GPU-based First Aid for System Faults

Kento Kimura
Kyushu Institute of Technology
lizuka, Fukuoka, Japan
kento027@ksl.ci.kyutech.ac.jp

ABSTRACT

It is difficult to completely avoid system failures in recent
large-scale and complex systems. Therefore, it is important
to detect system faults rapidly and accurately and recover
from them. Fault recovery is categorized into external one
from remote hosts and internal one with processes or the
operating system (OS) inside a target system. However, both
methods are subject to system faults. If fault recovery fails,
a hardware reset is required and can lead to losing system
data and states. This paper proposes GPUfas for recovering
from system faults by indirectly controlling OS behavior
from a GPU, which is not easily affected by system faults.
GPUfas attempts fault recovery by rewriting OS data in main
memory and leveraging the capabilities of the OS itself. For
example, it can mimic signal sending and process scheduling
to force termination of the processes that consume excessive
resources. It can also mimic unlocking to recover from some
kind of deadlock. We have implemented GPUfas using the
Linux kernel, CUDA, and LLVM to enable a GPU to rewrite
OS data transparently. Then, we confirmed the effectiveness
and efficiency of fault recovery by GPUfas.

CCS CONCEPTS

« Software and its engineering — Software fault toler-
ance; Scheduling; Deadlocks.

KEYWORDS
fault recovery, GPUs, signals, scheduling, deadlocks

ACM Reference Format:

Kento Kimura and Kenichi Kourai. 2022. GPU-based First Aid
for System Faults. In 13th ACM SIGOPS Asia-Pacific Workshop on
Systems (APSys °22), August 23—24, 2022, Virtual Event, Singapore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

APSys °22, August 23-24, 2022, Virtual Event, Singapore

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9441-3/22/08...$15.00
https://doi.org/10.1145/3546591.3547526

Kenichi Kourai
Kyushu Institute of Technology
lizuka, Fukuoka, Japan
kourai@csn.kyutech.ac.jp

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3546591.
3547526

1 INTRODUCTION

The root causes of system failures are software faults, poor
performance, insufficient capacity, configuration and opera-
tion errors, etc. Although system developers should carefully
consider software quality, system performance, and capacity,
it is difficult to avoid failures completely. For example, AWS
caused a failure due to too many threads that exceeded the
limits of the operating system (OS) in servers and affected
thousands of online services [1]. Even if perfect systems can
be constructed, simple configuration errors can cause fail-
ures. In the case of Tokyo Stock Exchange, a failure happened
because the developer accidentally disabled the function of
automatic switchover to the secondary network storage [15].
Once services are disrupted by a system failure, financial
loss is large for both the users and providers of services.

Therefore, it is important to detect system faults rapidly
and accurately and then recover from them. When admins de-
tect a system fault, they often attempt external recovery from
the fault by remotely accessing the target system. However,
remote access is subject to system faults. For example, it can
be prevented by faults in the network stack. Its performance
can be affected by available system resources. Without using
networks, internal recovery can be made by running recov-
ery systems inside the target system in advance. A recovery
system can be run as processes or be embedded into the OS
kernel. Like remote access, it is also affected by system faults.
If these methods cannot recover the system, a hardware reset
is a last resort, but it is at high risk for losing the data and
states of the system.

To avoid a hardware reset as much as possible, this paper
proposes GPUfas for running a recovery system on a GPU in-
side a target host. GPUfas recovers the target system from a
system fault by indirectly changing OS behavior. Specifically,
it rewrites OS data in main memory from a GPU and elimi-
nates the root cause of the fault using the capabilities of the
OS itself. As examples of fault recovery, GPUfas can mimic
signal sending and process scheduling to force termination
of the processes that cause a system fault. It can also mimic
unlocking to address some kind of deadlock. Since a GPU is
not easily affected by system faults, GPUfas can increase the
possibility of correctly running the recovery system.

https://doi.org/10.1145/3546591.3547526
https://doi.org/10.1145/3546591.3547526
https://doi.org/10.1145/3546591.3547526

APSys 22, August 23-24, 2022, Virtual Event, Singapore

We have implemented GPUfas using Linux 4.18, CUDA
10.0 [10], and LLVM 8.0 [14]. GPUfas enables the recovery
system to rewrite OS data from a GPU by extending our pre-
vious work [12]. It maps the entire main memory onto the
GPU memory address space using mapped memory in CUDA
and extended memory management in Linux. It transforms
the program of the recovery system to modify OS data trans-
parently. In the current implementation, GPUfas provides
three mechanisms called pseudo signal sending, pseudo pro-
cess scheduling, and pseudo unlocking. To complement these
mechanisms executed on a GPU, GPUfas provides a mecha-
nism for in-kernel recovery support, which can be invoked
from a GPU. We conducted several experiments to show the
effectiveness and efficiency of GPUfas. As a result, we con-
firmed that GPUfas could recover from out-of-memory by
terminating a process and a deadlock by releasing a spinlock.

