memory more slowly.

Next, we measured the reclamation time of free memory
for a VM across two hosts. This type of memory reclamation
is done after split migration. Since memory ballooning was
not currently supported for split-memory VMs, we examined
the performance only for FCtrans. As in the above exper-
iment, we used a VM with 352 GB of memory and ran
the memory benchmark for accessing the specified amount
of memory. As shown in Fig. 9(a), the reclamation time
was proportional to the amount of reclaimed free memory
when the size was less than or equal to 64 GB. In contrast,
it became shorter for the reclamation of a larger amount
of free memory. This is because FCtrans reclaimed free
memory existing not only in the main host but also in
the sub-host. For the sub-host, FCtrans just sent requests
for memory deallocation asynchronously. Therefore, it was
more lightweight to reclaim free memory existing in the

150 T T T 2000 T T T T

1500 1

1000 b

time (sec)
~
(4]
L
throughput (TPS)

o

o

o
T
n

0 50 100 150 200 00 25 50 75 100 125

reclamation size (GB) elapsed time (sec)

(a) Reclamation time (b) Changes in throughput

Figure 9: Reclamation performance for a VM across two
hosts.

sub-host.

Also, we examined the throughput of memcached in the
VM across two hosts during memory reclamation. Fig. 9(b)
shows the changes in throughput when we reclaimed 192
GB of free memory. The throughput largely fluctuated
because FCtrans reclaimed free memory existing in the
sub-host, which was more lightweight. In this experiment,
FCtrans reclaimed 169 GB of free memory in the main host,
while it reclaimed 23 GB of free memory in the sub-host. As
a result, the average throughput was 1223 TPS and much
higher than memory reclamation for a VM running in a
single host.

5.2. Performance of Split Migration

We first performed split migration just after a VM was
booted. In this case, most of the memory in the VM was
unused. We changed the amount of the memory assigned
to the VM from 2 to 352 GB. As shown in Fig. 10(a),
the migration time was proportional to the memory size of
the VM in both FCtrans and the original split migration.
Compared with the original split migration, FCtrans could
reduce the migration time by 75-97%. This is because the
number of network transfers was largely reduced, as shown
in Fig. 10(b). Even for a VM with 352 GB of memory,
the size of the transferred data was only 7.2 GB and the
migration time was only 14.6 seconds.

It should be noted that the optimization for zero pages
in QEMU-KVM can be used to avoid network transfers of
unused memory. A zero page is a page filled by zero and an
unused page becomes a zero page when it is first accessed
for VM migration. Since it is not currently applicable to split
migration, we measured the time for one-to-one migration
of a VM with 256 GB of memory. With this optimization,
however, the migration time was reduced only by 5.9%. This
is because the detection of zero pages is heavyweight.

Next, we performed split migration after we ran the
memory benchmark that accessed the specified amount of
memory in a VM. We used a VM with 352 GB of memory
and changed the amount of used memory from 2 to 320 GB.
As shown in Fig. 11, the migration time was almost constant

500 T T T 400 T T T

- FCtrans - FCtrans
[| o original] - original

300 1

(] B
o o
o o
T
n

n

o

o

T

L

transfer size (GB)

n
o
o
T
L

migration time (sec)

-

o

o
T
n

o
o

B e S W, S S —")
100 200 300 0 100 200 300
VM memory size (GB) VM memory size (GB)

(a) Migration time (b) Network transfers

Figure 10: The migration time of a VM just after the boot.

500 T T T T T T

—_— i e
400 5.+,+ e T - J

migration time (sec)

- FCtrans | 1
- original
L L L L L L
0 50 100 150 200 250 300
used memory size (GB)

Figure 11: The migration time of a VM with used memory.

in the original split migration. However, it was proportional
to the amount of used memory in FCtrans because FCtrans
transferred only used memory. FCtrans could reduce the
migration time by 4.2-96%.

