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Abstract—Recently, virtual machines (VMs) with a large
amount of memory are widely used. Since it is often difficult
to migrate such a large-memory VM to one large destination
host, split migration divides the memory of a VM into small
fragments and transfers them to multiple destination hosts.
The migrated VM exchanges its memory data between the
hosts using remote paging. To prevent information leakage
from and tampering with the memory data in an untrusted
environment, memory encryption and integrity checking can
be used. However, the overhead of such data protection affects
the performance of the hosts and the VM more largely in faster
networks. This paper proposes SEmigrate for optimizing data
protection in split migration and remote paging. SEmigrate
avoids decrypting memory data and integrity checking at most
of the destination hosts to reduce the protection overhead and
completely prevent information leakage. Also, it can selectively
encrypt only sensitive memory data and check the integrity of
only important memory data by analyzing the memory of the
guest operating system and applications in a VM. SEmigrate
could reduce the time for data-protected split migration by up
to 43% and improve the performance of migrated VMs by up
to 19% in 100 Gigabit Ethernet.

Index Terms—VM migration, VM introspection, selective data
protection, split migration, remote paging

1. Introduction

Recently, virtual machines (VMs) with a large amount
of memory are widely used. For example, Amazon EC2
provides VMs with up to 24 TB of memory [1]. Upon host
maintenance, a VM can be moved to another host using
VM migration without disrupting the services provided by
the VM. For large-memory VMs, however, it is not cost-
efficient to always preserve large hosts with a sufficient
amount of memory as the destination of occasional VM
migration. In particular, private clouds may not afford to
prepare a sufficient number of large hosts.

To make the migration of such large-memory VMs
more flexible, split migration has been proposed [2]. Split
migration divides the memory of a VM into small fragments
and transfers them to multiple smaller destination hosts,
which consist of one main host and one or more sub-
hosts. It transfers likely accessed memory data to the main

host as well as the state of the VM core such as virtual
CPUs. The rest of the memory is transferred to sub-hosts.
After split migration, the main host executes the VM core,
while the sub-hosts provide the memory to the VM core.
When the VM accesses the memory existing in a sub-host,
it exchanges memory data between the main host and the
sub-host using remote paging. The sub-host transfers the
required memory data to the main host, while the main host
transfers unnecessary memory data to the sub-host.

However, it is possible to eavesdrop on and tamper with
the memory data of a VM during split migration and remote
paging in an untrusted execution environment. For example,
information leakage and manipulation easily occur if the
memory data is transferred via untrusted networks. If the
administrators of some of the hosts are untrusted, they can
steal and alter the memory data held in the hosts. In general,
the encryption and integrity checking of the memory data
can prevent such attacks. However, the overhead of such
data protection becomes relatively larger as higher-speed
networks are being used, e.g., several hundred Gigabit Eth-
ernet (GbE). Consequently, the overhead largely affects the
performance of the hosts and the VM because encryption,
decryption, and integrity checking are performed whenever
memory data is transferred.

To address this performance issue, we propose SEmi-
grate for optimizing data protection in data-protected split
migration and remote paging. SEmigrate avoids decrypting
memory data and integrity checking at sub-hosts to reduce
the overhead of data protection and completely prevent
information leakage. Upon split migration, it encrypts mem-
ory data at the source host and then decrypts that data
and checks its integrity only at the destination main host.
Upon remote paging, it encrypts and decrypts memory data
and checks its integrity only at the main host. In addition,
SEmigrate can selectively encrypt only memory data con-
taining sensitive information and check the integrity of only
important memory data to further reduce the overhead of
data protection.

To obtain information needed for such selective data
protection, SEmigrate analyzes the memory of the guest
operating system (OS) in a VM using a technique called
VM introspection (VMI) [4]. For example, it considers that
the free memory in a VM does not contain valid data.
If SEmigrate determines that memory data to transfer is
part of the free memory, it does not encrypt that memory
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Figure 1. Split migration and remote paging.

data or check its integrity. When the user specifies that
an application does not deal with sensitive information,
SEmigrate does not encrypt the entire memory of the process
executing that application. It also uses application-specific
information to protect part of the memory in a fine-grained
manner.