The organization of this paper is as follows. Section 2 de-
scribes current techniques used for fault recovery. Section 3
proposes GPUfas, and Section 4 presents its implementation.
Section 5 shows experimental results using GPUfas. Section 6
describes related work, and Section 7 concludes this paper.

2 FAULT RECOVERY

Fault recovery is categorized into two types: external and
internal. Admins often access the target system remotely,
e.g., using SSH, and attempt to recover from a system fault
manually. This is called external recovery. One advantage of
this method is that admins can inspect the root cause of the
fault and select the best way of recovery. Instead of admins, a
recovery system running at a remote host can automatically
perform fault recovery via networks. However, the biggest
disadvantage of these methods is that remote access is largely
affected by system faults. The network function in the target
system can be corrupted. Remote access servers can stop
working. If the target system falls into out-of-memory;, it
could take long to perform remote access due to thrashing.
As fault recovery without remote access, internal recov-
ery is also used. This method runs a recovery system inside
a target system in advance. It is more reliable in that the
recovery system does not rely on remote access. As an ex-
ample, the recovery system can be run as processes inside
a target system [2]. It periodically checks the system states
and performs fault recovery if it detects a system fault. Using
processes makes it easy to apply new recovery techniques.
However, usable recovery techniques are restricted to the
process-level ones. In addition, the recovery system inside
the target system still tends to be affected by system faults.
To address these issues, in-kernel recovery systems have
been proposed [9, 18]. This method embeds a recovery sys-
tem into the OS kernel and runs it periodically using timer
interrupts. In-kernel recovery systems can tolerate system

Kento Kimura and Kenichi Kourai

target host
target system

invoke
)/ System | | Gpupirect | M°St
RDMA
(CPU)(memory rewrite GPU

Figure 1: The system architecture of GPUfas.

faults more, compared with process-level ones. They can
implement various recovery techniques. However, it is not
realistic to modify the OS kernel whenever a new recovery
technique is needed. Theoretically, this issue is addressed if a
recovery system can be dynamically loaded as a kernel mod-
ule. Unfortunately, kernel modules are less powerful because
they are often restricted in terms of available kernel variables
and functions and cannot use all the kernel capabilities. This
limits implementable recovery techniques. In addition, the
recovery system is not executed if timer interrupts are not
handled by system faults.

If these methods cannot perform fault recovery, admins
have to reboot a target system using a hardware reset. In fact,
IPMI [8] and remote power management systems are used
to perform hardware resets from remote hosts. Hardware
watchdog timers can automatically reset the system if the
system does not respond for a certain period. A hardware
reset is a powerful recovery method, but it is at high risk for
corrupting system states and data. If system states are lost, it
becomes difficult to identify the root cause of a system fault.
This means that the same system fault occurs again and that
better fault recovery is impossible. In addition, application
data is lost if it exists only in memory. File data only in the
buffer cache is also lost if it is not written back to disks. A
hardware reset could corrupt filesystems and lead to losing
files. Various mechanisms have been proposed to prevent
this situation [4-6], it is difficult to salvage all the data.

3 GPU-BASED FIRST AID

In this paper, we focus on recoverable system faults, which
do not destroy the integrity of the target system, as the
first step. An example of such a fault is excessive resource
consumption by processes or the OS kernel.

3.1 GPUfas

GPUfas attempts fault recovery by indirectly controlling
OS behavior from a GPU. Figure 1 illustrates the system
architecture of GPUfas. The recovery system running on
a GPU rewrites OS data in main memory to recover the
target system by leveraging OS capabilities. Thanks to the
direct memory rewrites, developers can implement various
recovery techniques without the limitations of processes or

kernel modules. Nevertheless, the recovery system in GPUfas
runs as a GPU application. This can make it easier to apply
new recovery techniques.