Finally, we measured the downtime during split migra-
tion. The downtime is the time between stopping a VM at
the source host and resuming it at the destination hosts. We
changed the amount of memory assigned to the VM. As
shown in Fig. 12, the downtime in FCtrans was 334 ms
on average and was almost the same as that in the original
split migration. Note that QEMU-KVM stops a VM when
it estimates that the rest of the memory can be transferred
in 300 ms. After that, it transfers that memory data and the
state of virtual CPUs and virtual devices. The optimization
of avoiding data transfer of unused memory in FCtrans
almost did not affect this estimation by QEMU-KVM.

5.3. Performance of a Split-memory VM

We examined the performance of accessing unused
memory in a split-memory VM across two hosts. We first
performed split migration of a VM just after the boot. Then,
we ran the memory benchmark and accessed the specified
amount of unused memory in the split-memory VM. We
used a VM with 352 GB of memory and changed the
amount of accessed memory from 8 to 320 GB. Fig. 13
shows the throughput of this benchmark in FCtrans and
the original split-memory VM. FCtrans could improve the

o
o
o

5
o
(=]

@
E300 1
o}
£
€ 200}]
o
©
100 4 FCtrans
% original

0 50 100 150 200 250 300 350
VM memory size (GB)

Figure 12: The downtime during split migration.

800 o FCtrans |
- original
@
o 600 4
=3
5 Van
£ 400f \ — |
3 S
£ o
200 1
00 50 100 150 200 250 300

accessed memory size (GB)

Figure 13: The performance of the memory benchmark.

memory access performance by 49-85% thanks to the op-
timization of remote paging. As the amount of accessed
memory increased, the performance degraded more largely
in FCtrans. This is because the working set size exceeded
the amount of memory existing in the main host and remote
page-outs occurred even in FCtrans.

To examine the occurrence of remote paging, we mea-
sured the numbers of remote page-ins and page-outs caused
by the memory benchmark. Fig. 14 shows the changes
while the benchmark accessed 256 GB of unused memory.
FCtrans could successfully reduce remote page-ins by 98%.
It performed only local page-ins whenever the benchmark
accessed unused memory. In contrast, the original split-
memory VM needed remote page-ins whenever accessed
memory existed in the sub-host. Also, FCtrans could re-
duce remote page-outs by 40% on average. The number of
remote page-outs was zero for the first 300 seconds, while
it suddenly increased after that. Even in FCtrans, remote
page-outs were needed to preserve memory used for local
page-ins after reserved memory ran out at the main host. The
reason why the number was larger than the original split-
memory VM is that the VM could access memory faster in
FCltrans.

Next, we measured the time needed for accessing used
memory, which was first accessed by the above memory
benchmark. This second-time access was also 52% faster
in FCtrans when the benchmark accessed 256 GB of used
memory. To inspect the reason, we measured the numbers
of remote page-ins and page-outs. As shown in Fig. 15,
FCtrans could reduce the numbers of remote page-ins and

8 T T T 8 T T T
-+ FCtrans -+ FCtrans
- original - original
6 F 4 F 4
\\r’""""'r—w*,i o1 e e _

D

page-ins (x10°)
EN

page-outs (x10°)
EN

N
T
n

N
T

PN S o1 0 "
0 200 400 600 800 0 200
elapsed time (sec)

400 600 800
elapsed time (sec)

(a) Remote page-in (b) Remote page-out

Figure 14: Remote paging during the memory benchmark
for 256 GB of unused memory.

10 . . 10 . .
B &
X X
s 2
£ 3
o 4t 4 & 4t 4
(=)
g g
2t 1 2t 1
0 . . 0 . .
0 200 400 600 0 200 400 600

elapsed time (sec) elapsed time (sec)

(a) Remote page-in (b) Remote page-out

Figure 15: Remote paging during the second-time access to
256 GB of used memory.

page-outs by 10%, respectively.

5.4. Performance of a Real Application

To examine the performance improvement using a real
application, we ran memcached in a split-memory VM
across two hosts. Then, we measured the throughput using
the memaslap benchmark. This benchmark sent requests to
1-MB data using 32 threads. We used a VM with 352 GB of
memory and set 100 GB of data to memcached in advance.
After we performed split migration of the VM, the main
host had about 70 GB of memory reserved for the VM.