We have implemented SEmigrate in KVM [5] supporting
split migration and remote paging. To confirm performance
improvement by SEmigrate, we ran an application using a
large amount of memory in a VM and examined the per-
formance of data-protected split migration and the migrated
VM with data-protected remote paging. As a result, it was
shown that SEmigrate could reduce the migration time by
up to 43% in 100 GbE. Also, we showed that SEmigrate
could improve the performance of migrated VMs by up to
19%.

The organization of this paper is as follows. Section 2
describes split migration and remote paging and the issues
of data protection of VMs. Section 3 proposes SEmigrate
for optimizing data protection in split migration and remote
paging. Section 4 explains the implementation of SEmigrate
and Section 5 shows our experimental results. Section 6
describes related work and Section 7 concludes this paper.

2. Data Protection of VMs across Hosts

2.1. Split Migration

Split migration [2] divides the memory of a VM into
small fragments and transfers them to multiple small desti-
nation hosts, as illustrated in Fig. 1. The destination hosts
consist of one main host and one or more sub-hosts. Split
migration transfers likely accessed memory data to the main
host as much as possible. It also transfers the state of the
VM core such as virtual CPUs and devices. The rest of the
memory data is transferred to one of the sub-hosts.

After split migration, the migrated VM runs across the
main host and the sub-hosts. The main host executes the
VM core, while the sub-hosts provide the memory to the
VM core. When the VM core requires the memory data
existing in a sub-host, that data is exchanged between the
main host and the sub-host using remote paging. The sub-
host transfers the memory data required by the VM core,
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Figure 2. Split migration and remote paging with data protection.

which is called a page-in. At the same time, the main host
transfers unlikely accessed memory data to the sub-host,
which is called a page-out.

2.2. Protection of Memory Data

In an untrusted execution environment, it is possible
to eavesdrop on and tamper with the memory data of a
VM transferred during split migration and remote paging.
For example, information leakage and manipulation easily
occur if the memory data is transferred via untrusted net-
works. In addition, the memory data can be stolen and
altered by intruders and untrusted administrators at any
host. Fortunately, several mechanisms have been proposed
to protect the memory of a running VM using the hypervisor
[6], [7], the security monitor below the hypervisor [8],
and processors [9], [10]. Since we can use such memory
protection mechanisms at the source host running the entire
VM and the main host running the VM core, we assume
that information leakage does not occur at these hosts in
this paper.

In general, information leakage and manipulation can
be prevented by encrypting the memory data of a VM
and checking its integrity, respectively. Fig. 2 shows data-
protected split migration and remote paging. Upon split
migration, the memory data is encrypted at the source
host by using an encrypted communication channel such as
TLS [11]. Encrypted data is transferred to the destination
main host and sub-hosts and is then decrypted by the
channel. After that, the sub-hosts re-encrypt the decrypted
memory data to securely hold it against intruders and un-
trusted administrators. The reasons why decryption and re-
encryption are required are that the channel automatically
decrypts memory data and that it is difficult to continue
to use the decryption key created for the channel after
the communication. Note that such re-encryption is not
necessary at the main host because the memory data is
managed in a protected manner [6]–[8].

Upon remote paging, the memory data held in a sub-host
is first decrypted. Then, it is re-encrypted at the sub-host
by using an encrypted communication channel established
between the sub-host and the main host. It is transferred
to the main host for a page-in and is then decrypted by
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Figure 3. The migration time with data protection.

the channel. For a page-out, unnecessary memory data is
encrypted at the main host by using this channel and is then
transferred to the sub-host. It is decrypted at the sub-host
and is then re-encrypted to be securely held.

These encrypted communication channels also check the
integrity of transferred memory data. Upon split migration,
the source host calculates the message authentication code
(MAC) of memory data before it encrypts the data. MAC is
a hash value of data and a secret key. After the destination
host decrypts the received data, it re-calculates the MAC
of memory data and compares it with the received MAC.
If this comparison fails, the destination host can detect that
memory data is tampered with during the transfer. Upon
remote paging, a sender host calculates the MAC of memory
data and transfers it, whereas a receiver host re-calculates
MAC and compares it with the received one.

However, using encrypted communication channels im-
poses a large overhead because encryption, decryption, and
integrity checking are performed whenever memory data is
transferred. Fig. 3 shows the time needed for split migration
when data protection is applied to memory data. We used
the experimental setup in Section 5 and measured the per-
formance in both 10 GbE and 100 GbE. Even in 10 GbE,
the performance was degraded by 26% due to data protec-
tion. When we used 100 GbE, the performance degradation
reached 63%. This is because the migration performance did
not increase at all by the overhead of data protection. Fig. 4
shows the execution time of the benchmark that causes
excessive paging when remote paging is performed with
data protection. In this experiment, data protection affected
a negative impact more largely in 100 GbE. This means
that data protection in split migration and remote paging
becomes more critical in faster networks.