Unlike existing methods, the recovery system running on
a GPU is not easily affected by system faults. A GPU is phys-
ically isolated from CPUs and main memory, on which the
target system runs. For example, CPUs cannot directly cor-
rupt GPU memory unless they initiate DMA accidentally. In
addition, the cores and memory dedicated to a GPU can pre-
vent the recovery system from being affected by the resource
shortage of the target system. It is reported that GPUs are
subject to hardware failures, compared with CPUs [13], but
this paper focuses on software faults. To protect the recovery
system from the faults of the other programs running on
the same GPU, GPUfas uses one GPU only for the recovery
system. This GPU usage is acceptable because GPUfas can
use inexpensive, low-end GPUs. The other PCle devices such
as DPUs and FPGAs could also be used for GPUfas, but they
are too expensive to use in such a dedicated manner.

GPUfas can achieve both internal and external recovery
with higher reliability. The recovery system on a GPU always
monitors the target system. When a system fault occurs, the
recovery system detects it and identifies its root cause by
analyzing OS data in main memory using GPUSentinel [12].
After that, for internal recovery, the recovery system auto-
matically uses one of the pre-set recovery techniques. For
external recovery, it communicates with a remote host using
GPUDirect RDMA [11] without the help of the OS [12] and
uses the best recovery technique. At the remote host, ad-
mins can interactively analyze the details of the system fault
and select a custom recovery technique. Instead of humans,
artificial intelligence could do a better job.

Since GPUfas is a first-aid system, it might achieve only
temporal fault recovery. For example, the target system
might not provide services correctly after GPUfas terminates
abnormal processes. In this case, admins can save data if they
can access the target system remotely, thanks to temporal
fault recovery. This can prevent important data from being
lost. If even temporal fault recovery is impossible, GPUfas
can send memory data to a remote host using GPUDirect
RDMA without relying on the OS. Admins can analyze the
memory data at the remote host and restore the data after a
hardware reset.

3.2 Recovery Techniques

To recover from a system fault, GPUfas can perform pseudo
signal sending to abnormal processes that cause a system
fault. For example, it can prevent thrashing due to out-of-
memory by sending the KILL signal and terminating pro-
cesses that consume a large amount of memory. If it pauses
processes that consume too much CPU time by sending the

APSys ’22, August 23-24, 2022, Virtual Event, Singapore

STOP signal, it can reduce the CPU load and recover system
performance. Processes can send signals using the system
call, while the OS kernel can do it directly using the kernel
function. However, the recovery system on a GPU cannot
invoke the system call or the kernel function. Instead, GP-
Ufas changes the process state to the same one as after a
signal is sent by rewriting information on pending signals
and mimics signal sending to a process.

In addition, GPUfas provides pseudo process scheduling.
This mechanism is used for controlling process execution
and is indispensable to make pseudo signal sending effective.
Pseudo signal sending itself cannot control paused processes
because a sent signal is not handled until the target process is
scheduled. Pseudo process scheduling enables such a process
to be controlled by a signal sent by pseudo signal sending as
early as possible. This leads to rapid recovery from a system
fault. GPUfas changes the state of the process scheduler
by rewriting scheduling data and mimics the adjustment of
process scheduling.

GPUfas also provides pseudo unlocking. This is required
to not only perform mutual exclusion but also recover from
some kind of deadlock. A deadlock by missing lock release
is a typical and frequent bug in the OS kernel. GPUfas can
release such a lock and enable waiting kernel threads to
proceed. It changes the lock state by rewriting a lock variable
and mimics lock release. This recovery does not lead to data
inconsistency because GPUfas just releases a lock that should
be released by the kernel. Note that pseudo unlocking cannot
recover from all types of deadlocks. In general, a consistency
problem is caused by releasing one of the lock involved in a
deadlock.

As such, GPUfas performs fault recovery by mimicking OS
functions, but all the functions are not implementable only
by rewriting OS data. For example, a GPU cannot acquire
a lock used in the kernel because lock acquisition requires
an atomic instruction in CPUs to change the value of a lock
variable. In addition, there are OS functions that are too
complex to implement on a GPU. Even if some of the OS
functions are implementable, they could largely degrade
the recovery performance due to frequent access to main
memory.