Fig. 16(a) shows the changes in throughput of mem-
cached. FCtrans could improve the throughput by 7.5% on
average. In FCtrans, remote paging did not occur because
memcached did not access more than 70 GB of memory
in 90 seconds. FCtrans performed only local page-ins. In
contrast, the original split-memory VM caused many remote
page-ins and page-outs because a larger amount of unused
memory existed in the sub-host. About 175 GB of the
unused memory existed in the sub-host, while only about
70 GB of that existed in the main host.

Next, we ran memcached together with the memory
benchmark accessing 256 GB of unused memory. As shown
in Fig. 16(b), FCtrans could keep the throughput similar

throughput (TPS)
throughput (TPS)

20} - FCtrans |] 20F - FCtrans |]
- original - original

0 20 40 60 80 0 20 40 60 80
elapsed time (sec) elapsed time (sec)

(a) memcached only (b) memcached + benchmark

Figure 16: The throughput of memcached.

800 T T T T 800 T T T T

o FCtrans
- original

600 1 ~600r 1

b—o o —©—0—0 4—077/
2001 1 200 1
o FCtrans
- original
0 20 40 60 80 0 20 40 60 80
elapsed time (sec) elapsed time (sec)

page-ins (x10°)
»
o
o
—
|
*
?
1S
|
°
|
|
*
!
°
|
e
page-outs (x10%)
S
o
o

(a) Remote page-in (b) Remote page-out

Figure 17: Remote paging by memcached with the memory
benchmark.

to the above experiment without the memory benchmark.
The performance degradation was only 1.7%, while that was
11% in the original split-memory VM. As a result, FCtrans
could improve the throughput by 19% on average. Since the
amount of used memory exceeded that of memory available
in the main host, remote paging occurred even in FCtrans.
However, FCtrans performed only a small number of remote
page-ins, as shown in Fig. 17(a). Instead, it could perform
local page-ins. In contrast, FCtrans increased the number of
remote page-outs by 68%, as shown in Fig. 17(b). This is
because the memory benchmark was less affected by remote
page-ins and could access unused memory faster than in the
original split-memory VM.

6. Related Work

For the traditional one-to-one migration of a VM, vari-
ous techniques have been proposed for avoiding the network
transfers of unused memory. QEMU-KVM scans the entire
data contained in each page before the network transfer. If
a page is unused on this memory scan, physical memory
is allocated to the page and the page is filled by zero.
For such a zero page, QEMU-KVM sends only one-byte
data standing for a zero page. At the destination host,
QEMU-KVM does not allocate physical memory for the
page. However, this technique causes a large overhead for

scanning all the page contents. In addition, physical memory
is allocated to unused memory at the source host only for
VM migration.

Li et al. have proposed an optimization for avoiding
transferring unused memory using dirty page logging in
KVM [8]. QEMU-KVM uses a dirty bitmap to control page
transfers and sends a page only if the corresponding bit is
set. The proposed technique keeps track of memory writes
since a VM boot. Since the bit for an unused page is not set
in the dirty bitmap, QEMU-KVM does not transfer unused
pages. However, this technique needs to always enable dirty
page logging and the overhead is not small. In addition, it
transfers even pages released after used by the guest OS.

Several systems extend the guest OS to provide in-
formation on unused memory to the hypervisor [9], [10].
ME2 [9] scans virtual memory in a VM and then finds
pages to which physical memory is not allocated. It sends
only one-byte data for such an unused page on VM mi-
gration. SonicMigration [10] always stores information on
free memory pages of the guest OS in the memory shared
with the hypervisor. It does not transfer these pages on VM
migration. These systems can deal with free memory in the
guest OS as unused. However, the applicability is limited in
clouds because it is necessary to modify the guest OS.

The optimization of VM migration using VMI has been
also proposed [22], [23]. Like FCtrans, these systems ana-
lyze the memory of the guest OS from the outside of a VM
and identify whether each page is free or not. However,
they do not keep track of the memory usage of a VM,
unlike FCtrans. Instead, one previous system [22] obtains
the entire memory usage only at the beginning of the
migration. Since this information becomes obsolete during
a long migration time, performance improvement can be
limited for the migration of large-memory VMs. Obsolete
information is critical for the optimization of remote page-
ins because local page-ins can be wrongly applied to the
pages reused after that information is obtained.