In terms of security, the memory data of a VM is
still exposed at sub-hosts due to re-encryption. Since it
is decrypted temporarily by an encrypted communication
channel, attackers can eavesdrop on the memory data before
the data is re-encrypted. In addition, the memory data held
in sub-hosts can be easily decrypted if its decryption keys
are stolen by the administrators of sub-hosts.
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Figure 4. The benchmark time with data protection.

3. SEmigrate

This paper proposes SEmigrate for optimizing data pro-
tection in data-protected split migration and remote paging.
SEmigrate avoids decrypting the memory data of a VM
and checking its integrity at sub-hosts to reduce protec-
tion overhead and completely prevent information leakage.
To further reduce the overhead, it can selectively encrypt
only sensitive memory data and check only the integrity of
important memory data. This optimization is based on the
fact that the entire memory data of a VM does not always
need to be protected. To use memory attributes and process
information for these optimizations, SEmigrate analyzes the
memory of the guest OS in a VM using VMI [4]. In addition,
it analyzes the memory of applications to use application-
specific information.

3.1. Sub-host Optimization

SEmigrate always avoids the decryption of the memory
data of a VM at sub-hosts, as illustrated in Fig. 5. Upon
split migration, the source host encrypts memory data, while
only the destination main host decrypts it. The destination
sub-hosts hold it without decrypting it. To enable decrypt-
ing the encrypted memory data later, SEmigrate uses an
encryption key that is available through the life cycle of a
VM. Therefore, it does not use an encrypted communication
channel that is established only for VM migration. This can
reduce the overhead of the re-encryption of memory data
as well as that of the decryption. Also, this can prevent
information leakage by temporarily decrypting memory data
in an encrypted communication channel. Since the sub-hosts
do not manage any keys for decrypting encrypted memory
data, even the administrators of the sub-hosts cannot decrypt
or eavesdrop on the memory data.

Upon remote paging, SEmigrate encrypts and decrypts
the memory data of a VM only at the main host. For
a page-in, a sub-host does not decrypt the memory data
requested by the main host. Then, it can securely transfer
encrypted memory data to the main host without using an
encrypted communication channel. The main host decrypts
the received memory data and uses it. For a page-out, the
main host encrypts unnecessary memory data without using
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Figure 5. The optimization for reducing the overhead of data protection
and enhancing security at sub-hosts.

an encrypted communication channel and then securely
transfers it to a sub-host. The sub-host holds it without
decrypting it. SEmigrate uses the encryption and decryption
keys shared with split migration to encrypt and decrypt
memory data at the main host in remote paging.

Also, SEmigrate always avoids the integrity checking of
memory data of a VM at sub-hosts. Upon split migration, the
source host calculates the MAC of memory data transferred
to a sub-host and transfers it to the main host, instead of the
sub-host. Since integrity checking is not performed at the
sub-host, it is not necessary to transfer the MAC to the sub-
host. When the main host receives memory data from a sub-
host upon a page-in, it decrypts the data and re-calculates the
MAC of the memory data. Then, it compares the calculated
MAC with the one held in the main host, which has been
transferred on split migration. Upon a page-out, the main
host calculates the MAC of transferred memory data and
holds it without transferring it to a sub-host. Like this,
SEmigrate does not transfer the MAC of memory data
between the main host and a sub-host at all.

One disadvantage of avoiding integrity checking at sub-
hosts is that the detection of tampering with memory data
is delayed. Even if memory data is modified while split
migration transfers it to a sub-host, the sub-host cannot
detect that tampering immediately. When the memory data
is transferred to the main host on a page-in, the main host
can detect the previous tampering by integrity checking. If
tampering is detected during split migration, we can cancel
VM migration and continue to run the VM at the source
host. However, we cannot continue the VM and have to
stop it if tampering is detected after VM migration. There-
fore, we need to consider a tradeoff between performance
improvement and reliability. To address this issue, we can
save memory data transferred to the sub-hosts in a disk at
the source host. If tampering is detected at the first page-in,
we can continue the VM by retransferring the saved memory
data to the main host.