To address these issues, GPUfas can cooperate with in-
kernel recovery support. The recovery system on a GPU com-
municates with the mechanism embedded into the target OS
kernel and executes necessary functions inside the kernel. In
principle, the mechanism in the kernel can do anything in-
cluding hardware access. However, such in-kernel recovery
support is subject to system faults because it runs on CPUs. It
is necessary to consider a trade-off between fault-tolerance,
ease of implementation, and performance. It should be noted
that the combination of the recovery system on a GPU and in-
kernel recovery support is more reliable than pure in-kernel

APSys 22, August 23-24, 2022, Virtual Event, Singapore

main helper GPU
memory process memory
2. rewrite

1. DMA

= | = _— _ recovery

Lo | map | b -— L= system
3. DMA

(CcPU) C GPU)

Figure 2: Rewriting main memory from a GPU.

recovery systems. Only the recovery functions running in
the kernel can be affected by system faults.

4 IMPLEMENTATION

We have implemented GPUfas using the Linux kernel 4.18.0,
CUDA 10.0 [10], and LLVM 8.0 [14].

4.1 Memory Rewrite from a GPU

To rewrite main memory from a GPU, we have extended
the GPU-based monitoring mechanism proposed in GPUSen-
tinel [12]. GPUfas uses CUDA’s mapped memory, which
is a mechanism for mapping main memory onto the GPU
memory address space. A recovery system on a GPU can ac-
cess main memory after a system fault through this advance
memory mapping. Since CUDA provides only a function
for mapping process memory, GPUfas first maps the entire
main memory onto the address space of a helper process, as
illustrated in Fig. 2. However, this runs out of free memory
because the entire memory becomes in use. To avoid this
issue, GPUfas extends memory management in the Linux
kernel and provides a special device file. When a helper pro-
cess maps this file in the writable mode, the kernel does not
increase the reference count of each page so that the page
does not become in use.

Developers can write the program of a recovery system
using the source code of the Linux kernel. When the recov-
ery system on a GPU rewrites OS data in main memory,
GPUfas translates its virtual address into a physical one us-
ing the page tables in the target system. Then, it translates
that address into a GPU one. This is transparently done by
transforming the program of a recovery system using LLVM.
GPUfas searches for the load and store instructions, which
are used to read and write data from and to memory in in-
termediate representation, respectively. Then, it inserts the
invocation to the code for address translation just before
those instructions.

When the recovery system accesses the translated GPU
address, the GPU automatically transfers only accessed data
from main memory to GPU memory using DMA. Since it
temporarily keeps transferred data, that data does not put

Kento Kimura and Kenichi Kourai

pressure on GPU memory. After the recovery system modi-
fies the data, the GPU automatically transfers the modified
data back to main memory using DMA. As a result, the ker-
nel in the target system can access the modified data in main
memory and change its behavior.

It is not secure if attackers could rewrite the entire main
memory using the mechanism provided by GPUfas. There-
fore, GPUfas provides two access restrictions. First, the ker-
nel prevents the helper process itself from accessing the
mapped main memory by modifying the page tables of that
process. Even if attackers compromise that process, they
cannot read or rewrite main memory through that process.
Second, the kernel permits only privileged processes to map
main memory. Since a recovery system occupies a GPU in
GPUfas, attackers need to terminate the recovery system be-
fore launching their malicious GPU programs. At this time,
the helper process is also terminated. As a result, GPU pro-
grams launched by attackers cannot map main memory via
new helper processes unless they can gain administrative
privileges. Note that attackers can access main memory by
installing a kernel module if they can take administrative
privileges. If attackers hijack a recovery system running on
a GPU, they could rewrite already mapped main memory,
but this is not easy.

4.2 Pseudo Control from a GPU

To mimic signal sending on a GPU, GPUfas directly rewrites
the data structure used for the signal mechanism in the ker-
nel. First, GPUfas searches for the task_struct structure used
for the target process in the kernel memory. Then, it finds the
signal bitmap (sigset_t) in the sigpending structure, which is
included in task_struct. Next, it finds the thread_info struc-
ture in task_struct and sets the TIF_SIGPENDING flag. Later,
the OS kernel checks this flag when it schedules that process
and switches the CPU mode from the kernel to user mode.
If there is a pending signal, the kernel handles the injected
signal.