The other previous system [23] checks the memory
usage on demand. Since split migration needs to divide
the memory of a VM by considering unused memory for
optimization, the memory usage of all the pages is necessary
additionally at the beginning of split migration. Extra VMI
for this purpose would increase the overhead for the opti-
mization. To optimize remote paging, this previous system
has to check whether a page is free or not on a page
fault. VMI for this check causes an extra page fault when a
necessary page exists in a sub-host. If such a double fault
occurs, the VM could get stuck. Also, it is difficult to find
unused memory for remote page-outs because that always
needs information on the entire memory usage.

Memory ballooning [14] can be used to reclaim the
free memory of the guest OS. The balloon driver installed
in the guest OS inflates a balloon by allocating memory
from the pool of free memory. Then, it returns the allocated
memory to the hypervisor, while the hypervisor deallocates
the returned memory from the VM. To enable the guest OS
to reuse that free memory, the balloon driver deflates the
balloon and returns the released memory to the pool of free

memory. This mechanism is consistent because the guest OS
is involved, but the overhead of the inflation and deflation
is not small, especially for a large-memory VM.
Generalized memory de-duplication [22] identifies free
memory pages in the guest OS using VMI and reallocates
only one page to all of them. To avoid a race condition,
it first write-protects each free page and then shares that
page with one specific page if that page is still free and
not modified. This technique is similar to the consistent
memory reclamation of FCtrans in that one free page is
checked twice. However, it basically needs two page-table
manipulations, while FCtrans needs only one. In addition,
it is difficult to apply this technique to split-memory VMs
because the memory to be shared is distributed across hosts.
VSwapper [24] proposes various optimizations to im-
prove the performance of VMs using virtual memory. It
is shown that the performance of virtual memory degrades
when a VM reads data from a disk to a page and the page is
paged out without modification. To prevent this performance
degradation, VSwapper monitors disk IO and avoids writing
back an unmodified page to a disk by a page-out. Also,
it is shown that performance degradation occurs when the
entire page is modified after it is paged in. To prevent this,
VSwapper temporarily saves writes to a paged-out page in
a buffer and avoids reading data from a disk by a page-in.
These optimizations can be applied to remote paging.

7. Conclusion

This paper proposes FCtrans to achieve efficient split
migration and remote paging by considering unused mem-
ory. FCtrans avoids transferring data of unused memory
to the destination hosts on split migration and between
hosts on remote paging. To efficiently and transparently
identify unused memory, it keeps track of used memory
since the start of split migration. To reclaim free memory
in the guest OS and change it back to unused memory,
FCtrans consistently merges information on the memory
usage of a VM and its guest OS without stopping the
VM. We conducted experiments using a large-memory VM
in the StarBED testbed and confirmed that FCtrans could
significantly improve the performance of split migration and
a split-memory VM.

One of our future work is to further reduce the overhead
of the reclamation of free memory in the guest OS using
VMI. We need to first reveal the reason for that performance
degradation. In addition, it is necessary to support various
guest OSes because memory reclamation in FCtrans depends
on the guest OS. Another direction is to apply FCtrans to
other migration methods such as partial migration of split-
memory VMs [19].

Acknowledgements

The research results have been achieved by the “Re-
silient Edge Cloud Designed Network (19304),” the Com-
missioned Research of National Institute of Information and
Communications Technology (NICT), Japan.

References

(1]

[2]

(3]

(4]

(51

(6]

(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

(21]

Amazon Web Services, Inc., “Amazon EC2 High Memory Instances,”
https://aws.amazon.com/ec2/instance-types/high-memory/, 2019, ac-
cessed 7/20/2021.

SAP SE, “What is SAP HANA? An Unrivaled Data Platform for
the Digital Age,” https://www.sap.com/products/hana.html, accessed
7/20/2021.