3.2. Selective Data Protection

SEmigrate selectively encrypts the memory data of a VM
at the source host and the main host to reduce encryption
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Figure 6. The optimization of selective encryption and integrity checking.

overhead, as illustrated in Fig. 6. Upon split migration,
the source host encrypts only the memory data that con-
tains sensitive information, while it does not encrypt the
other memory data. The destination main host decrypts the
received data only if the memory data is encrypted. The
destination sub-hosts hold it without encrypting it even if
the memory data is not encrypted. Since that memory data
does not contain sensitive information, it does not need
encryption at sub-hosts as well.

Upon remote paging, a sub-host transfers the memory
data requested for a page-in to the main host without en-
crypting it even if the memory data is not encrypted. The
main host decrypts the received data only if the memory
data is encrypted. For a page-out, the main host transfers
unnecessary memory data to a sub-host without encrypting
it if the memory data does not contain sensitive information.
The sub-host holds it without encrypting it even if the
memory data is not encrypted.

SEmigrate considers various memory regions in a VM
to be not sensitive. For example, the memory regions that
are not used by the guest OS or any applications, i.e., free
memory, do not contain sensitive information. Therefore,
SEmigrate does not encrypt free memory. When memory
data is transferred, SEmigrate obtains its memory attribute
from the guest OS using VMI and examines whether it
is free memory or not. In addition, SEmigrate does not
encrypt code segments of the guest OS or processes because
programs do not contain sensitive information in general.
When memory data is transferred, SEmigrate checks its
memory attribute and determines that that memory is part
of the code segments if it is executable.

When the user specifies an application that does not
deal with sensitive information in a VM, SEmigrate does
not encrypt the memory of the corresponding process used
to execute that application. For example, if an in-memory
database such as memcached [12] deals with only encrypted
data, its memory data does not need to be further encrypted
by SEmigrate when it is transferred. For an application
created using Intel SGX [13], its memory does not need
to be encrypted by SEmigrate if sensitive information is
dealt with only inside memory regions called enclaves,
which are protected by processors. When memory data is
transferred, SEmigrate finds the memory region to which



that data belongs and identifies the process that owns that
memory region. If the name of that process is equal to the
one specified by the user, SEmigrate does not encrypt the
memory data to be transferred.

When the user specifies a specific memory region in
a specific application, SEmigrate does not encrypt that
memory region. For example, if an in-memory database
holds both encrypted data and its decryption key in memory,
only the encrypted data does not need to be encrypted by
SEmigrate. When an SGX application saves the memory
data of enclaves to its process memory in an encrypted form
during VM migration [14], the encrypted data does not need
to be encrypted by SEmigrate. If that application also deals
with sensitive information outside enclaves, that data needs
to be encrypted. When memory data is transferred, SEmi-
grate analyzes the memory of the target process in a VM
and obtains application data. Then, it identifies the memory
regions that do not need to be encrypted. If memory data to
be transferred is contained in those regions, SEmigrate does
not encrypt the memory data.

Similarly, SEmigrate reduces the overhead by selectively
checking the integrity of memory data. Upon split migra-
tion, SEmigrate calculates and transfers MAC only for the
memory that needs to preserve the integrity. Upon a page-
in, only if the main host holds MAC, it calculates the MAC
of received memory data and compares it with the holding
MAC. Upon a page-out, it calculates MAC only for the
memory that needs to preserve the integrity and holds it.
For example, free memory always does not need integrity
checking because it does not contain any information to
be protected. If an application checks the integrity of its
data by itself, SEmigrate does not need to perform integrity
checking for the data.

4. Implementation

We have implemented SEmigrate in QEMU-KVM
7.1.0 [15] supporting split migration and remote paging.
We assume Linux 4.18.17 as a guest OS to apply VMI for
selective data protection, but we can easily support the other
versions of Linux. We used OpenSSL 3.0.2 [16] for data pro-
tection. For encryption, we used AES-XTS with the AES-NI
instruction set [17] and a 256-bit key. For integrity checking,
we used SHA-256 with the SHA extensions [18] of Intel
processors. Note that the SHA extensions were supported
by Intel Core and Xeon processors in 2021, although they
were supported by other processor architectures in 2013.