For pseudo process scheduling, GPUfas indirectly rewrites
the data structure used for the process scheduler in the ker-
nel by emulating scheduler functions on a GPU. The reason
why GPUfas does not directly rewrite data is that scheduling
data is much more complex. Currently, GPUfas support CFS,
which is the most popular process scheduler in Linux. First,
it adds the sched_entity structure in task_struct to the red-
black tree in the cfs_rq structure. At this time, it searches
for the most appropriate position using the virtual run time
recorded in sched_entity. Before this operation, it acquires
the spinlock for a per-CPU run queue using in-kernel recov-
ery support. It releases the spinlock using pseudo unlocking
after the operation. During the operation, it acquires several
necessary spinlocks. Finally, it changes the process state to

Table 1: The used combination of recovery techniques.

’ method ‘ recovery techniques ‘
PSIG -
pseudo pseudo .
PSIG+PSCH | signal | scheduling/ | P <ermel
. . locking
sending unlocking
PSIG+KSCH in-kernel scheduling

TASK_RUNNING. Later, the OS kernel schedules processes
in descending order of their virtual run time.

For pseudo unlocking, GPUfas mimics spinlock release by
directly rewriting the data structure used for a spinlock in the
kernel. It first obtains the gspinlock structure in raw_spin-
lock_t. Then, it changes the value of the lock variable in it to
zero.

4.3 In-kernel Recovery Support

To invoke in-kernel recovery support, a recovery system
on a GPU writes a request to a queue allocated in main
memory. In-kernel recovery support periodically reads the
queue using timer interrupts. For simple support such as
locking, it runs in the interrupt handler for the local APIC
timer. For complex support such as process scheduling, it
runs in the callback function registered to the Linux timer.
This is because the low-level interrupt handler is more tol-
erant to system faults but should not run for a long time.
Then, in-kernel recovery support executes the function cor-
responding to the request and writes a response to the other
queue. The recovery system on a GPU periodically reads the
queue by polling and continues its execution if in-kernel
recovery support succeeds.

Currently, GPUfas provides locking and process schedul-
ing as in-kernel recovery support. Pseudo process scheduling
has been achieved on a GPU, but we have also implemented
process scheduling as in-kernel recovery support for com-
parison.

5 EXPERIMENTS

We conducted several experiments to show the effectiveness
of GPUfas. We used three combinations of recovery tech-
niques, as depicted in Table 1. PSIG used only pseudo signal
sending. PSIG+PSCH used pseudo process scheduling and
in-kernel recovery support for acquiring a spinlock as well
as pseudo signal sending. PSIG+KSCH used pseudo signal
sending and in-kernel recovery support for process schedul-
ing. We used a PC with an Intel Core i7-9700 processor, 16
GB of memory, a 2-TB HDD, and NVIDIA GeForce GTX 960.
We ran Linux 4.18.0 and assigned 7 GB of swap space.

APSys ’22, August 23-24, 2022, Virtual Event, Singapore

Table 2: The results of pseudo signal sending.

signal PSIG PSIG+PSCH PSIG+KSCH
KILL v v v
TERM v v v
STOP v v

CONT v v

5.1 Effectiveness of Pseudo Signal Sending

We performed pseudo signal sending to a process for the
KILL, TERM, STOP, and CONT signals and examined the be-
havior of the process. For the CONT signal, we first sent the
STOP signal using the kill command to pause the process. Ta-
ble 2 shows the results of pseudo signal sending. PSIG+PSCH
could send all the signals correctly. The KILL signal forced
termination of the process, and the TERM signal normally
terminated the process. The STOP signal paused the process,
while the CONT signal continued the process paused by
the kill command. In contrast, PSIG could not continue the
paused process because it did not perform process scheduling
to wake up that process.

Surprisingly, PSIG+KSCH could not pause the process.
After the STOP signal was sent by pseudo signal sending, the
kernel paused the process because it periodically scheduled
the running process. After that, in-kernel scheduling support
changed the process state to runnable again. As a result, the
paused process was continued. This is due to the time lag
between pseudo signal sending and in-kernel scheduling
support. We need to fix in-kernel scheduling support so that
the process is not scheduled in such a case.

5.2 Performance of Pseudo Signal Sending

We examined the performance of pseudo signal sending. We
sent the KILL signals to 1000 processes and measured the
time until all the processes were terminated. When we used
processes that performed busy waiting, the recovery time
was shown in Fig. 3(a). PSIG could terminate all the pro-
cesses successfully without process scheduling and achieve
the fastest recovery. PSIG+PSCH performed pseudo process
scheduling as well, but the recovery time only slightly in-
creased because pseudo scheduling did not re-schedule the
runnable processes. In contrast, PSIG+KSCH significantly
increased the recovery time due to the overhead of invoking
in-kernel scheduling support from a GPU.