Microsoft Corporation, “SQL Server 2017 on Windows and
Linux,” https://www.microsoft.com/en-us/sql-server/sql-server-2017,
accessed 7/20/2021.

Apache Software Foundation, “Apache Spark — Lightning-Fast Clus-
ter Computing,” http://spark.apache.org/, accessed 7/20/2021.

Facebook, Inc., “Presto: Distributed SQL Query Engine for Big Data,”
https://prestodb.io/, accessed 7/20/2021.

M. Suetake, H. Kizu, and K. Kourai, “Split Migration of Large Mem-
ory Virtual Machines,” in Proc. ACM SIGOPS Asia-Pacific Workshop
of Systems, 2016.

M. Suetake, T. Kashiwagi, H. Kizu, and K. Kourai, “S-memV: Split
Migration of Large-memory Virtual Machines in IaaS Clouds,” in
Proc. IEEE Int. Conf. Cloud Computing, 2018, pp. 285-293.

L. Li and Y. Zhang, “KVM Live Migration Optimization,” KVM
Forum 2015, 2015.

Y. Ma, H. Wang, J. Dong, Y. Li, and S. Cheng, “ME2: Efficient
Live Migration of Virtual Machine with Memory Exploration and
Encoding,” in Proc. IEEE Int. Conf. Cluster Computing, 2012, pp.
610-613.

A. Koto, H. Yamada, K. Ohmura, and K. Kono, “Towards Unobtrusive
VM Live Migration for Cloud Computing Platforms,” in Proc. Asia-
Pacific Workshop on Systems, 2012.

L. Li and J. Yunhong, “Real Time & Fast Live Migration Update for
NFV,” KVM Forum 2016, 2016.

T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection
Based Architecture for Intrusion Detection,” in Proc. Network and
Distributed Systems Security Symp., 2003, pp. 191-206.

National Institute of Information and Communications Technol-
ogy, “StartBED4 Project,” https://starbed.nict.go.jp/en/, accessed
7/20/2021.

C. Waldspurger, “Memory Resource Management in VMware ESX
Server,” in Proc. Symp. Operating Systems Design and Implementa-
tion, 2002.

S. Shen, V. Beek, and A. Iosup, “Statistical Characterization of
Business-Critical Workloads Hosted in Cloud Datacenters,” in Proc.
IEEE/ACM Int. Symp. Cluster, Cloud and Grid Computing, 2015, pp.
465-474.

D. Klusdcek and B. Pardk, “Analysis of Mixed Workloads from
Shared Cloud Infrastructure,” in Proc. Workshop on Job Scheduling
Strategies for Parallel Processing, 2017, pp. 25-42.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A Dissem-
inated, Distributed OS for Hardware Resource Disaggregation,” in
Proc. USENIX Symp. Operating Systems Design and Implementation,
2018, pp. 69-87.

F. Bellard, “QEMU,” https://www.qemu.org/, accessed 7/20/2021.

T. Kashiwagi and K. Kourai, “Flexible and Efficient Partial Migration
of Split-memory VMSs,” in Proc. IEEE Int. Conf. Cloud Computing,
2020, pp. 248-257.

B. Fitzpatrick, “memcached — A Distributed Memory Object Caching
System,” http://memcached.org/, accessed 7/20/2021.

B. Aker, “memaslap — Load Testing and Benchmarking a
Server,” http://docs.libmemcached.org/bin/memaslap.html, accessed
7/20/2021.

[22]

[23]

[24]

J. Chiang, H. Li, and T. Chiueh, “Introspection-based Memory De-
duplication and Migration,” in Proc. ACM Int. Conf. Virtual Execution
Environments, 2013, pp. 51-62.

C. Wang, Z. Hao, L. Cui, X. Zhang, and X. Yun, “Introspection-based
Memory Pruning for Live VM Migration,” Int. J. Parallel Program,
vol. 45, no. 6, pp. 1298-1309, 2017.

N. Amit, D. Tsafrir, and A. Schuster, “VSwapper: A Memory Swap-
per for Virtualized Environments,” in Proc. ACM Int. Conf. Architec-
tural Support for Programming Languages and Operating Systems,
2014, pp. 349-366.