4.1. Detection of Free Memory

To optimize the protection of memory pages that are
not used in a VM, SEmigrate analyzes the memory of the
VM and checks whether a page to transfer is included in
a free memory region or not. The Linux kernel allocates
contiguous 2n (n = 0, 1, · · · , 10) physical pages at once
using the buddy system [19]. As a result, it manages free
memory pages as free memory regions that consist of 2n

pages. It sets the buddy page flag in the page structure
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Figure 7. The detection of a free memory page.

for managing the head page of a free memory region. In
addition, it stores the number of pages included in the
region. However, this information is not stored in the page
structures of the other pages. Therefore, it is not easy to
check whether a page is included in a free memory region
except for the head page.

In split migration, SEmigrate efficiently checks free
memory by using the fact that most of the pages are trans-
ferred sequentially in ascending order of the page frame
number. When SEmigrate transfers a page, it considers
its page frame number as an index and obtains the page
structure from the array of the structures managed by Linux,
as shown in Fig. 7(a). If that page is the head page of a free
memory region, SEmigrate determines that the page is free
and records that page frame number and the number of pages
contained in that region. Otherwise, it checks whether the
page frame number is contained in the previously recorded
range for a free memory region. If the number is within that
range, SEmigrate determines that the page is free.

This method can be used only if SEmigrate first transfers
the entire memory of a VM in split migration. When SEmi-
grate retransfers updated memory pages and transfers pages
required by remote paging, these page frame numbers are
usually not sequential. In this case, SEmigrate checks free
memory by using the fact that the number of pages contained
in a free memory region is 2n, as shown in Fig. 7(b). First,
it finds the candidates of the head page of the free memory
region in which a transferring page can be contained. It can
easily find the candidates by masking the lower n bits of the
page frame number to zeros. If the buddy page flag is set in
the found page and the transferring page is contained in the
range of the free memory region, SEmigrate determines that
the page is free. The pseudo code is shown in Algorithm 1.

4.2. Detection of Code

To optimize the protection of memory pages that store
code, SEmigrate checks whether a page to transfer is con-
tained in the code segments of the guest OS or the processes.
For this purpose, it finds the virtual memory area that con-
tains a target page in the guest OS, as shown in Fig. 8. First,



Algorithm 1 The free-memory detection algorithm on ran-
dom access.
Input: page frame number (pfn)

1: n = 10
2: while (n > 0) do
3: page = pfn to page(pfn & ˜(2n−1))
4: if (page buddy(page) and freemem size(page) ≥ 2n)

then
5: return true
6: end if
7: n = n−1
8: end while
9: return false

page

vm_area_struct

index

red-black
tree

Figure 8. The search for a virtual memory area containing a target page.

it searches for the page structure corresponding to the page
frame number, as in Section 4.1. From that page structure,
it obtains the index in the red-black tree used for managing
a virtual address space. Using this index, it traverses the
red-black tree and finds the vm area struct structure used
for managing the target virtual memory area. It examines
the attribute of the virtual memory area and determines that
the page contains code if the area is executable.

4.3. Detection of Process Memory

To optimize the memory protection of processes that
do not deal with sensitive information, SEmigrate checks
whether a page to transfer is contained in the memory of
the specified processes. For this purpose, it finds a process
that owns a target page. First, it finds a virtual memory area
containing the page by searching for the corresponding red-
black tree, as in Section 4.2. Next, it finds the process that
owns the found virtual memory area and obtains the process
name from the task struct structure. If the process name
matches one of the specified names, SEmigrate determines
that the page is part of the process memory.

4.4. Detection of Application Data

To optimize the protection of insensitive memory regions
in specific applications, SEmigrate checks whether a page
to transfer is contained within the specified range of virtual
memory addresses in the specified process, as shown in
Fig. 9. First, it examines whether the process that owns the
target page has one of the specified names, as in Section 4.3.
If the process name matches the specified one, SEmigrate

process
memory insensitive data

data_ptr

data_size

virtual
address

page vm_area_struct
data_ptr
data_size

application binary

page
table

Figure 9. The detection of insensitive data in an application.

calculates the virtual address assigned to the target page
from the address range of the target virtual memory area and
the index in the red-black tree for the virtual address space
of the process. If the obtained virtual address is within the
specified range, SEmigrate determines that the page contains
specific application data.