When we used processes paused by long sleep, the recov-
ery time was shown in Fig. 3(b). PSIG could not terminate
any processes because the paused processes could not han-
dle sent signals without process scheduling. Unlike the case
of running processes, PSIG+PSCH took much longer than
PSIG+KSCH. This is because many invocations of in-kernel
locking support suffered from large overhead during pseudo

APSys ’22, August 23-24, 2022, Virtual Event, Singapore

125 1000
— 100 — 800
))

E E
_g 75 E 600
= e
g 50 2 400
5] 5}
3 3
= 25 = 200

0 0

PSIG PSIG+ PSIG+ PSIG PSIG+ PSIG+

PSCH KSCH PSCH KSCH

(a) Running processes (b) Paused processes

Figure 3: The time to terminate 1000 processes.

process scheduling. Note that we optimized the recovery
system to acquire a spinlock per CPU and handle all the pro-
cesses running on one CPU at once. In PSIG+KSCH, in-kernel
scheduling support also suffered from invocation overhead,
but it was invoked only once per target process. However,
PSIG+KSCH is less reliable due to running complex schedul-
ing code in the kernel.

5.3 Recovery from Out-of-memory

To show the recoverability from a real system fault, we made
the target system use up physical memory. We ran one pro-
cess that allocated 19 GB of memory in the PC with 16 GB of
physical memory. The process sequentially wrote data to the
allocated memory to continuously cause swapping. When
we attempted remote login to this host, it took about 20x
longer due to thrashing. In this experiment, the recovery
system detected a system fault if the amount of memory
consumption exceeded 80% and sent the KILL signal to the
target process for recovery. In addition to GPUfas, we used a
process-level recovery system and an in-kernel recovery sys-
tem. The recovery process issued the kill system call, while
the in-kernel recovery system invoked the kernel function
for signal sending.

Figure 4 shows the recovery time from out-of-memory.
PSIG in GPUfas was the fastest and the most stable.
PSIG+PSCH increased the average only by 32 ms due
to pseudo process scheduling, but it was still stable. In
PSIG+KSCH, in contrast, the average was 100 ms longer than
in PSIG+PSCH. This is due to the invocation of in-kernel
scheduling support from a GPU and the impact of continu-
ous swapping on the process scheduler in the kernel. This
impact on the in-kernel scheduler also made the variance of
the recovery time much larger.

Contrary to our expectation, the recovery process was not
largely affected by frequent swapping, but it resulted in lower
stability. Surprisingly, the in-kernel recovery system was

Kento Kimura and Kenichi Kourai

1500

__1250¢ 1

(ms

1000} 1

7501 1

5001 1

recovery time

2501 1

PSIG PSIG+
P

PSIG+ process in-kernel
SCH SCH

Figure 4: The recovery time from out-of-memory.

worst in both the average and stability. One of the reasons is
the large impact on the in-kernel scheduler like PSIG+KSCH.
However, it is unclear why the in-kernel recovery system
was much worse than the recovery process.

5.4 Recovery from a Deadlock

We made the kernel in the target system cause a deadlock
involving all the eight CPUs. We loaded the kernel module in
which eight threads attempted to acquire the same spinlock
without disabling interrupts. This module caused a deadlock
by failing to release the acquired spinlock. In this experiment,
the recovery system released the spinlock eight times using
pseudo unlocking after the deadlock occurred. For compari-
son, we used two in-kernel recovery systems. One released
the spinlock in a callback function registered to the Linux
timer; the other did in the interrupt handler for the local
APIC timer. We did not use a recovery process because the
deadlock in the kernel prevented that process from running.

Figure 5 shows the recovery time from the deadlock. We
confirmed that GPUfas could recover from the deadlock. The
reason why the high-level Linux timer failed to recover is that
the kernel thread used by the Linux timer was not scheduled.
The low-level interrupt handler succeeded in fault recovery
because it is invoked regardless of the deadlock. GPUfas was
slightly slower, but it is comparable to the in-kernel recovery
system.