SEmigrate identifies the specified range of virtual ad-
dresses by analyzing the process memory. For example,
suppose that the pointer to a target memory region and
its size are stored in global variables in an application.
SEmigrate obtains the addresses of the global variables from
the binary file of the application. The Linux kernel assigns
virtual addresses to the global variables at runtime by adding
a fixed offset to these variable addresses. This offset can be
changed by address space layout randomization (ASLR),
but SEmigrate can obtain the value from the guest OS.
Then, SEmigrate obtains the page tables for the process
that owns the target page via the task struct structure and
translates the virtual addresses into physical ones. It accesses
the memory of the target VM using the physical addresses
and obtains the values stored in the global variables.

4.5. VMI for Obtaining Information in VMs

It is not desirable to explicitly communicate with the
guest OS in a VM when SEmigrate obtains information
inside the VM. This is because such communication re-
quires modifications to the guest OS. Therefore, SEmigrate
analyzes the memory of a VM and obtains necessary in-
formation. To make this analysis easier, it uses the LLView
framework [20], which enables the user to obtain OS data
by reusing the source code of the Linux kernel. LLView
transforms analysis programs at compile time to seamlessly
access the memory of a VM by translating the virtual
addresses of OS data.

As shown in Fig. 10, SEmigrate first translates a virtual
address into a physical one using the page tables of the init
process in a VM. Then, it translates this physical address
into the memory addresses in the QEMU-KVM process,
which runs the VM. At this time, it also considers memory
re-mapping by virtual hardware. In a VM, the physical
addresses of 3 to 4 GB are often used for PCI memory-
mapped areas. Therefore, the physical memory exceeding
3 GB is re-mapped to the physical addresses over 4 GB.
QEMU-KVM contiguously assigns memory to a VM, but
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memory-remapping changes this memory layout. To bridge
such a gap, SEmigrate subtracts 1 GB from a physical
address when the address is over 4 GB and accesses the
memory of a VM in QEMU-KVM.

4.6. Configuration of Selectively Protected Data

For free memory and code segments, the users need to
specify nothing because SEmigrate automatically detects the
memory regions from the memory attributes. When they
specify a process, they need to write a process name in the
configuration file. When the users specify application data,
they write a process name and the addresses of two global
variables that store the address and size of a memory region
in the configuration file. It is our future work to support the
other types of application data, e.g., a linked list. QEMU-
KVM reads this configuration file at the boot time of a VM.

If the users specify a process using a process ID, which
is dynamically assigned at runtime, they can configure
selectively protected data inside the VM. This method is
useful when the users want to specify some of the multiple
processes with the same name. The users connect to QEMU-
KVM using a VM socket (vsock) and send dynamic con-
figuration, as illustrated in Fig. 11. Vsock is a mechanism
for communication between a VM and the host and can be
used in a manner similar to network sockets.

5. Experiments

We conducted several experiments to examine perfor-
mance improvement by SEmigrate in data-protected split
migration and remote paging. For a source host, a des-
tination main host, and a destination sub-host, we used
three PCs with an Intel Core i7-12700 processor and 128
GB of memory and ran Linux 5.15.60. The source host
was equipped with a ConnectX-5 network adaptor, and the
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destination hosts were equipped with a ConnectX-4 network
adaptor.

Since we did not have a 100 GbE switch, we directly
connected the source host and the main host using a 100
GbE cable. Also, we directly connected the source host and
the sub-host using a 100 GbE cable. Then, we indirectly
connected the main host and the sub-host by using the
source host as a network bridge. When we used the iperf
benchmark, the network bandwidth was 27 Gbps between
the source host and the main host. In contrast, the bandwidth
between the main host and the sub-host was 19 Gbps. The
reason why these were much less than 100 Gbps is hardware
limitations.

We created a VM with one virtual CPU and 96 GB of
memory and ran Linux 4.18.17. Upon split migration, we
equally divided the memory of the VM into two.

5.1. Sub-host Optimization

We first examined performance improvement by SEm-
igrate when we only optimized the data protection at sub-
hosts. As shown in Fig. 12, the time needed for split
migration was reduced by 11%. This is because SEmigrate
neither decrypted the memory data received at the sub-host
nor checked its integrity. Fig. 13 shows the average CPU
utilization at the three hosts during split migration. The
CPU utilization was decreased by 45% point at the sub-



full data protection
sub-host optimization

ex
ec

ut
io

n 
tim

e 
(s

ec
)

0

50

100

150

200

250

300

Figure 14. The benchmark time with sub-host optimization.
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Figure 15. The CPU utilization during benchmark execution with sub-host
optimization.

host, thanks to no decryption, no re-encryption, and no MAC
calculation.