6 RELATED WORK

The Linux kernel provides several features for fault recovery
such as a kernel oops and the out-of-memory (OOM) killer. A
kernel oops terminates the process that causes a system fault
when the kernel detects the fault and enables the execution
of the system to be continued. However, the kernel state is
not always restored to the normal one [17]. The OOM killer
forces termination of the process that consumes excessive
memory when the system causes out-of-memory. While it
does not consider factors except for the consumption of

1.50

1.25F 1

ms)

1.00F 1

0.751 1

0.501 1

recovery time (|

0.25F B
n/a

0.00

GPUfas Linux timer APIC timer

Figure 5: The recovery time from a deadlock.

memory and swap space, GPUfas can select processes more
flexibly on a system fault.

SHFH [18] detects various system hangs and recovers
from the faults. It provides three recovery techniques. One
is to force termination of the process or thread that causes
a system fault. The other two are to send a non-maskable
interrupt (NMI) to a stalled CPU and to reboot the system.
SHFH detects a system fault using both the process and
the kernel but recovers from the fault only in the kernel.
Therefore, it is subject to a system fault and is less reliable
than GPUfas, which runs a recovery system on a GPU.

Backdoors [3] performs fault recovery by modifying OS
data using RDMA from a remote host. As an example, it
mimics sending the KILL signal to a process like GPUfas.
However, it is necessary to modify the OS so that a remote
host can access the process table using RDMA. In addition,
Backdoors needs to permit direct access to the kernel mem-
ory from a remote host. This can introduce a new attack
surface to the target system. In contrast, GPUfas is more
secure because a recovery system on a GPU can execute only
recovery functions fixed in advance. GPUfas can also com-
municate between a GPU and a remote host using GPUDirect
RDMA, but a recovery system still runs on a GPU.

EXTERIOR [7] enables the system in a VM to be recovered
when the system is attacked. It prepares a different VM that
runs the same OS kernel as the target VM and seamlessly
reflects memory updates by the commands executed in this
VM to the target VM. For example, it can terminate processes
using the kill command and unload kernel modules using
the rmmod command. This mechanism assumes the system
running in a VM, while GPUfas can be applied to the system
running in a physical machine.

Otherworld [6] microreboots the OS kernel when an in-
kernel fault occurs. Unlike a normal reboot, a microreboot
reboots the system without corrupting the states of running
applications on top of the kernel. After a microreboot, Oth-
erworld restores the memory of applications, opened files,

APSys ’22, August 23-24, 2022, Virtual Event, Singapore

and the states of the other resources. This mechanism is or-
thogonal to GPUfas. It can be used to minimize the impact
of a reboot when GPUfas cannot recover from a kernel fault.

A phase-based reboot [16] can reduce the recovery time
from a kernel fault using a VM. It divides the boot sequence
into three phases and saves the system state for each phase.
Upon fault recovery, it restores the system state of the most
appropriate phase to reduce the reboot time. However, the
system state that is not saved on a system fault is lost. Also,
only the system running in a VM is recoverable.

7 CONCLUSION

This paper proposed GPUfas for enabling fault recovery by
running a recovery system on a GPU and indirectly control-
ling OS behavior. GPUfas rewrites OS data in main memory
and attempts to recover from a system fault by leveraging
OS capabilities. Currently, it provides recovery techniques
called pseudo signal sending, pseudo process scheduling,
and pseudo unlocking. For OS functions that are difficult to
implement on a GPU, it cooperates with in-kernel recovery
support. We have implemented GPUfas by extending the
memory management in Linux and using mapped memory
in CUDA and program transformation with LLVM. We con-
firmed that GPUfas could recover from several system faults
in a short period.

One of our future work is to optimize pseudo process
scheduling. We have implemented it using kernel functions,
but we could minimize it. In addition, we need to recover
from various types of system faults, e.g., a deadlock due to
spinlocks with interrupts disabled. In this case, we could use
the NMI caused by the overflow of performance counters
to invoke in-kernel recovery support, instead of timer inter-
rupts. Then, we would like to apply GPUfas to real-world
system faults. Another direction is to use remote hosts with
GPUDirect RDMA for advanced fault recovery.

ACKNOWLEDGMENTS

This work was partially supported by JST, CREST Grant
Number JPMJCR21M4, Japan.

REFERENCES

[1] Amazon Web Services, Inc. 2020. Summary of the Amazon Kinesis
Event in the Northern Virginia (US-EAST-1) Region. https://aws.
amazon.com/message/11201/.

[2] A.Beekhof. [n.d.]. Pacemaker. https://clusterlabs.org/pacemaker/.

[3] A.Bohra, I. Neamtiu, P. Gallard, F. Sultan, and L. Iftode. 2004. Remote
Repair of Operating System State Using Backdoors. In Proceedings of
the 1st International Conference on Autonomic Computing. 256—-263.

[4] P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Lowell.
1996. The Rio File Cache: Surviving Operating System Crashes. In
Proceedings of the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems. 74-83.

https://aws.amazon.com/message/11201/
https://aws.amazon.com/message/11201/
https://clusterlabs.org/pacemaker/

APSys ’22, August 23-24, 2022, Virtual Event, Singapore

(5]

(6]

(9]

(10]

[11

—

[12

—

(13]

(14

[l

(15

[

(16]

(17]

(18]

F. David, J. Carlyle, and H. Campbell. 2007. Exploring Recovery from
Operating System Lockups. In Proceedings of the 2007 USENIX Annual
Technical Conference. 351-356.

A. Depoutovitch and M. Stumm. 2010. Otherworld: Giving Applica-
tions a Chance to Survive OS Kernel Crashes. In Proceedings of the 5th
European Conference on Computer Systems. 181-194.

Y. Fu and Z. Lin. 2013. EXTERIOR: Using a Dual-VM Based External
Shell for Guest-OS Introspection, Configuration, and Recovery. In
Proceedings of the 9th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments. 97-110.

Intel, Hewlett-Packard, NEC, and Dell. 2004. Intelligent Platform
Management Specification Second Generation v2.0.

J. Leners, H. Wu, W. Hung, M. Aguilera, and M. Walfish. 2011. Detect-
ing Failures in Distributed Systems with the Falcon Spy Network. In
Proceedings of the 23rd ACM Symposium on Operating Systems Princi-
ples. 279-294.

NVIDIA Corporation. 2018. CUDA Toolkit Documentation v10.0.130.
https://docs.nvidia.com/cuda/archive/10.0/.

NVIDIA Corporation. 2022. Developing a Linux Kernel Module Using
RDMA for GPUDirect. Technical Report TB-06712-001 v11.7. NVIDIA.
Y. Ozaki, S. Kanamoto, H. Yamamoto, and K. Kourai. 2019. Detecting
System Failures with GPUs and LLVM. In Proceedings of the 10th ACM
SIGOPS Asia-Pacific Workshop on Systems. 47-53.

A. Taherin, T. Patel, G. Georgakoudis, I. Laguna, and D. Tiwari. 2021.
Examining Failures and Repairs on Supercomputers with Multi-GPU
Compute Nodes. In Proceedings of the 51st Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. 305-313.

The LLVM Foundation. [n.d.]. The LLVM Compiler Infrastructure.
https://llvm.org/.

Tokyo Stock Exchange, Inc. 2020. Report on the Cash Equity Trading
System Failure on Oct. 1. https://www.jpx.co.jp/english/corporate/
news/news-releases/0060/20201019-01.html.

K. Yamakita, H. Yamada, and K. Kono. 2011. Phase-based Reboot:
Reusing Operating System Execution Phases for Cheap Reboot-based
Recovery. In Proceedings of the 41st IEEE/IFIP International Conference
on Dependable Systems and Networks. 168-180.

T. Yoshimura, H. Yamada, and K. Kono. 2012. Is Linux Kernel Oops
Useful or Not?. In Proceedings of the 8th USENIX Workshop on Hot
Topics in System Dependability.

Y. Zhu, Y. Li, J. Xue, T. Tan, J. Shi, Y. Shen, and C. Ma. 2012. What is
System Hang and How to Handle it. In Proceedings of the 23rd IEEE
International Symposium on Software Reliability Engineering. 141-150.

Kento Kimura and Kenichi Kourai

https://docs.nvidia.com/cuda/archive/10.0/
https://llvm.org/
https://www.jpx.co.jp/english/corporate/news/news-releases/0060/20201019-01.html
https://www.jpx.co.jp/english/corporate/news/news-releases/0060/20201019-01.html

	Abstract
	1 Introduction
	2 Fault Recovery
	3 GPU-based First Aid
	3.1 GPUfas
	3.2 Recovery Techniques

	4 Implementation
	4.1 Memory Rewrite from a GPU
	4.2 Pseudo Control from a GPU
	4.3 In-kernel Recovery Support

	5 Experiments
	5.1 Effectiveness of Pseudo Signal Sending
	5.2 Performance of Pseudo Signal Sending
	5.3 Recovery from Out-of-memory
	5.4 Recovery from a Deadlock

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