Next, we executed a benchmark that accessed 50 GB of
memory in a VM after split migration. The execution time of
this benchmark is shown in Fig. 14. Since the sub-host did
not decrypt or re-encrypt memory data and did not calculate
or transfer its MAC, the benchmark execution became 7%
faster. Fig. 15 shows the average CPU utilization during
this benchmark execution. Compared with when performing
encryption and integrity checking at the sub-host, SEmigrate
could decrease the CPU utilization at the sub-host by 9%
point.

5.2. Selective Data Protection

We examined performance improvement by SEmigrate
when we applied selective data protection as well as sub-
host optimization.

5.2.1. Split Migration. We ran an application that used 50
GB of memory in a VM and configured that the memory of
this process was not encrypted but its integrity was checked.
This VM contained 42 GB of free memory, which was not
encrypted or integrity-checked. Fig. 16 shows the time taken
for split migration. SEmigrate was 43% faster than split
migration with full data protection. Even compared with
split migration with sub-host optimization, the migration
time was reduced by 35%. SEmigrate took more time than
split migration with no data protection, but the migration
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Figure 16. The migration time with SEmigrate.
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Figure 17. The CPU utilization during split migration with SEmigrate.

time was only 1.5x. This means that selective data protection
is effective when a VM has much data that does not need
to be protected.

Fig. 17 shows the CPU utilization during split migration.
Compared with split migration with full data protection,
SEmigrate could decrease the CPU utilization at the sub-
host by 43% point. This is due to sub-host optimization, as
shown in Section 5.1. In contrast, the CPU utilization was
not reduced at the source host. We expected that the CPU
utilization at the source host was also reduced because the
source host neither encrypted 92 GB of memory data nor
calculated MAC for 42 GB of memory data. The reason is
that the source host could transfer more memory data per
unit time by less data protection. In fact, the migration time
was reduced. For a similar reason, the CPU utilization was
high during split migration with no data protection.

To examine the breakdown of the performance improve-
ment by selective data protection, we measured the migra-
tion time when we applied each optimization one by one. As
shown in Fig. 18, the optimization of free memory reduced
the migration time by 35%. This means that migration
performance was largely improved by not protecting 42 GB
of free memory. In contrast, the optimization of process
memory reduced the migration time by 11%. This means
that performance improvement by not encrypting 50 GB
of process memory was not large. This suggests that the
optimization of integrity checking is more effective even
if relatively new SHA extensions are used. In addition, we
examined the effectiveness of the optimization of application
data. The migration time was rather 4% longer, compared
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Figure 19. The migration time with various amounts of application memory.

with the optimization of the entire process memory due to
the overhead of detecting application data.

Next, we measured the migration time when we changed
the amount of memory used by the application. As shown in
Fig. 19, migration performance was improved more largely
as the application used less memory, i.e., there is more free
memory. For example, SEmigrate was 63% faster than split
migration with full data protection when the application
almost did not use memory. In contrast, the migration time
was reduced only by 15% when the application used 90 GB
of memory.

5.2.2. Remote Paging. We measured the time needed to ex-
ecute the memory benchmark used in Section 5.1 after split
migration. As shown in Fig. 20, SEmigrate was 19% faster
than the benchmark execution using remote paging with full
data protection, thanks to selective data protection in remote
paging. It was 13% faster than only sub-host optimization.
Even compared with remote paging with no data protection,
the execution time increased only by 28%. Fig. 21 shows
the average CPU utilization during the benchmark execution.
The CPU utilization was 9% lower than remote paging with
full data protection at both hosts.

Fig. 22 shows the execution time when we applied
optimization one by one. The optimization of the protection
of free memory reduced the execution time by 15%. In
contrast, the optimization of only the encryption of process
memory improved the performance by 15%. Similarly, the
optimization of only the encryption of application data re-
duced the execution time by 12%. Unlike the results in split
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Figure 20. The benchmark time with SEmigrate.
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Figure 21. The CPU utilization during benchmark execution with SEmi-
grate.

migration, the optimization of encryption is more effective
than that of integrity checking. This probably comes from
the differences in memory access between split migration
and remote paging. For example, split migration accesses
memory at a high rate, whereas remote paging occurs at a
lower rate.

5.3. Analysis Time

We examined the overhead of analyzing the memory of
a VM for selective data protection. We ran the application
used in Section 5.2 in the VM and configured that the
process memory was not encrypted. Fig. 23 shows the
average analysis time per memory page. The detection time
of free memory was only 27 ns, whereas it took 6.2x longer
to detect process memory. When we did not encrypt only
specific application data, the detection time of application
data took 48 ns longer than that of process memory. When
we applied all the selective data protection, the detection
time was 104 ns on average. It took 2.6 seconds for the
VM with 96 GB. This overhead was 3.8% of the migration
time in SEmigrate. As a result, SEmigrate is effective if
performance improvement is more than this.

6. Related Work

For VM migration, various optimizations using VMI
have been proposed, but there is no optimization of data pro-
tection. MiG [21] obtains memory attributes from the guest
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OS in a VM and optimizes the compression algorithm for
memory data using the obtained information. For example,
it compresses free memory and transfers only its page frame
number. It compresses the heap area using gzip because
of its high redundancy. Such optimizations can reduce the
amount of transferred memory by 51–61% and halve the
migration time. However, MiG first saves all the states of
a VM and then compresses the memory data. Therefore,
it does not support live migration, which migrates a VM
without stopping it, unlike SEmigrate.

IntroMigrate [22] identifies free memory in live mi-
gration of a VM and avoids transferring it to shorten the
migration time. It obtains information on the entire free
memory by simply scanning the array of the page structures
in Linux at the beginning of VM migration. Therefore, it
can apply the optimization based on old information for
the memory that becomes in use during a long migration
time. It relies on the retransfer mechanism to transfer the
memory data that became in use. For the optimization of
data protection, however, using old information is critical. If
the memory including sensitive information is not encrypted,
information leakage can occur.

Similar work [23] identifies memory types and avoids
transferring not only free memory but also the page cache
in a VM. It can identify free memory using information only
in the target page structure in Linux on demand, but that
information is not enough to exactly identify free memory.
Since the page cache can occupy a large portion of the
memory, the optimization of not transferring it can reduce
the migration time largely. However, the performance of the

migrated VM can degrade largely because the VM needs to
access slow virtual disks, instead of the page cache.

FCtrans [24] does not transfer unused memory in a VM
when the VM is migrated using split migration and runs
using remote paging after the migration. It does not need to
rely on VMI because it can identify unused memory only by
examining the memory allocation to a VM. Unused memory
in a VM becomes in use once it is accessed in a VM. Even
if the memory becomes free in the VM, it does not become
unused again. Therefore, FCtrans periodically identifies free
memory and changes that memory to unused using VMI.
This periodic reclamation imposes a large overhead.

The secure virtualization architecture [6] and VM-
Crypt [7] prevent information leakage from the memory of
a running VM. They provide the unencrypted version of
the memory to the VM, while they provide the encrypted
version to the management VM used by the administrators.
Upon VM migration, they obtain and transfer the encrypted
memory of a VM in the management VM. SEmigrate can
apply such memory protection mechanisms to the source
host and the destination main host to prevent information
leakage unless the hypervisor is compromised. CloudVi-
sor [8] can protect the memory of a VM without relying even
on the hypervisor by running the security monitor under the
hypervisor.

7. Conclusion

This paper proposed SEmigrate for optimizing data pro-
tection in split migration and remote paging1. SEmigrate
avoids decrypting the memory data of a VM and checking
its integrity at sub-hosts to reduce protection overhead and
completely prevent information leakage. In addition, it selec-
tively protects only necessary memory data to further reduce
protection overhead. To enable this, SEmigrate analyzes the
memory of the guest OS and applications in a VM using
VMI. We have implemented SEmigrate in KVM and showed
that SEmigrate could reduce the migration time by up to
43% in 100 GbE. Also, it could improve the performance
of migrated VMs by up to 19%.

One of our future work is to examine the performance
of SEmigrate using faster networks. Since the overhead
of data protection becomes relatively larger if we can use
the full capabilities of 100 GbE, SEmigrate could further
improve the performance of split migration and remote
paging. In addition, we are planning to apply SEmigrate to
real applications and confirm that SEmigrate can perform
selective encryption using application-specific information.
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